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In the paper the correspondence between a formal multiple power series and a
special type of branched continued fractions, the so-called ‘multidimensional regular
C-fractions with independent variables’ is analysed providing with an algorithm
based upon the classical algorithm and that enables us to compute from the
coefficients of the given formal multiple power series, the coefficients of the
corresponding multidimensional regular C-fraction with independent variables. A
few numerical experiments show, on the one hand, the efficiency of the proposed
algorithm and, on the other, the power and feasibility of the method in order to
numerically approximate certain multivariable functions from their formal multiple
power series.
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1. Introduction

Representation of special functions by means of continued fractions has been an
interesting matter of study during the two last centuries and giving rise to other
important related topics like Padé approximants, orthogonal polynomials, quadra-
ture formulas, differential equations and so on. In comparison with power series,
continued fractions have wider convergence domain and endowed with the prop-
erty of numerical stability. An analytical theory of continued fractions is described
in [11].

Construction of the rational approximations of function is based on the concept
of correspondence between the approximants of continued fraction and the formal
power series, which is representing this function. A general theory of correspondence
is elaborated and described in [11, pp. 148-160].

In the 1960s, for the construction of rational approximations of multivariable
functions, V. Skorobogatko proposed a multidimensional generalization of con-
tinued fractions — branched continued fractions. These fractions have found their
application in various fields, in particular, in numerical theory to express algebraic
irrational numbers, in computational mathematics for the solution of systems of lin-
ear algebraical equations, in engineering for constructing mathematical models of
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transistors, in the analysis for approximating multivariable functions. Fundamentals
of an analytical theory of general branched continued fractions is described in [2].

The problem of constructing of the corresponding branched continued fractions
for the formal multiple power series (FMPS) contributed to the emergence of two-
dimensional continued fractions [4,5,12-15], since within the general branched
continued fractions using the concept of correspondence did not give a clear solu-
tion. Constructions of the fractions with increase in numbers of variables were
significantly complicated. Therefore, two approaches are used for the construction
of the branched continued fractions, which corresponds to the FMPS: to overlay
additional conditions on the elements of the branched continued fraction [3, 6] or
to variate constructions of the fraction [1,7-10]. We give here a few facts and
definitions that are used.

Let N be a fixed natural number. The following standard notation will be used: Z

denotes the integer numbers, C denotes the complex numbers; k = (kq, ko, ..., ky)
denotes an element of ZV; z = (21, 29, ..., zy) is an element of CV; and for k € ZV
and z € CV

k| =ky + ko4 -+ kn, 25=21252 0 AN
Let

L(z) =14 Y a2z, (1.1)

where ¢k € C, |k| > 1, be an FMPS at z = 0. It is obvious that the set L of all
FMPS at z =0 forms a ring with unity respect to the operations addition and
multiplication of series.

Let R(z) be multivariate function holomorphic in a neighbourhood of the origin
(z = 0). Let the mapping A : R(z) — A(R) associate with R(z) its Taylor expansion
in a neighbourhood of the origin.

A sequence {R,,(z)} of multivariate functions holomorphic at the origin is said
to correspond at z = 0 to an FMPS L(z) if

lim AL — A(R,)) = oo,

n—0oo
where A is the function defined as follows: A :L — Zso U {oo}; if L(z) =0
then A(L) = oo; if L(z) # 0 then A(L) = m, where m is the smallest degree of
homogeneous terms for which ¢y # 0, that is m = [k|.

If {R,,(z)} corresponds at z = 0 to an FMPS L(z), then the order of correspon-
dence of R, (z) is defined to be

Vp = ML — A(Ry)).

By the definition of A, the series L(z) and A(R,,) agree for all homogeneous terms
up to and including degree (v,, — 1).
Let #(0) = 0 and Zy = {0}. Let us introduce the following sets of multiindices

Ik:{l(k) Z(k): (il,ig,...,ik), 1<7;p<ip,1, 1<p<k, iU:N} forn) 1.

