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Patients as Patches: Ecology and Epidemiology in
Healthcare Environments

Eric T. Lofgren, PhD;1,2,3 Andrea M. Egizi, PhD;4,5 Nina H. Fefferman, PhD3,6

The modern healthcare system involves complex interactions among microbes, patients, providers, and the built environment. It represents a
unique and challenging setting for control of the emergence and spread of infectious diseases. We examine an extension of the perspectives and
methods from ecology (and especially urban ecology) to address these unique issues, and we outline 3 examples: (1) viewing patients as
individual microbial ecosystems; (2) the altered ecology of infectious diseases specifically within hospitals; and (3) ecosystem management
perspectives for infection surveillance and control. In each of these cases, we explore the accuracy and relevance of analogies to existing urban
ecological perspectives, and we demonstrate a few of the potential direct uses of this perspective for altering research into the control of
healthcare-associated infections.
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background

Systematic investigation into the effects of urbanization on eco-
logical processes began in earnest afterWorldWar II.1 In the past
few decades, the study of how urban environments yield differ-
ent types of ecosystems from those favored by undisturbed or
rural environments has blossomed into its own field: urban
ecology. By framing research questions using urbanization, this
field has been able to provide insights that might otherwise have
remained case-by-case results within ecological research.

Thus far, the field has focused on 3 areas of urban impact:
the built environment; the byproducts and processes of human
urban life as they affect resources and/or habitats for animals
and plants; and the resulting biodiversity of the urban
ecosystem.2 These foci have identified knowledge and data
gaps in the understanding of urban ecological processes, have
suggested novel hypotheses for scientific investigation, and
have enabled concrete and empirically informed planning for
more sustainable urban development.

While the complexity of urban ecosystems differs from
natural environments,3 and this difference can largely be
attributed to human-related factors, the main populations and
communities studied in cities have been plants and animals
(eg, McKinney4). However, there remains a gigantic yet vastly
under-studied realm of the ecology of human urban environ-
ments: the urban microbiome.5

Here, we consider the healthcare environment as one in
which an ecological perspective may be beneficial in improving
clinical care and in which the focuses of urban ecology in
particular lend themselves to new methods of addressing
healthcare-associated infections. While not all healthcare
settings are located in what might be considered urban areas,
even rural hospitals often feature relatively intense develop-
ment, a high density of human beings in the same place, and a
structurally modified environment. All of these factors are
commonly associated with the perspectives and tools of urban
ecology.

Applying Urban Microbiome Ecology to
Hospital Epidemiology

The healthcare environment represents a complex and
medically and economically important environment for
pathogens and other human-dependent microbes. Healthcare-
associated infections are among the leading causes of death in
the United States and have a substantial economic cost.6 The
built environment within the hospital is awash with
(1) microbes only infrequently encountered outside the
healthcare environment, (2) disinfectants, and (3) an array of
antimicrobial agents ranging from drugs used in patient
treatment to surfaces designed to be resistant to bacterial
colonization. Urban settings in particular, because of their size
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and population density, have greater numbers of emergency
care facilities, and academic medical centers, and they offer
more specialized resources for treating complicated conditions.7

Thus, patients may go to several providers simultaneously or in
sequence. This diffuses accountability for infections so there is
no single obvious “point of failure,” but rather a network of
institutions struggling to address their infection control
problems.8 Conversely, denser urban settings also support
larger institutions with increasing numbers of patients under
care, meaning that facilities failing to control hospital-acquired
infections may affect a larger number of people.

Viewing hospital settings in an ecological context (Table 1)
can yield insights into pathogen dynamics, transmission, and
control. An approachable analogy to other ecological dis-
ciplines is to view not only the hospital environment as an
ecosystem but also each patient as a free-standing ecosystem.
This type of thinking is implicit in many current areas of
hospital epidemiology research, from the decolonization of
patients with chlorhexidine gluconate to manipulating their
intestinal microflora to prevent C. difficile recurrence. Each
patient can be thought of as a “patch,” a term denoting a small,
self-contained ecosystem that is functionally remote from
other habitats, such as an island or an isolated area of green
space.9 The routes of transmission between patients, whether
direct contact through the contaminated hands of healthcare
workers or contact with a contaminated environment, then
become the ecological corridors10 along which pathogens
move from one patch to another. This group of habitat patches
is analogous to a metapopulation, where migration between
patches and asynchrony in patch dynamics (ie, not all people
become infected or recover, at the same time) allow the
population to persist over time.11 Urban ecologists are often
interested in whether building dispersal corridors will coun-
teract the effects of habitat fragmentation.12 By contrast,
infection preventionists attempt to intentionally fragment
pathogen habitats and disrupt migration between patients,

