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Abstract

The no restart random walk (NRRW) is a random network growth model driven by a
random walk that builds the graph while moving on it, adding and connecting a new
leaf node to the current position of the walker every s steps. We show a fundamental
dichotomy in NRRW with respect to the parity of s: for s = 1 we prove that the random
walk is transient and non-leaf nodes have degrees bounded above by an exponential
distribution; for s even we prove that the random walk is recurrent and non-leaf nodes
have degrees bounded below by a power law distribution. These theoretical findings
highlight and confirm the diverse and rich behaviour of NRRW observed empirically.
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1. Introduction

Network growth models are fundamental to representing and understanding the evolution
of real networks, such as the brain, the web, or online social networks [13]. Traditional growth
models such as the celebrated Barabási–Albert model [3] often rely on global mechanisms (e.g.
they connect to a randomly chosen node) in order to induce properties frequently observed
in real networks, such as a heavy-tailed degree distribution or logarithmic node distances.
However, many real networks grow out of local mechanisms embodied by processes that
unfold on the network. For example, the growth of brain networks is governed by action
potentials in neurons [15], and ties in online social networks are driven by local interactions
among users [11, 17].

Over the past decade, various network models leveraging local mechanisms have been
proposed and shown to capture structural properties found in real networks [5, 10, 12, 14, 16].
However, while these models embody local attachment rules, they also rely on some global
step, such as choosing a node at random across the entire network. Once a node is chosen,
local attachment rules determine the edges to be added locally. Intuitively, this global step
ensures that the network can continue to grow in every corner. But is this necessary? Can a
purely local growth process give rise to a rich network structure?
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(a) (b) (c)

(d) (e) (f)

FIGURE 1: Networks generated by simulating the NRRW, starting with a single node with a self-loop
with step parameters s = 1 (a–c) and s = 2 (d–f) for different stopping times t = s(N − 1), with N = 102

(a, d), N = 103 (b, e), and N = 104 (c, f).

This current work tackles this question, providing a positive answer with a surprisingly
simple model: a network growth process governed by a random walk and a local attachment
rule that connects a new leaf node to the current walker position. In particular, the proposed
model can be described algorithmically as follows.

0. Start with an initial network (e.g. a single node with a self-loop) and a random walk
placed on one of its nodes.

1. Let the random walk take exactly s steps on the current network.

2. Connect a new node with degree one (i.e. a leaf node) to the current walker node.

3. Go to step 1.

The model is named ‘no restart random walk’ (NRRW) because it builds on previous models in
which the random walk would restart (by choosing a node uniformly at random) under certain
conditions (e.g. adding a new node) [5, 14]. Note that NRRW is parsimonious and has a single
parameter s, called the step parameter. While the initial network is also a parameter, it does not
play a prominent role in the structural properties observed asymptotically (as we soon show).

What networks will NRRW generate? Figure 1 depicts networks generated by simulating
NRRW for s = 1 and s = 2 for different numbers of nodes. Clearly, networks generated for
s = 1 and s = 2 are very different. As it turns out, the parity of s and its magnitude play a
fundamental role in the walker dynamics and the network structure.
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Interestingly, the NRRW can be analysed from two different perspectives: those of the
walker and the network. From the walker’s perspective, a fundamental question concerns
the dichotomy between transience and recurrence [2, 4, 6, 7, 9]. Will NRRW give rise to
transient or recurrent random walks? From the network perspective, a fundamental question
is the dichotomy between a heavy tail and exponential tail degree distribution. What kinds of
degrees will NRRW generate? Given the mutual dependence between walker and network, the
two perspectives are fundamentally intertwined.

Indeed, Theorem 1 illustrates this close relationship between walker and network properties,
establishing that for s = 1 the random walk is transient and the node degree is upper-bounded
by an exponential distribution. Interestingly, these observations on the walker and the network
emerge jointly from the model dynamics, without one being the cause of the other! For s even
we show that the walker is recurrent and the degrees of non-leaf nodes are bounded from
below by a power law distribution with exponent decreasing in s. Moreover, for s even we also
provide a lower bound for the fraction of leaves in the network, and for s = 2 our bound implies
that the fraction of leaves goes to one as the network size goes to infinity.

Why is the parity of s so fundamental? To help build intuition, consider s = 1. In this case,
the walker can move to the node just added and connect a new node to it, pushing the network
away from its initial position. For s = 2, the walker can never connect a new node to the node
just added, and it will necessarily step back if it moves to the node just added. These two
observations – the runaway effect and bouncing-back effect, respectively – play a major role
in the dynamics of NRRW, as discussed below.

Finally, various properties of networks generated by NRRW were first observed by means
of extensive numerical simulations [1], such as the dichotomy in the degrees and distances as a
function of the parity of s. In this paper we provide rigorous theoretical treatment for some of
the results first observed empirically. In particular, this work makes the following theoretical
contributions.

• For s = 1 the random walk is transient and the degree of a node is bounded above by an
exponential distribution (Theorem 1 and Corollary 1, both in Section 3).

• For s even the random walk is recurrent and the degree of a non-leaf node is bounded
below by a power law distribution with an exponent that depends on s (Theorem 2 and
Proposition 1, respectively).

• For s even the fraction of leaf nodes is asymptotically lower-bounded by a function that
depends on s and is always greater than 2/3 (Theorem 3 and Corollary 4, respectively).

While results for s even are more general and do not strongly depend on the value for s, results
for s odd are limited to the case s = 1. Unfortunately, the proof technique used in establishing
results for s = 1 does not generalize for other odd values of s. However, simulation results [1],
as well as recent theoretical results on a similar model (see the discussion in Section 5),
strongly indicate that similar theoretical results should hold for all s odd.