Let ({aik) bi(k)ey, kezoos 1Ditk) Yitk)eTs, kezs,) denote the ordered pair of sequences
of complex numbers with a;) # 0 for all i(k) € Zy, k > 1, and if for k > 1 there
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exist a multiindex i(k) € Z such that ;) = 0, than b;;_1); # 0 for 1 < j <ix1
and j # ir. The sequence {fi} is defined as follows: fy = by,

f1—bo+z

i1=1

Tk—1

a1y & ai(2) @i (k)
etc., fr =bo+ .
lelbuﬁ — biz) + bz(k)

bz(l)

The ordered pair (({ai(x)}ik)ez,, kezoos 10ik) Fikyezy, kEZ>0>a{fk}k€Z>o> is the
branched continued fraction with independent variables denoted by the symbol

Qg(1) a a;(2) & Q;(3)
bo cee 1.2
+ Z bz(l b i(2) —|— bi(g) + (12)

7,11

The numbers a;x) and b;;) are called the elements of the branched continued
fraction with independent variables, the relation a;,) / bi(x) is called the kth partial
quotient and the value fj is called the kth approximant.
Let (i1,%2,...,0,...) be a fixed infinite multiindex such that 1 < i, < ix—1 for
k > 1, where i = N. The continued fraction
Qiy  Qiyyip Qiyigis

bi1 + bil,iz + bi1,i2,i3 + o

is called the (i1,i2,...,1k,...)-branch of the branched continued fraction with
independent variables (1.2).
A branched continued fraction with independent variables of the form

1(1)211 2 A5(2)%iy = A4(3)%ig
1+Z Z ; +Zf+”" (1.3)
11=1 7,2:1 13=1
where the coefficients a;) € C\ {0} for all i(k) € Zx and k> 1, is called the
multidimensional regular C-fraction with independent variables.

A multidimensional regular C-fraction with independent variables is said to cor-
respond at z = 0 to an FMPS L(z) if its sequence of approximants corresponds to
L(z).

We study here the correspondence between FMPS (1.1) and multidimensional
regular C-fraction with independent variables (1.3). As a result the algorithm for
the expansion of the given FMPS (1.1) into the corresponding multidimensional
regular C-fraction with independent variables (1.3) is constructed and the condi-
tions for the existence of such an algorithm are established in theorem 2.1. As an
application, we include in §3 some numerical experiments.

2. Algorithm

Let N > 2, ep = (0,0,...,0) and ex = (0.1,0%,2, - ..,k n) be a multiindex, where
1<Ek<N, 6;; is the Kronecker delta. Let us introduce the following sets of
multiindices & = {ep} and for k > 1

Ex = {€i(k) * Ci(k) = €iryin,.iy, = €iy T €ip + -+ F ey, (k) € Lk},

and the mapping ¢ : Zj, — &, such that ¢(i(k)) = e for all i(k) € Ty, k > 1. It
can be shown that the mapping ¢ is bijective.
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Let be,,, = aj) for all e,y € &, i(k) € Zy and k > 1. Then we write multidi-
mensional regular C-fraction with independent variables (1.3) in the form
1 al bei(l)zil a bei(2)2i2 2 bez(s) Zig 9.1
+.Z 1 +Z 1 +Z I 21)
7,1:1 7,2:1 l3:1
where b, € C\ {0} for all e;x) € & and k > 1.

We shall construct and analyse the algorithm for the expansion of the given FMPS
(1.1) into the corresponding multidimensional regular C-fraction with independent
variables (2.1). The process of constructing of multidimensional regular C-fraction
with independent variables (2.1) will be shown step by step.

Step 1: Let c., # 0 for 2 <i; < N. Then L(z) can be written

N
L(Z) = Peo (Zl) + Z Ce;, ZilReil (2)7

i1=2
where
> n Ck+ei
Pe(21) =1+ Y Cne, 2, Re,, (2) = > lek.
n=1 k>0 “
k=0, i1 F1<G<N
Step 2: Let H, (n) # 0 and Hae, (n) # 0 for n > 1, where
Cley Cli+1)er -+ Cl4n—1)e;
Hie,(n) = CUtDer  CUer oo Cltmer | p_q 9 (2.2)
Cll4+n—1)e;  Cl+n)er -+ Cl+2n—2)e;