preventing pathogens from persisting over time. Unique to
hospital epidemiology is the fact that some of these corridors,
such as the hands of healthcare workers, are themselves also
microbial habitats and thus could be patches as well. The level of
abstraction for using ecological reasoning will depend on the
problem in question. For example, while a patient-centric
intervention may regard healthcare workers purely as the means
by which patients are exposed, a new hand sanitization protocol
might focus on the microbial environment of a worker’s hands.
Each of these patient environments, by the very fact that

they are in a hospital, also undergo significant environmental
alterations. These include the direct targeting of a particular
pathogen with a pharmaceutical intervention (most com-
monly an antibiotic or antiviral) as well as the unintended
effect of these therapies on other microbes in the patient
environment (eg, the impact of broad-spectrum antibiotics on
the majority of normal intestinal flora, or a drastic reduction of
particular non-target microbial species13,14). Such shifts in the
patient environment can, in turn, alter immune function15 and
open niches for colonization by microbes acquired post-
hospitalization, leading to further changes in community
composition.16 These interactions may yield novel patterns in
interpathogen competition and/or commensalism due to the
numerous unusual and overlapping selective pressures that
exist not only at the level of the patient but among patients as
well. For example, the use of proton pump inhibitors may
alter a patient’s intestinal flora, leaving them susceptible to
C. difficile infection. In turn, the treatment of this infection
with vancomycin may promote the proliferation of
vancomycin-resistant Enterococci.17 This complex network of
infection risks is borne out of the patient’s own microbiome,
the hospital’s microbial environment, and the interactions
between them through treatment.
Above the level of an individual patient, the temporal

dynamics of urban life in humans can also impact the ecology
of pathogens on the level of both host and hospital. For

table 1. Outline of a Framework for Interpreting Ecological Dynamics in an Urban Hospital Environment

Ecology Term Hospital Analog

Landscape Habitat patch Patient environment (in this analogy hospital staff are viewed as corridors rather than patches)
Corridor Suitable habitat that pathogens can use to migrate between patches
Heterogeneity Changes in key parameters that define pathogen habitat suitability across space or time
Fragmentation Disrupting connectivity between patches, with the goal of preventing pathogen transmission

Population Metapopulation Group of interconnected habitat patches (ie, the hospital environment as a whole)
Immigration/emigration Movement of microbes via habitat corridors between patients
Colonization vs extinction Infection vs eradication of pathogen from patient
r/K selection Different pathogen life history strategies (eg, high/low transmission rate and long-/short-term

survival in host)
Community Richness vs evenness The absolute number vs relative abundance of microbial species in a community

Disturbance Event that alters the patient environment (eg, treatment with antibiotics, cleaning of hospital
surfaces)

Resistance The extent to which microbial community composition and/or function remains stable in the
face of disturbance

Invasibility Susceptibility of the patient environment to pathogen establishment
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example, many diseases exhibit inherent pathogen-specific
seasonality,18–20 thereby periodically (re)introducing novel
microbial competitors into the healthcare environment.
Similarly, periodic influxes of cohorts of newly trained
doctors, nurses, and other healthcare personnel may lead to a
short-term increase in medical errors,21,22 compromising the
deliberate habitat fragmentation caused by infection control
policies and allowing ecological corridors between patients to
form. This is, in essence, a fluctuating level of habitat hetero-
geneity, involving anything from relatively mundane daily
oscillations in hospital occupancy and the resulting effect on
patient care,23 all the way up to social or political events, such
as emergencies, natural disasters, or labor disputes.24,25 These
events can then cascade, altering the microbial environment
and competitive landscape in unplanned ways. For example,
the use of nurses from different departments to alleviate
a temporary staffing shortage may result in combining several
infection control cultures and compromising existing
protocols.

The dynamics of disease transmission are also different
between the healthcare environment and other urban envir-
onments, even those entirely created by humans. The near
destruction of one’s intestinal flora due to antibiotics is a
relatively frequent event within hospitals,26 and while surface-
mediated transmission (ie, one individual infects another by
way of their shared physical environment) undoubtedly exists
in the normal course of urban life, it both occurs at a higher
frequency and takes on greater seriousness within the context
of the healthcare environment.27,28

Ecological Implications of the Patient Environment

As in wildlife ecology, urban patterns of hosts-as-habitats can
have considerable impact. Potentially different social conven-
tions regarding intimate contact and sexual partnership in
urban settings might alter the success of K-selected pathogens
(ie, those that are transmitted rarely or require repeated
exposure for successful transmission and therefore must
survive within a single host for long periods of time, as is the
case with many sexually transmitted infections29). The dense
patterns of contact among larger numbers of incidentally
collocated people might easily be described as favoring
r-selected pathogens (ie, ones that transmit quickly to new
hosts, investing few resources in surviving within any single
host for very long) up to a point, but past that point would be
expected to shift into boom–bust dynamics wherein periodic
large-scale outbreaks sweep through a majority of the
population but then die out.30 Furthermore, as is known from
population genetics and metapopulation ecology, increased
numbers of potential hosts in regions that can, but do not
frequently, interact allow rare neutral mutations to become
established more frequently than in fully panmictic
populations.