It is important to note the difference between the commonly used network degree
distribution and the distribution of the degree of a node, used in this work. While the former
refers to the degree of a node chosen uniformly at random at time t, the latter refers to the
degree of a fixed node at time t. While the two notions are related, we refrain from further
discussion and adopt the latter for simplicity and tractability (and purposely avoid using the
expression degree distribution).
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The remainder of the paper is organized as follows. Section 2 presents the model and the
notation. Results for s = 1 are presented in Section 3, while results for s even are presented in
Section 4. Finally, Section 5 concludes the paper with a brief discussion and outlook.

2. The model

The no restart random walk (NRRW) model consists of a random walk moving on a graph
that itself grows over time. At every discrete time t > 0, the random walk takes a step in the
current graph (i.e. it chooses a neighbour uniformly at random). After exactly s steps, a new
node with degree one (i.e. a leaf node) joins the graph, and is attached to the node currently
occupied by the walker (we assume that the attachment of a new node takes zero time).

Our stochastic process is specified by the pair {Gs
t , Wt}t≥0, with (G0, w0) denoting its initial

state where G0 = (V0, E0) is an undirected graph with finite node and edge sets V0 and E0,
respectively, and w0 ∈ V0 is the initial position of the random walker. We assume nodes in V0
are labelled with negative numbers, and we let r = w0 denote the root of our process. New
nodes added later are labelled with positive consecutive numbers.

We let Gs
t denote the graph process resulting at time t from the NRRW with step parameter s:

Gs
t is an undirected graph on the node set Vt = V0 ∪ {j, 1 ≤ j ≤ �t/s�}, where j is the label of

the node added at time js. We let Wt ∈ Vt denote the position of the walker at time t, and we
consider a symmetric random walk, which chooses its next step uniformly at random among
the neighbours of its current position. Note that the graph only changes at times t = ks, for
every integer k > 0, while it does not change in the time intervals ks < t < (k + 1)s. Also, since
a new node is connected through a single edge, the model adds trees to the initial graph G0.

The stochastic process {Gs
t , Wt}t≥0 is always transient: any given graph is observed at most

s consecutive steps. Nevertheless, we can define transience and recurrence of the random walk
Wt in a similar way to a random walk on a static graph. The walker is recurrent (resp. transient)
if it visits any node an infinite number of times with probability 1 (resp. 0).

3. NRRW with step parameter s = 1

Recall that when s = 1, after every walker step a new leaf node is added to the graph.
Figure 1(a–c) indicates that in this scenario nodes have small degree (relative to the number
of nodes) and the tree grows in depth as the number of nodes increases. More substantial
empirical evidence of this phenomenon is provided in [1]. This suggests that the random walk
is extending the tree to lower depths, never to return to the initial graph G0. In other words, the
random walk is transient and visits each node in the tree a relatively small number of times,
with high probability. The following theorem captures this intuition.

Theorem 1. In the NRRW model with s = 1, for any initial configuration {G0, x0} with G0
finite, the random walk is transient. Furthermore, if JG0 = ∑∞

t=0 1(Wt ∈ V(G0)) denotes the
number of visits to the initial graph, there exist constants a, b > 0 such that, for all k > 0,

P(JG0 ≥ k) ≤ ae−bk.

A similar theorem considering the case in which the initial graph G0 is a single node has
appeared in [1]; here, we generalize this prior result to any initial graph G0.

Proof. We begin by proving that the random walk is transient.
Let τ−

1 (x0) := inf{t > 0: Wt 
∈ V(G0)} be the first time the random walk visits a node not in
G0 starting from x0 (in what follows we usually omit the dependence on x0).
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It is not difficult to see that

P(τ−
1 > m) ≤

(
1 − 1

�(G0) + 1

)m

≤ e−m/(�(G0)+1),

where �(G0) denotes the maximal degree in G0. Thus, in particular, τ−
1 is finite almost surely

and this holds for any finite graph G0 and any initial position x0 ∈ V(G0) of the walker. We call
this time the beginning of the first excursion and we let v1 = Wτ−

1
denote the node where the

excursion begins. We also define

τ+
1 := inf{t > τ−

1 : Wt ∈ V(G0)},
the first time the random walk comes back to G0, which denotes the end of the first excursion.
Similarly, we define the beginning and end of the ith excursion as

τ−
i :=

{
inf{t > τ+

i−1 : Wt 
∈ V(G0)} if τ+
i−1 < +∞,

+∞ otherwise,

τ+
i :=

{
inf{t > τ−

i : Wt ∈ V(G0)} if τ−
i < +∞,

+∞ otherwise.

Note that if the ith excursion ends after a finite time, i.e. if τ+
i < +∞, then the walker will

almost surely spend a finite time visiting nodes in G0, before starting the (i + 1)th excursion.
This is due to the fact that new nodes may be added to nodes in G0 and they increase the chance
of the walker leaving G0. Formally, τ−

i+1 − τ+
i ≤ τ−

1 (Wτ+
i

).
While the walker spends a finite time in G0 between two excursions, we prove that it may

never come back from an excursion, that is, for each i, P(τ+
i = +∞ | τ−

i < +∞) > 0. We
consider that the walker starts the ith excursion from a leaf, due to the fact that starting an
excursion in a node with higher degree can only increase the duration of an excursion.

Let Xn = d(Wτ−
i +n, G0) for 0 ≤ n ≤ τ+

i − τ−
i denote the graph distance between the position

of the walker and the initial graph G0 after n steps of the ith excursion. We call the process
{Xn, n ∈Z≥0} the level process. At any step of the ith excursion the RW is in a node vn with at
least two edges: the one the RW has arrived from and the new one added as a consequence of
the RW’s arrival to that node (recall that for s = 1 after every walker step a new node is attached
to the graph). We let pk,h(n) denote the probability that the level at step n + 1 is h conditioned
on the fact that it is k at step n. Let dn ≥ 2 denote the degree of node vn, then the RW moves
from vn to a node with a larger level with probability pk,k+1(n) = (dn − 1)/dn ≥ 1/2 and with
the complementary probability pk,k−1(n) = 1/dn ≤ 1/2 to a node with smaller level. It is worth
mentioning that the nodes’ degrees keep changing due to the arrival of new nodes (edges),
and therefore the level process is non-homogeneous (both in time and in space). Moreover,
although the notation hides it, the probabilities pk,h(n) depend on the whole history of the RW
until step n.