(we note that there H., (n) and Ha, (n) are the Hankel determinants (of dimen-
sion n) associated with the formal power series P, (z1)). Then according to
theorem 7.2 [11, pp. 223-226] we have

be, 21 bae, 21 b3ey 21

o0
H;(:MIZINH T+ 1 4 1 4 el

where the symbol ‘~’ means the correspondence between P, (z1) and F,(z1) (at the
origin), and where b., = H, (1) and for n > 1
Hel(n_ 1)H261(n) Hel(n+ 1)H261(n_ 1)
b2nel = - ) b(2n+1)61 = - )
Hel (n)H261 (ﬂ - 1) Hel (n)H261 (n)

where H,, (0) = Ha, (0) = 1. Thus we can write

N
L(z) ~ Fe(21) + Y e, 2, Re,, (2).

i1=2

Step 3: Let He, (n) #0 and Hae, (n) # 0 for 2<i;p <N and n > 1, where
He, (n), Hae, (n) defined by analogy (2.2). Then according to theorem 7.2 [11, pp.
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223-226] we have for each 2 <i; < N
Z c ~ b’eil “in blem‘lZ“ e, .
nell 7,1 1 + 1 J,» 1 + b

where b’ei1 =H

€iy

(1) and for n > 1

He,, (n —1)Hae,, (n)

b/ne'zi ) /n e, ’ ’
Znein HEil (n)H2€i1 (n - 1) (antes Heil (n)H2€i1 (n)
where He, (0) = Ha., (0) = 1. Since c,, b/e” <1 < N, then we put be, =
b;i17 2 < il g N. Thus
N
L(Z) ~ FEU (Zl) + Z beil ZilReil (Z)
i1=2

Step 4: For each 2 < i1 < N, let

R’ei1 (z) = Z cf:l z¥ (2.3)
|k[>0
k=0, i1 1< <N

be reciprocal to FMPS R, (z). It is known that the coefficients ci”, kj =0, i+
1< 7 <N, k| 21, of FMPS (2.3) are uniquely determined by a recurrent formula

k| Crt
€ip e, (rteq;
ot =— ot , (2.4)
r|=1 o
where co't = = 1, moreover, o' = 0, if here exists an index j such that 1 <j <N
) k )

and that k; < 0. Thus we can write

elzz
L(z) ~ €0z1+z L 1.

i1=2 Pll

The next construction of the multidimensional regular C-fraction with inde-
pendent variables (2.1) will be carried out using the ideas laid out in Steps
1-4.

We apply Step 1 to each FMPS R, ( ), where 2 < i; < N. By condition cel1 #0
for 2 <ip <1y and2<zl<Nwewr1teforeach2<11<N

R, (2) = P.( Z cico) (2):

12 2
where
e,l
k+el2 k
Pe71 Zl —1+ § Cn61217 L(z)(z) = E : €iy z .
Ik|>0 Ceiz

ki=0, in+1<i<N
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Thus

Zi al
L(z) ~ Fe,(21) +Z 8121 206 Ziy IR €;(2) (z).

i1=2 611
Now apply Step 2 to each formal power series P, ( 1), where 2 < i; < N. Let
HEM(n) # 0 and H;el( ) # 0 for 2 <i; <N and n > 1, where
6012 gﬁd)el (l+n ey
i1 Ciy
Hyt(n)=| ‘(e e Came | =12, (2.5)
C(ll}knfl)el C(ern)el t C(lzern72)el

Then according to theorem 7.2 [11, pp. 223-226] we have for each 2 < iy < N

beil—i-e] <1 be,i1+251 <1 b611+361 <1

€
1*20"61121 e e e I L
where be, 1, = HE'(1) and for n > 1
) _ H(n—1)Hy (n) _ HS(n+1)Hy (n—1)
S g - ) e T T g G )
where He,' (0) = H;ell (0) = 1. Thus we can write
Zi il
871 i1 e,
L( )N eo Zl + Z Z Cezgzll €i(2) )
611 ;
Next we apply Step 3. Let He.!(n) # 0 and H;;l (n) #0 for 2 <ip <ip — 1,
2<i; < N and n > 1, where He:;( n), H;;:( n) deﬁned by analogy (2 5). Then
accordlng to theorem 7.2 [11, pp. 223-226] we have for each 2 < iy <43 — 1 and