These perspectives are also directly relevant within a
healthcare environment, with the associated array of intensive

selective pressures. The prevalence of pharmaceutical
interventions, disinfection and sterilization products, as well as
their varied mechanisms of action and an ever-shifting
microbial community, can alter the relative fitness of
r- versus K-selected species as competitors. This perspective is
of immediate practical use, relying on the very well-developed
literature about which conditions favor r- versus K-selected
species (eg, Resnick et al31 and Phillips et al32) and thereby
generating practical and testable hypotheses about which
pathogens are likeliest to become established as HAIs due to
their relative evolutionary fitness among ambient pathogens.
For example, r-selected species that are characterized by very
high rates of reproduction and rapid, explosive growth
(eg, norovirus) may be favored in many hospital environ-
ments, which, from a microbial perspective, are relatively
unstable due to high amounts of environmental disinfection.
In contrast, environments with more stable environments and
populations, such as long-term care facilities, may favor, or at
least be conducive to, the transmission of more K-selected
pathogens, such as fungal infections or tuberculosis.

An Ecological Perspective on Infection Surveillance
and Control

Understanding the principles of urban ecology that apply to
healthcare environments has the potential to inform infection
control policy and to improve existing infection surveillance
and control programs. Advances in sequencing technology
have made the study of infection control problems from a
community ecology perspective a technical reality,33 but this
potential has not yet been fully realized. Methodological dif-
ficulties arise given the levels of asymptomatic carriage34

commonly seen in many pathogens important to hospital
epidemiology, such as S. aureus or C. difficile. Despite these
hurdles, these technologies are invaluable for quantifying what
pathogens exist within a healthcare environment—the first
step toward understanding its ecology.
An ecological perspective can help evaluate the relative

impacts and unforeseen consequences of vertical infection
control programs that combat a single pathogen (eg, targeted
screening for CRE colonization when a patient is admitted)
versus horizontal infection control programs that target a wide
swath of pathogens through a single mechanism (eg, improved
hand hygiene compliance).35–37 Each of these types of pro-
grams, or several programs of each type within a hospital,
impacts the community dynamics of the pathogens within the
hospital and, by extension, within the patient-level environ-
ment as well. Understanding these dynamics, such as the
potential of one infection control program to increase the
prevalence of another type of microbe (ie, through competitive
release)16 allows for more well-controlled programs and
may provide explanations for otherwise unanticipated or
inexplicable changes in infection rates. The most common
example confronting healthcare settings is the epidemiology
of C. difficile. Treatment protocols that suggest the use of
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broad-spectrum antibiotics disrupt the normal ecology of the
gut, opening up a large niche into which C. difficile may then
proliferate and cause disease.

Similarly, infection risk analysis and mitigation may also be
improved by incorporating urban ecological understanding
about how to use observed biodiversity as an indicator of
disturbance. Most current patient screening techniques, diag-
nostic tests, environmental contamination surveys, etc, oper-
ate based on the determination of presence/absence, ignoring
other community properties, such as relative abundance.
However, in ecology, species richness alone is typically an
insufficient indicator of ecosystem processes, and the relative
abundance of species, or evenness, is also extremely
important.38 For example, urban environments tend to display
less evenness as a result of overrepresentation by invasive
species and human commensals.39 These findings align
perfectly with Clostridium difficile infection, which is driven
not necessarily by the presence of the pathogen but rather by
the pathogen’s relative abundance compared to other organ-
isms within the patient’s microbiome.40,41 Interventions
meant to alter microbial abundance, such as the use of fecal
microbiota transplantation, are therefore direct means of
altering the community ecology of the patient environment.42

There is no reason that C. difficile should be unique in this
respect, and save for infections stemming from the introduc-
tion of pathogens into an environment where they should not
be (eg, central-line–associated bloodstream infections), the
ecologically informed inclusion of abundance as part of
biodiversity in surveillance and risk analysis may provide
better understanding and improved potential for control.