We then look at this process every two walker steps, that is, we consider the process Ym �
Xτ−

i +2m, starting from Y0 = 1. The two-step level process can be seen as a non-homogeneous
‘lazy’ random walk on {1, 3, 5, . . .}. The two-step level process will provide a bound to the
transition probabilities pk,h(n) that allows a simple coupling with a homogeneous (and biased)
random walk. The previous bounds for Xn immediately lead us to conclude that

pk,k+2(n) ≥ 1

2

1

2
= 1

4
for any level k ≥ 1
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and

pk,k−2(n) ≤ 1

2

1

2
= 1

4
for k ≥ 3.

We can get a tighter bound for pk,k−2(n) for k ≥ 3. If the RW is at level k ≥ 3, all nodes on the
path between its current position and the node where the excursion began have degree at least
2. If it then moves to node v at level k − 1, a new edge is attached to v, whose degree is now at
least 3. The probability of moving from v to a node with level k − 2 is then at most 1/3. It then
follows that

pk,k−2(n) ≤ 1

2

1

3
= 1

6
for k ≥ 3.

By a standard coupling argument it is possible to show that Y∗
n ≤st Yn, where (Y∗

n )n≥0
is a homogeneous biased lazy random walk on {1, 3, 5, . . .}, starting from Y∗

0 = 1, with
transition probabilities p∗

k,k+2 = 1/4 for all k ≥ 1 and p∗
k,k−2 = 1/6 for k ≥ 3. The homogeneous

biased lazy random walk (Y∗
n )n≥0 is transient since p∗

k,k+2 = 1/4 > p∗
k,k−2 = 1/6. Thus, if

η := inf{n > 0: Y∗
n = 0}, it holds that f0 = P(η < +∞) < 1 and the coupling ensures that

P(τ+
i < +∞ | τ−

i < +∞) ≤ f0 < 1; this implies that the random walk is transient.
We now show the second claim. Let N be a random variable counting the number of

excursions and let {Zn}n be a sequence of i.i.d. geometric random variables, Zn ∼ Geo(p) with
p = (�(G0) + 1)−1, independent of N. Then, it is not difficult to see that the random variable
JG0 is stochastically dominated by

∑N
i=1 Zi, that is,

P(JG0 > k) ≤ P

( N∑
i=1

Zi > k

)
.

Using the Chernoff bound, together with the fact that the random variable N satisfies P(N ≥
k) ≤ f k

0 , we obtain that, for every t ≥ 0 sufficiently small (i.e. such that et(1 − p) < 1), the
following holds:

P(JG0 ≥ k) ≤ P

( N∑
i=1

Zi ≥ k

)

≤
∞∑

m=1

P

( m∑
i=1

Zi ≥ k

)
f m
0

≤ e−tk
∞∑

m=1

m∏
i=1

E(etZi)f m
0

= e−tk
∞∑

m=1

(
pf0

e−t − 1 + p

)m

.

Choosing t sufficiently small such that pf0/(e−t − 1 + p) < 1, we obtain the claim. �
Corollary 1. In NRRW with s = 1, the degree of any node is bounded above by 1 plus a random
variable J such that P(J > k) ≤ a e−bk, for some constants a, b > 0.

This follows because when s = 1 a new node is added after every walker step. Thus, the
degree of a node is equal to 1 plus the number of visits the random walk makes to the node.
If we consider a node v added at time t we can apply Theorem 1, setting G0 = Gt and W0 = v,
and obtain that the number of visits to node v will be smaller than the visits to Gt.

https://doi.org/10.1017/jpr.2019.43 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.43


Random walks and the trees they grow 775

4. NRRW with even step parameter

This section investigates the behaviour of NRRW for s even, highlighting some fundamental
differences with the case s = 1. In particular, we prove the following results.

• The random walk is recurrent, i.e. it visits every node of the graph infinitely often almost
surely.

• The degree of any non-leaf node is lower-bounded by a power law.

• The fraction of leaves is asymptotically lower-bounded by a constant that depends on s.
In particular, for s = 2 the fraction of leaves goes to 1 while for any s it is greater than 2/3.

An important difference between s even and s odd is that two new consecutive nodes can
be connected to the same node when s is even, which is not possible when s = 1 (or s odd, in
general). Moreover, the more nodes are consecutively connected to node i, the higher is the
probability that the next node will also connect to i. This produces what we call the bouncing-
back effect, which increases the probability of returning to i after an even number of steps.
Assume, for example, that s = 2 and that M new nodes have been consecutively connected to
node i. All the M newly added nodes are leaves, and therefore, as soon as the walker visits
any one of them (which happens with probability proportional to M), it must return to node i
in the next step, thus adding a further leaf to i. The bouncing-back effect is the fundamental
difference between the dynamics of s even and odd. Finally, we note that this effect is related
to ‘cumulative advantage’ or ‘rich-get-richer’ effects, since the more resources an agent has
(leaves of a node, in our case) the easier it becomes to accumulate further resources.

The analysis that follows assumes that the initial network G0 is given by a single node with a
self-loop, denoted by r = w0, the root of the process. The results obtained can be generalized to
any arbitrary initial network {G0, W0}, where G0 is a finite connected and non-bipartite graph.