2<ip <N
) , . , 4 , '
¢ n bei1+ei2 bell +2eiy Fiz bezl +3ei, iz
Z Cn@iz in ™ 1 + 1 i 1 n .

where b’i = g (1) and for n > 1

HP”(nJrl)H (nf 1)

HE (n = D)Hy. (n)
. = : = y . ; A € € )
e HG )y (0 - 1) e HEE () He, ()

where H:L; (0) = H5612 (0) = 1. Since

Cip 7ce’i(2) 3/ Cip __ 626751 b/

6612 - c — Yei(2)? ceil - c 2e4, 0
eil eil

2<io <1 —1,2<41 <N

) )

https://doi.org/10.1017/prm.2019.2 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2019.2

Branched continued fraction and multiple power series

<7;1_172<7ll

than we put be,,, = b w2y bae,,

, .
= 25i172<22

1859
< N. Thus

i1
ellzz
L( )N €o 21 + Z : Z b 1(2)’212 1(2)( )
e .

At last, applying Step 4 to each FMPS R, , (z), where 2 < iy

N, we can write

"1

<i1&ﬂd2§i1<

i1 b

Zi
L( ) ~ (’O Zl + Z 611 Zzl

where R’

€i(2)

=2 eL1 1

(z) be reciprocal to FMPS R, ,, (z).

Z ei(z)ziz
R/ z)’
+ 2 ey (@)

Further construction of the multidimensional regular C-fraction with indepen-

dent variables (2.1) consists in the gradual application of Steps 1-4 to all FMPS
that are in the denominators of the ending partial quotients of the finite branches of
the branched continued fraction with independent variables. As a result, comput-
ing the coefficients c Ykl 21,k =0,4+1<j<N,2<i4 <N, by arecurrent
formula (2.4) and the coefficients ¢, |k| =1, k; =0, i, +1<j <N, k>2
2<0p <ip—1, 1 <p<k, bya recurrent formula

k| €i(k—1)
Ci(k) _ ei(k) _Theiy
G = Ck—r Ei-1) (2'6)
r|=1 Cig
where ¢, it — = 1, moreover, ck’(k) = 0, if here exists an index j such that 1 < j < N
and that kj < O, provided that for 1 <iy < N andn > 1
He, (n) #0, Hae, (n) #0, (2.7)
where
Cles, Ci+1)e;, c(l-l—n—l)eqyl
c . c , c ‘
Hleil (n) _ (l—l—l)e,1 (H—Q)e11 (l+n)e7,1 | = 1, 2,
Cll+n—1)e;;  C(l+n)eq, Cl+2n—2)e;,
and for 1 <ipq <ip—1,2<0, <ip_1, 1 <p<k,k>Tlandn>1
7(k) 1(1@)
<n> #0, Hy® () #0, (2.8)
where
€i(k) cei(k) €i(k)
leig (l+1)eik+1 (H—n Deigy s
Cei(k) €i(k) 1(k)
l;-(:jrl (n) (HDeiy,  C0H2eqy, ey, , 1=1,2,
c €i(k) €i(k) ez(k)
(I4n— Deigyy (l+n)elk+1 (l+2n 2)eiy

for FMPS (1.1) we obtain multidimensional regular C-fraction with independent

variables (2.1), where the b

€i(k)
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formulas

Heq‘,l (Tl - 1)H2€7‘,1 (T‘L)

ber, = Heo, (1), baner, = — : >
i i1 (1), b2 " ]{ei1 (H)HQCH (n—1) (29
H,, (7’L+1)H26' (TL— 1)
bonstye, = ——2 - ) 29
(2n+1)es, He, (n)Ha, (n) 24

1

where 1 <i; < N, n > 1, H, (0) = Ha, (0) =1, and

HS® (n—1)Hy'™  (n)