Another aspect of biodiversity, functional diversity, may
also be incredibly important from the standpoint of diagnos-
ing and controlling diseases. In urban ecology, function refers
to the processes and services performed by ecosystems
(eg, nutrient cycling, primary productivity) and is sometimes,
but not always, related to the presence or abundance of certain
species.3,43 However, groups of species performing similar
functions can lead to functional redundancy, whereby species
composition can change without compromising ecosystem
processes.44 Increasing evidence of functional redundancy in
the human microbiome45,46 calls for a broadening of epide-
miological focus from the presence or abundance of a parti-
cular microbe toward consideration of functionally similar
microbes or even specific microbial transcripts (eg, resistance
genes).47 This concept is already being explored through the
use of bacterial interference as either a direct treatment48,49 or
as a potential source for new therapeutic agents.50

In addition to impacts on ecosystem function, the various
components of biodiversity discussed above can influence a
community’s response to disturbance and invasion. While
several authors have considered the implications of ecological
resistance and resilience for human-associated microbial
communities,51–53 further insights are uniquely applicable
to the healthcare environment. Studies like the Hospital
Microbiome Project54 may ultimately inspire efforts to

cultivate surface-associated communities within hospitals
that are resistant to pathogen establishment. For example, a
recent study found that more diverse microbial communities
occur in hospital rooms with windows that open, suggesting
the potential for building features to affect microbial com-
munity composition, and perhaps indirectly, the movement of
pathogens.55

Using Urban Ecology to Predict Hospital Epidemiology

With the examples outlined above, we can begin to see how
concepts from urban ecology can inform research questions
and recommendations in medical ecosystems. Urban ecology
has a deep literature base regarding on the impact of urban
settings on biodiversity. In general, these studies predict
(in temperate regions) that species commonly transported into
the urban center by humans (eg, invasives with high propagule
pressure) will increase while native species richness declines,
although some native species that can adapt to the changes
associated with urbanization may increase.4,39,56 This
framework can be applied in medical settings to consider
epidemiological outcomes observed already, but with a unify-
ing and explanatory theory by which to predict and describe
pathogen dynamics. For example, there should be increasing
numbers of outbreaks of rare but often introduced pathogens,
such as MRSA when it is endemic in the community, even if it
is controlled within a hospital. The incidence of infections that
can be easily and effectively treated should decrease (as with
the general decline in many infectious diseases in the twentieth
century), and correspondingly there should be an increase in
diseases that are becoming more difficult to treat, such as
antimicrobial-resistant infections. The incidence of infections
for which medical treatment increases the host’s ability to
circulate among the rest of the population while still infectious
should increase. Here, this can be the result of treatment
suppressing symptoms but not shedding, or as the result of
frequent patient transfers within or between hospitals.8

Likewise, each of the analogies mentioned throughout this
review can lead to specific predictions about disease dynamics
in healthcare settings.

conclusions

Although we have conducted only a surface-level overview of
the potential application of ecological perspectives on hospital
epidemiology, we believe an increased use of this type of
analysis and thinking has immediate potential in helping
combat healthcare-associated infections. These infections are
directly analogous examples for many of the concepts devel-
oped within and between traditional and urban ecological
research efforts (eg, invasive species). This perspective on
hospital epidemiology puts forth clear and important
questions for which existing theory in these disciplines can
offer more general solutions, rather than the current case-by-
case basis used for disease-specific epidemiological research.

1510 infection control & hospital epidemiology december 2016, vol. 37, no. 12

https://doi.org/10.1017/ice.2016.224 Published online by Cambridge University Press

https://doi.org/10.1017/ice.2016.224


We can already see how to apply this perspective to an
astounding diversity of issues confronting infection preven-
tionists: (1) understanding/predicting the likely relative fre-
quencies for different types of pathogens; (2) suggesting critical
“corridors” for transmission of pathogens such that surveillance
efforts in these locations or populations would be most effective
in early detection of outbreaks; (3) informing public health
interventions to trade off short-term against long-term outbreak
management goals (ie, hospitalizing patients when staffing and
resources are already strained during a public health emergency,
prioritizing patient treatment and survival at the cost of increased
risk for secondary infections, analogous to control strategies
studied in population viability analysis); and (4) altering micro-
bial management in healthcare facilities based on understandings
of microbial community competition and commensalism
dynamics, among others.

Over the past decade, the understanding that the ecology of
infectious diseases can help to inform epidemiological research
has led to some deep and beautiful insights.57,58 By taking this
understanding a step further, borrowing also from research
into the distinct ecological processes that occur in urban
settings and how they differ from other environments, we
believe we can leverage a greater depth of insight into urban
microbial dynamics in direct application to everything from
basic epidemiological science to clinical practice. This insight
then has the potential to lead to better interventions and
improved patient outcomes. Interested researchers may find
surprisingly relevant concepts in foundational textbooks in
urban ecology59,60 or through discussions with colleagues in
the ecological sciences.
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