4.1. Degree of nodes with s even

Corollary 1 determines that when s = 1 the degree of every non-leaf node (i.e. nodes having
degree greater than one) is bounded from above by a geometric distribution. In sharp contrast,
we show that for every s even the degree of non-leaf nodes is bounded from below by a
power law distribution whose exponent depends on s. The dichotomy in NRRW between the
exponential tail and heavy tail for the degree of non-leaf nodes for s odd and s even has been
empirically observed in simulations [1].

Proposition 1. Let s be even and assume that Tj is the first time a leaf is connected to node j.
Then, for every time t ≥ Tj and for every k ∈ {1, . . . , �(t − Tj)/s� + 1}, we have that

P(dt(j) ≥ k + 1 | Tj < ∞) ≥ k−s/2 if j 
= root,

P(dt(j) ≥ k + 2) ≥
(

k(k + 1)

2

)−s/2

if j = root,

where dt(j) denotes the degree of node j at time t.

Proof. To prove the claim, we compute the degree of a node in a much simpler process.
This simpler process starts at time 0 with a 3-node graph made by a node c that has exactly one
child (leaf) and one parent and the random walk placed on node c. If at any step the random
walk chooses the parent node, the process stops. Otherwise, after s steps the random walk adds
a new leaf node. Note that since s is even, this simple process will grow a star. The star stops
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Walker steps

Star process

FIGURE 2: Configurations from the star growing process used to bound the degree of non-leaf nodes
in NRRW with s even (Proposition 1). The dashed edge represents the edge to the parent node,
solid edges represent edge to leaves, and the red (square) node represents the walker position at the

corresponding time.

growing when the random walk steps into the parent node. Figure 2 illustrates this simple star
growing process.

At time t > 0 the random walk can have added at most �t/s� nodes to c. In particular, it adds
one node if for s consecutive steps, it selects a child of c (this happens with probability i/(i + 1)
if i is the current degree of node c) and then steps back to c. It follows that the probability that
the degree of node c at time t (we denote it by dt(c)) is at least k + 1 for k ∈ {1, . . . , �t/s� + 1}
is equal to

P(dt(c) ≥ k + 1) =
k−1∏
i=1

(
i

i + 1

)s/2

=
(

1

k

)s/2

,

with the usual convention that
∏0

i=1 (i/(i + 1))s/2 = 1.
Let j be an arbitrary node of the graph generated by the NRRW model with even step

parameter s and assume that Tj < ∞ (recall that Tj is the first time a new node is connected to
node j). Let us first consider the case in which j is different from the root. At time Tj node j
has exactly two neighbours: a leaf and a parent. Thus, at this point in time, the dynamics of the
NRRW model is similar to that of the simple star growing process described above.

In particular, the probability that, at time t ≥ Tj, the degree dt(j) is larger than k + 1 for
k ∈ {1, . . . , �(t − Tj)/s� + 1} is greater than the probability that the corresponding probability
for the simple star, because the new nodes can be added to j without being consecutive, and in
particular, nodes can still be added after the random walk steps on to the parent node.

In the case when j is the root (j = r), we have Tj = s. Moreover, we can treat the self-loop at
the root as the edge leading to the parent node. In order to bound the root degree, we consider
a slight variation of the star growing process since the initial configuration has a self-loop.
Consequently, the probability that the walker takes the leaf node in the first step equals 1/3
(rather than 1/2) and the probability that it takes the self-loop in the first step is 2/3. If cr

denotes the centre node of this variant of the star growing process, similarly to the previous
case, for k ∈ {1, . . . , �t/s� + 1}, we have

P(dt(cr) ≥ k + 2) =
k−1∏
i=1

(
i

i + 2

)s/2

=
(

2

k(k + 1)

)s/2

.

and then the lower bound for the degree dt(r) is derived via the same reasoning. �
Despite the presence of the bouncing-back effect, it is worth noting that the random walk

will not get stuck adding consecutive leaves to a node, and it will eventually stop bouncing. In
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particular, we show that for any s even, the probability of bouncing back k times goes to zero
at least as fast as k−1/2.

Lemma 1. Let s be even, t0 ∈ 2Z≥0 and t0 ≥ s, and i a node of the graph. Then, for all k ≥ 1,
we have

P(Wt0+2 = i, Wt0+4 = i, . . . , Wt0+2k = i | Wt0 = i) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

√
dt0 (i) − 1√

dt0 (i) + k − 1
if dt0 (i) ≥ 2,

1√
k

if dt0 (i) = 1,

where dt0 (i) is the degree of node i at time t0.

Proof. Let Nt0 (i) denote the set of neighbouring nodes of i at time t0. The probability that
the walker returns to i at time t0 + 2 given that Wt0 = i is equal to Bt0 (i)/dt0 (i), where

Bt0 (i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
j∈Nt0 (i)

1

dt0 ( j)
if i 
= r,

∑
j∈Nt0 (r)\{r}

1

dt0 ( j)
+ 4

dt0 (r)
if i = r.

If, after coming back m consecutive times to i, we have added h ≤ m nodes (necessarily to i),
then Bt0+2m(i) ≤ Bt0 (i) + h, where the equality holds for i 
= r. But then, because Bt(i)/dt(i) is
smaller than 1, we obtain

Bt0+2m(i)

dt0+2m(i)
≤ Bt0 (i) + h

dt0 (i) + h
≤ Bt0 (i) + m

dt0 (i) + m
.