) € 2e;
__ pr%i(k) _ k+1 k1
bei(kJrl) - Heik+1 (1), bei(k)+2”eik+1 - _He'i(k) (n) Gik) (n— 1)7
Cipyq 23ik+1
(2.10a)
€i(k) €i(k) _
ey +2ntery ., = e @+ Dl (071 (2.10D)
ci(ry+(2ntleq . — €ilk) €i(k) ) :
Heqik+1 (n)HzeikJrl (n)
where 2 <i, <i, 1, 1 <p<k, 1<ir <irp—1,k>1,n>1, and Hj;';’jl (0) =
Ci(k) _
HQ%+1 (0) =1.

Thus, we constructed the recurrent algorithm for computing the coefficients of
the multidimensional regular C-fraction with independent variables (2.1) in terms
of the corresponding FMPS (1.1).

We show that the constructed multidimensional regular C-fraction with inde-
pendent variables (2.1) corresponds at z = 0 to the FMPS (1.1). Let {f,(2z)} be a
sequence of approximants of the multidimensional regular C-fraction with indepen-
dent variables (2.1). Using relations (2.4), (2.6) and (2.9a), (2.9b), (2.10a), (2.10b)
we curtail the f,(z) for n > 1.

For n =1 we have

N N
fi(z) =1+ Z be,, 2, = 1+ Z Ces, iy -
i1=1 i1=1
Since
N
1+ ) e, 2y — (1 + ) ckzk> =- > adk,
in=1 k[>1 k[>2

then f1(z) ~ L(z) and the order of correspondence is v; = 2.
Now, according to the higher described algorithm for eq and for all ey such
that 2 <, <ip—1, 1 <p < kandk > 1 the continued fraction

bei(k)+elzl bei(k)+2€1zl be'i(k)+3elzl
1 + 1 + 1 +

Fei(k)(zl) =1+

corresponds at the origin to the formal power series PeM)(Zl) and the order of
correspondence is v, = n + 1. From this it follows that for eq and for each e;(;) such
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<ipo1, 1<p<k k>1andforn>

2 the finite continued fraction

be. le 1 be. 2e 21
(n) ei(k)Tler ei(k)t2e1
F eitk) (Zl) ]. +

that 2 <

bei(k)“rnel 21
1 + 1 + + 1
has formal power series expansion

P(L(k) z1) =1 +ché(k) 1+ n+1)

)

where ¢ = cje, for 1 <1< n, n>2; O(2]) is a symbolic mark for some formal
power series, whose minimal degree of terms is not less than p, p > 3
Than, for n = 2 we can write

i1

el Z
f2( )_ eo Zl +Z = Zbei(z)ziz

112

12:1
Ce. Zi 2!
)+ 30 S,
i1=2 ’Lz 1
)(z +Zce”zzl (14—2 =)+ O(z ))
11=2 io=1 Ciy
SIED SIS SR b SUSe P
i1=1 i1=1 io=1

=1+ Z cxz® 4+ 0(z%),

[k|=1

where O(zP) is a symbolic mark for some FMPS, whose minimal degree of
homogeneous terms is not less than p, p > 2. Since

2
1+ Z ckzk+0(z3) -1+ Z az¥ | = 0'(z*),

k|=1

where O'(zP) is a symbolic mark for some FMPS, whose minimal degree of
homogeneous terms is not less than p, p > 3, then f3(z) ~ L(z) and vy = 3.
Next, let n be an arbitrary natural number such that n > 3. Then we get

(n) 671211 — be €i(n—2)Fin—2
fn(z) — F Zl + P S St A —
€o F + F( )
i1=2 €4 ip_2=2 €i(n—2) (Zl)
7;7,,72 in—l
j : bei(n—l)zinfl b .
E : €i(n)“ln
+ i =2 1 + in=1 "
n—1— n—
in—3 €i(n—3)
Ce;, Ziy Z Cei, 5 Fin—2
- P(n Zl —|— E - 11) PR + (”)7
i1=2 Pe ip_o=2 Pl(n 2)(Z1)
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Tn—2 Ci(n—2) Tn—1
Z Ceipy_y Fin1 Z it
1 Cin Ziy,
+ in—1=2 + in=1
N in—a Ci(n—4)
= PO () + _CenFn § Cein_g Fin-s
€o (n—1) (3)
1172P ( 1) + + _3=2 tejn-3) (Zl)
in—3  €i(n—3) in—2

Cei,_o Zin_o2 Ci(n—2)
4 Cei, 1 Rin_1

()
Ip_o=2 P €i(n—2) (Zl) + Ip—1=2
in—1 7(71—2)

) (14 ) ‘j(nlz’)" i +0(z?)