It then follows that

P(Wt0+2 = i, Wt0+4 = i, . . . , Wt0+2k = i | Wt0 = i)

= Bt0 (i)

dt0 (i)
· Bt0+2(i)

dt0+2(i)
· . . . · Bt0+2(k−1)(i)

dt0+2(k−1)(i)

≤ Bt0 (i)

dt0 (i)
· Bt0 (i) + 1

dt0 (i) + 1
· . . . · Bt0 (i) + (k − 1)

dt0 (i) + (k − 1)
. (1)

We observe that equality holds, for i 
= r, when s = 2 and the walker indeed adds a new leaf
every time it bounces back to node i. Also, we have that Bt0 (i) ≤ dt0 (i) − 1/2, and this holds
regardless of whether or not i = r. For i 
= r, the inequality Bt0 (i) ≤ dt0 (i) − 1/2 follows from
the observation that if the random walk is in i at time t0, the node i has at least one neighbour
which is not a leaf (it might be the only one) and therefore the latter will have degree at least 2.
Hence, ∑

j∈Nt0 (i)

1

dt0 (j)
≤ dt0 (i) − 1 + 1

2
= dt0 (i) − 1

2
.

For i = r instead, the inequality follows from the fact that Br
0 ≤ dt0 (r) − 2 + 4/dt0 (r), together

with dt0 (r) ≥ 3 because the first node at time t = s is necessarily added to the root. Applying
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the bound Bt0 (i) ≤ dt0 (i) − 1/2 to each factor appearing in (1), we obtain

P(Wt0+2 = i, Wt0+4 = i, . . . , Wt0+2k = i | Wt0 = i)

≤
k−1∏
j=0

2dt0 (i) + (2j − 1)

2(dt0 (i) + j)

=
dt0 (i)+k−1∏

j=dt0 (i)

2j − 1

2j

= (2(dt0 (i) + k − 1))! (dt0 (i) − 1)!2
4k (2dt0 (i) − 2)! (dt0 (i) + k − 1)!2

= (dt0 (i) − 1)!2
(2dt0 (i) − 2)! · (2(dt0 (i) + k − 1))!

4k (dt0 (i) + k − 1)!2 .

Using the bounds
√

2πnn+1/2 e−n ≤ n! ≤ enn+1/2 e−n (holding for all positive integer n), we
have

P(Wt0+2 = i, . . . , Wt0+2k = i | Wt0 = i) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
e√
2π

)3 √
dt0 (i) − 1√

dt0 (i) + k − 1
if dt0 (i) ≥ 2,(

e√
2π

)
1√
k

if dt0 (i) = 1.
�

The result of Lemma 1 guarantees that the random walk will not get stuck bouncing back
in a particular node. In particular, it implies that the first time at which the random walk stops
bouncing back to the same node is finite almost surely.

Corollary 2. Let s be even, t0 ∈ 2Z≥0 and define τ := inf{n ≥ 1 : Wt0+2n 
= Wt0}, i.e. the first
time the walker does not come back to the initial node after two steps. It holds that

P(τ < ∞) = 1.

Proof. Note that the distribution of τ depends on the step parameter s as well as on the
neighbourhood of the walker at time t0. However, Lemma 1 ensures that for all s even,
P(τ > k) = O(k−1/2). Therefore, using the fact that the sequence of events {τ ≤ k}k is
increasing, we have

P(τ < ∞) = lim
k↑∞ P(τ ≤ k) = 1 − lim

k↑∞ P(τ > k) = 1.
�

4.2. Recurrence of NRRW for s even

Recall that in the NRRW model the initial node (root) has a self-loop. This local feature at
the root plays a very prominent role in the model when s is even, as we now discuss. Let the
level of a node in the generated tree denote its distance to the root. Note that the root is the
only node at level 0, while all its neighbours are at level 1. Similarly we define the level of the
random walk at time t as the distance from Wt to the root, denoted by d(Wt, r).

Definition 1. We say that the random walk at time t is even if and only if d(Wt, r) + t is even,
and odd otherwise.

https://doi.org/10.1017/jpr.2019.43 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.43


Random walks and the trees they grow 779

The parity of the random walk has important consequences for the behaviour of the model
when s is even. In particular, as long as the random walk is even (resp. odd) new nodes can
only be added to even (resp. odd) levels. However, if the random walk changes its parity once
(or an odd number of times) between two node additions, the next node will be added to a
level with different parity. Clearly, changing parity an even number of times between two node
additions does not change the parity of the level to which nodes are added.

Note that the parity of the random walk can only change if the random walk traverses
the self-loop. In fact, the latter is the only case in which the distance from the root stays
constant and the time increases by one. For all other random walk steps instead, the parity does
not change because the time always increases by one while the distance either increases or
decreases by one.

We say that the random walk changes parity whenever it traverses the self-loop. The change
of parity is fundamental to the growing structure of the tree. Consider the addition of a node i
to the tree. A subsequent new node can only be connected to i after the random walk changes
its parity. Thus, once added to the tree, a new node can only receive a child node if the random
walk changes parity after it has been added. This, in particular, implies that the set of nodes
that can receive a new node is finite and stays constant until the random walk changes its parity.
Therefore, in order to grow the tree to deeper levels the random walk must change its parity.
Will the random walk change its parity a finite number of times? If so, the tree would have a
finite depth. It is not hard to see that if the random walk visits the root infinitely many times
then it must change its parity an infinite number of times. Thus, showing that the random walk
is recurrent will also imply that the random walk changes its parity an infinite number of times
almost surely. This is a necessary condition for the tree to grow its depth unbounded.

Before presenting the main theorem, we provide a preliminary result which relates the visits
to a node to the visits to its neighbours. In particular, we show that if the random walk visits a
node infinitely often, then it also visits any neighbours infinitely often.

Lemma 2. Let i be a node and let (i, j) be an edge of Gt for some t. If i is recurrent, then the
random walk traverses (i, j) infinitely many times almost surely.

Proof. Let

Jt2
t1 (i) =

t2∑
k=t1

1(Wk = i)

be the number of times the random walk visits node i between t1 and t2. Similarly we let

Jt2
t1 (i, j) =

t2∑
k=t1

1(Wk = i)1(Wk+1 = j)

denote the number of times the random walk traverses the edge (i, j) in the direction from i to j.
Let t0 be a time such that the nodes i, j and the link (i, j) belong to the graph G0 = Gt0 .

We want to show that J∞
t0 (i, j) = ∞ with probability one. To this end, we define a sequence of

random variable (ξt)t≥t0 that determines if the random walk traverses the edge (i, j) if it is at
node i at time t,

ξt := 1
(

ωt ∈
[

0,
1

dt(i)

])
,
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where (ωt)t≥t0 is a sequence of independent uniform random variables over [0, 1]. We then
have

Jt
t0 (i, j) =

t∑
k=t0

1(Wk = i) 1(Wk+1 = j) =
t∑

k=t0

1(Wk = i) ξk.

Note that (ξt)t depend in general on the whole history of the random walk until time n, because
that history determines the degree of node i at time n.

For h < J∞
t0 (i) + 1, let th be the random time instants at which the random walk visits node i

for the hth time after t0. For h > J∞
t0 (i) (assuming J∞

t0 (i) < ∞), we let th = tJ∞
t0

(i) + h . We now
define a new sequence of random variables as follows:

ξ ′
h = 1

(
ωth ∈

[
0,

1

dt0 (i) + h

])
.

We observe that the variables (ξ ′
h)h are independent and the variable ξ ′

h is coupled with the
variable ξth through ωth . In particular, for h < J∞

t0 (i) + 1 it always holds that ξ ′
h ≤ ξth because

the degree of node i may have increased at most of h after h visits, i.e. dth (i) ≤ dt0 (i) + h. Then,
for each possible path of the stochastic process, it holds that

J∞
t0 (i, j) =

∞∑
k=t0

1(Wk = i) ξk ≥
J∞

t0
(i)∑

k=1

ξ ′
k. (2)

We now observe that

P(J∞
t0 (i, j) < ∞)

≤ P

( J∞
t0

(i)∑
h=1

ξ ′
h < ∞

)

= P

({ J∞
t0

(i)∑
h=1

ξ ′
h < ∞

}
∩ {J∞

t0 (i) = ∞}
)

+ P

({ J∞
t0

(i)∑
h=1

ξ ′
h < ∞

}
∩ {J∞

t0 (i) < ∞}
)

≤ P

({ ∞∑
h=1

ξ ′
h < ∞

})
+ P

(
{J∞

t0 (i) < ∞}
)

= P

( ∞∑
h=1

ξ ′
h < ∞

)

= 0,

where we have used (2) (in the first inequality) and the hypothesis that i is recurrent, which
guarantees that P(J∞

t0 (i) < ∞) = 0. The last equality follows from applying the Borel–Cantelli
lemma to the sequence of independent events {ξ ′

h = 1}. Indeed,

∞∑
h=1

P(ξ ′
h = 1) =

∞∑
h=1

1

dt0 + h
= ∞

and then ξ ′
h = 1 infinitely often with probability one. We can then conclude that

P(J∞
t0 (i, j) = ∞) = 1. �

https://doi.org/10.1017/jpr.2019.43 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.43


Random walks and the trees they grow 781

Corollary 3. Let i be a node and (i, j) an edge of Gt for some t. If i is recurrent then j is also
recurrent.

We now state the main theorem of this section.

Theorem 2. In the NRRW model with s even, every node of the graph is recurrent.

Proof. By Corollary 3 it is enough to show that the root is recurrent. In fact, if i is an
arbitrary node of the graph Gt and (r = j0, j1, . . . , jk = i) is the unique path from the root to i,
we can recursively apply Corollary 3, to conclude that node i is recurrent.

We now show that the root is recurrent. Let us define the following sequence of time instants
σk := inf{t > σk−1 : Wt = r} and σ0 ≡ 0, that is, σk is the time of the kth visit to the root if finite,
or σk = +∞ if the random walk visits the root less than k times. The recurrence of the root is
equivalent to P(σk < ∞) = 1, for all k. We proceed by induction on k and, assuming σk−1 < ∞
almost surely, we show that P(σk < ∞) = 1.

By definition, Wσk−1 = r. If Wσk−1+1 = r, then σk is also finite. We then consider the case
Wσk−1+1 
= r and look at P(σk < ∞ | Wσk−1+1 
= r). The random walk has then moved to one
of the children of the root, and it needs to pass by the root in order to traverse the loop and
change parity. Until this does not happen, the parity of the walker is constant, the level of newly
added nodes will be opposite to that of the random walk, while the set of nodes with the same
parity will not change.

We assume for the moment that σk−1 is even and then the random walk is even in the
interval [σk−1, σk]. We look at the random walk every two steps and, for σk−1/2 ≤ t ≤ σk/2,
we define the process Yt = W2t, whose possible values are the nodes at even levels (including r)
and then a finite set. The process Yt is a non-homogeneous Markov chain, because the
addition of new nodes changes the transition probabilities, but we can define a homogeneous
embedded Markov chain as follows. Let φk := inf{t > φk−1 : Yt 
= Yφk−1}. The time instants
φk are finite almost surely because of Corollary 2. We can then define the process Zk = Yφk

and introduce the stopping time η := inf{t > 0: Zt = r}, the first time the process Zk returns
to the root. If P(η < ∞) = 1, then P(σk < ∞ | Wσk−1+1 
= r) = 1. The process {Zk}k is an
irreducible time-homogeneous Markov chain and its state space is finite (it is the same as
{Yt}t). The time-homogeneity follows from noting that the transitions where Yt changes its
state are determined by the graph configuration at time σk−1, and do not change afterwards
because of the addition of new nodes (what changes is the distribution of the sojourn times
φk − φk−1). A homogeneous irreducible Markov chain on a finite state space is recurrent, thus
P(η < ∞ | Z0 = r) = 1, and the claim follows.

For the case in which σk−1 is odd, we define Yt = W2t+1, for t ∈ [(σk−1 − 1)/2, (σk − 1)/2],
and the same argument applies. �

Remark 1. Theorem 2 and Lemma 2 imply that the random walk changes parity infinitely
many times almost surely.

4.3. Fraction of leaves in the graph with s even

Intuitively, the NRRW model with s even generates trees with many leaf nodes due to the
bouncing-back effect. In what follows we quantify this intuition by providing an asymptotic
lower bound for the fraction of leaves. In particular, for s = 2, we prove that the fraction of
leaves goes to one as the size of the graph size goes to infinity.

Before stating the main theorem, we introduce an auxiliary result which will be instrumental
in the proof. Let Ls

n denote the number of leaves in the graph at time sn (i.e. soon after the nth
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node has been added). Note that Ls
n cannot decrease when new nodes are added. A new node

always joins the graph as a leaf, and connects to either an existing leaf or a non-leaf. In the
former case, the number of leaves does not increase, whereas in the latter it increases by one.

If the addition of the nth node does not increase the number of leaves, we know that at time
sn the random walk resides on a node which has only two neighbours: a parent and a leaf (the
node just added). Let T be the random variable denoting the first time the random walk visits
the parent of a node after adding the first leaf to it. It turns out that in order to provide an
asymptotic lower bound for the fraction of leaves it is enough to compute the expected value
of T. The random variable T takes values in the positive and odd integers and its distribution
only depends on s. Specifically, we have

P(T = 2k + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1

2

)k+1

for k ∈
{

0, . . . ,
s

2
− 1

}
,

(
1

2

)s/2(2

3

)k−s/2 1

3
for k ∈

{
s

2
, . . . , 2

s

2
− 1

}
,

(
1

3

)s/2(3

4

)k−2(s/2) 1

4
for k ∈

{
2

s

2
, . . . , 3

s

2
− 1

}
,

(
1

4

)s/2(4

5

)k−3(s/2) 1

5
for k ∈

{
3

s

2
, . . . , 4

s

2
− 1

}
,

(
1

5

)s/2(5

6

)k−4(s/2) 1

6
for k ∈

{
4

s

2
, . . . , 5

s

2
− 1

}
,

... . . . .

In a more compact form, using the fact that for any k ∈ {0, 1, . . . , } there exist unique qk ∈
{0, 1, . . .} and rk ∈ {0, 1, . . . , s/2 − 1} such that k = qk(s/2) + rk, we can write

P(T = 2k + 1) =
(

1

qk + 1

)s/2(qk + 1

qk + 2

)rk 1

qk + 2
, (3)

and, in particular,

P(T ≥ 2k + 1) =
(

1

qk + 1

)s/2(qk + 1

qk + 2

)rk

.

It follows from Corollary 2 that T is finite almost surely for every s even. It can also be
computed directly from (3) that P(T < ∞) = ∑∞

k=1 P(T = 2k + 1) = 1. In the next lemma we
compute the expected value of T.

Lemma 3. For s even,

E(T) = 1 + 2 ζ

(
s

2

)
,

where ζ (z) = ∑∞
m=1 m−z is the Riemann zeta function.

Note that E(T) = +∞ for s = 2, whereas E(T) < ∞ for s ≥ 4.

Proof. Recall that if X is a random variable which takes only positive integer values, then
E(X) = ∑∞

i=1 P(X ≥ i). The random variable T only takes odd integer values, which implies
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that P(T ≥ i) = P(T ≥ i + 1) for every even i. Therefore, when summing over all integer values
strictly bigger than one, we are summing twice the contributions of the odd values and

E(T) =
∞∑

i=1

P(T ≥ i) = P(T ≥ 1) + 2
∞∑

k=1

P(T ≥ 2k + 1) = 2
∞∑

k=0

P(T ≥ 2k + 1) − 1, (4)

where in the last equality we used the fact that P(T ≥ 1) = 1. The probabilities appearing on
the right-hand side of (4) satisfy

P(T ≥ 2k + 1) =
(

1

qk + 1

)s/2(qk + 1

qk + 2

)rk

,

where qk ∈ {0, 1, . . .} and rk ∈ {0, 1, . . . , s/2 − 1} are such that k = qk(s/2) + rk. Therefore,

∞∑
k=0

P(T ≥ 2k + 1) =
∞∑

q=0

(
1

q + 1

)s/2 s/2−1∑
r=0

(
q + 1

q + 2

)r

=
∞∑

m=1

(m + 1)

(
1

m

)s/2(
1 −

(
m

m + 1

)s/2)

=
∞∑

m=1

(m + 1)

(
1

ms/2
− 1

(m + 1)s/2

)

= 1 +
∞∑

m=1

m

(
1

ms/2
− 1

(m + 1)s/2

)

= 1 +
∞∑

m=1

1

ms/2
.

Overall, we obtain

E(T) = 2

(
1 +

∞∑
m=1

1

ms/2

)
− 1 = 1 + 2

∞∑
m=1

1

ms/2

�
We can now state the main theorem of this section.

Theorem 3. Let s be even and let Ls
n denote the number of leaves in the graph of size n. It

holds that

lim inf
n↑∞

Ls
n

n
≥ 1 − 1

E(T)
almost surely,

where E(T) is given in Lemma 3.

The above theorem immediately implies the following results.

Corollary 4. Let Ls
n denote the number of leaves in the graph of size n. Then,

• for s = 2, limn↑∞ Ls
n/n = 1, a.s.,

• for every s even, lim infn↑∞ Ls
n/n > 2/3, a.s.
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The above follows since E(T) = +∞ for s = 2, and

E(T) = 3 + 2
∞∑

m=2

1

ms/2
> 3 for every s ≥ 4.

Proof. For l = 1, 2, . . . , let Al :=s · inf{n > Al−1 : Ls
n − Ls

n−1 = 0} denote the time of the
lth node addition that does not increase the number of leaves in the graph (where A0 ≡ 0).
If there exists an l such that Al = +∞, we set Al′ = ∞ for all l′ > l. For all sample paths
such that there exists an l with Al = +∞, we have limn↑∞ Ls

n/n = 1, which clearly implies
lim infn↑∞ Ls

n/n ≥ 1 − 1/E(T). In this case, in fact, there exists a finite time such that every
node added after it will increase the total number of leaves.

We now consider all sample paths such that Al < ∞, for all l. To prove the claim it
is enough to show that, conditioned on the latter set of sample paths, lim infn↑∞ Ls

n/n ≥
1 − 1/E(T) almost surely. Let Tl = Al − Al−1 denote the time between the (l + 1)th and lth
such node additions. Define Sm :=T1 + T2 + · · · + Tm and Ns

n := max{m : Sm ≤ n}. Note that
Ns

n is the number of non-leaf nodes in the graph at time sn (not counting the root). Thus,
we have Ns

n + 1 = n − Ls
n, and to prove the claim it suffices to provide an upper bound for

lim supn↑∞ Ns
n/n.

We use renewal theory for the counting process Ns
n. However, since Tl are not independent or

identically distributed, we cannot directly apply renewal theory. We circumvent this limitation
with the following argument. By definition, Al are the times at which the number of leaves does
not increase. This means that at these times the random walk resides in a node of degree two
and its neighbours are its parent and a leaf node (the new added node). Let il denote the node
where the random walk resides at time Al, i.e. WAl = il, and let pil denote the parent of node
il (note that pil is well-defined because il can never be the root). Let us define Tl := inf{t >

Al : Wt = pil} − Al, i.e. the amount of time until the random walk visits the parent of node il
after adding a leaf to node il for the first time (which occurs at time Al). Due to the fact that at
time Al the random walk is in a node of degree two, the distribution of Tl does not depend on
the specific l and it is independent of the past. In particular, Tl has the same distribution as T
given in (3) and its expected value is given in Lemma 3.

Consider {Tl}l∈N a sequence of i.i.d. random variables distributed as T. For every l =
1, 2, . . . , it holds that Tl < Tl. This follows since to add a new node to an existing leaf
(which occurs at time Al+1), the random walk must visit the parent node of il. Let us define
Sm :=T1 + T2 + · · · + Tm and let N

s
n = max{m : Sm ≤ n} denote the corresponding counting

process. Since Tl < Tl, for every m we have Sm < Sm, which implies N
s
n > Ns

n and consequently
0 ≤ Ns

n/n ≤ N
s
n/n, for every n. Given that limn↑∞ Sn = ∞ a.s. and limn↑∞ N

s
n = ∞ a.s., we can

apply the Strong Law of Large Numbers for N
s
n, stating that limn↑∞ N

s
n/n = 1/E(T) a.s., where

E(T) is given in Lemma 3. Therefore, we obtain that lim supn↑∞ Ns
n/n ≤ 1/E(T) a.s., which

implies lim infn↑∞ Ls
n/n ≥ 1 − 1/E(T). �

5. Final remarks

The NRRW model illustrates the powerful interplay between random walking and graph
(tree) building. Interestingly, the outcome of this interplay is governed by the parity of a
single parameter s, giving rise to very different random walk processes (transient versus
recurrent) and node degrees (exponential or power law tails, for non-leaf nodes). Moreover,
the combination of a transient (resp. recurrent) walker with an exponential (resp. power law)
node degree emerge jointly from the NRRW dynamics.
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While results obtained for s even are more general, Theorem 1 holds only for s = 1.
Unfortunately, the coupling argument used in the proof of the case s = 1 cannot be extended to
other odd values of s. In particular, when s = 3 it is not possible to obtain lower and upper
bounds for the probabilities in the two-step level process to drive the coupling argument.
Thus, a level process with more than two steps would be necessary, but this significantly
complicates the construction. However, we conjecture that Theorem 1 holds for all s odd.
Extensive simulations support this conjecture, showing that node degree is bounded by an
exponential distribution and that distances to the root grow linearly [1].

A variation of NRRW named BGRW (Bernoulli growth random walk) model has recently
been proposed and analysed [8]. In BGRW, before every walker step a new leaf node is
connected to the current walker position with probability p. The main result states that the
random walk in BGRW is transient and that distances to the root grow linearly, for any p > 0.
This suggests that random walk recurrence in NRRW is an artifact of the inherent structural
limitations imposed by the even parity of s. Moreover, it also supports the above conjecture
(walker in NRRW is transient for all s odd).

When s = 2 the fraction of leaves in NRRW model converges to one, and thus the
network has a degenerate degree distribution. Interestingly, the fraction of leaves in the related
model of Saramäki and Kaski [14] was also shown to converge to one (under some model
parametrization) [5]. Thus, neither NRRW nor the model of Saramäki and Kaski generate
networks with a power law degree distribution. However, non-leaf nodes in NRRW with s
even have a degree that is lower-bounded by a power law distribution. This observation may
reconcile the claim that networks from Saramäki and Kaski model exhibit a power law degree
distribution, at least when considering only non-leaf nodes.

Finally, consider the relationship between NRRW and the preferential attachment model
of Barabási–Albert (BA), where nodes are chosen with a probability that is proportional to
their current degree [3]. When the new incoming node adds just one edge, the BA model
also generates trees as in NRRW. Note that if the random walk in NRRW moves around for
a large enough number of steps in a given network, the probability that it stops on a given
node is proportional to the node’s current degree. However, the intuition that the two models
might be equivalent is misleading, since s is fixed in NRRW. Thus, as the network grows
large, s will eventually become small in comparison, and the random walk will therefore not
choose nodes according to their current degrees. A variation of NRRW that may reconcile such
differences is allowing s = s(n) to increase with the number of nodes, a scenario we leave for
future exploration.
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