6

Tn=1 in—1
N In—4a €i(n—4) in—3 €i(n—3)
(n) Cellzil Cip_3 Rip_3 €i,p_o Zin_2
:Peo (21)+ (n 1) _|_ Z (3) + Z 1
o Pe; (2 ) _3=2 P7.<n 3>(21) in_o=2
in—2 Gn—2 in—1

€i(n—2) €i(n—2) 3
+ E Cei, Zip_q T E Rip_1 E Ceiy 1 ,in Pin +O(Z)

in—1=1 in—1=1 in=1

Continuing this process on the final step we obtain

N
Ce, Zil
fulz) = PO (zy) + Y — o
’ Z_ P ()

€iy

C

12 2 Cip iz3=1

in—2 in—1 %1

i3 €iy

'i2 C 7;2 c
€ig,ig €Cig,ig,ig
E cer 5 Zia 1+§ < Zi3+§ Zig E — e %
i3:1

iim1 Ceiy

iz
C
€i(n)—€iy n—1
.+ E Zig | - E Zin 1 E e Fin |- +O(Z )

ig=1 in_1=1 in=1

_ P(n Zl " Z CenZu

’Ll—

i1

€iq €iy
E cei22i2+§ Ziy g Ceiy,iy iz | T -

i2:1 ’L2— Z3—1

in—2 In—1

eil
Zig | --- Zi, 4 Cergny—ei, %

i3=1 ip—1=1 ip=1
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From this we have

@) = P + 3 o <1+ S e 30 (Z )
iz=1

11=2 io=1 €iy 10=1

i1 G —2 fn—1
6
+ ...+ E Zio E L1 E 1(71)
c
io=1 in_1=1 in=1 €i1
N N i N
=1+ g Ce;, %iy + E Zi; E Ceypyia | T+ g Zi;
i1=1 i1=1 ia=1 i1=1
7;1 7;n72 7:7171
n+1
X E Zig | - -- E Zi 4 E CeyimyZin | -+ +0(z")

ig=1 ip—1=1 in=1

=1+ Z ez + 0(z" ).
k|=1

Since

1+ Z ez + 0(z" ) 1+ Z az® | =0'(z"),

k|=1 [k|>1

then f,(z) ~ L(z) and the order of correspondence is v,, = n + 1.

Finally, from arbitrary n it follows that f,(z) ~ L(z) for n > 1, and that the
order of correspondence is v, = n + 1. From this it follows, that the series A(f,)
and L(z) agree for all homogeneous terms up to and including degree n. Since

lim v,= lim n+1= 400,
n—-+o0o n—-+oo

then the multidimensional regular C-fraction with independent variables (2.1)
corresponds at z = 0 to the FMPS (1.1).
Hence, we prove the following theorem:

THEOREM 2.1. The multidimensional reqular C-fraction with independent variables
(1.8) corresponds at z =0 to the given FMPS (1.1) if and only if the conditions
(2.7) for 1 <i3y < N, n>1, and the conditions (2.8) for 1 <ig41 <ip—1, 2 <
ip <ip—1, 1 <p <k, k>1,n2>1, are satisfied.

3. Examples

We shall consider now a few examples.
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ExaMPLE 3.1. The function

f(Zl, 22, 23) — 621+Z2+Z3

has a formal triple power series at origin given by

i (Zl + Z92 —+ Zg)k

L(z1,22,23) = A

Applying recurrent algorithm constructed in §2, we obtain:
Step 1.1: We have

0 k 2 2
z 22 21 2122 )
L = 1 1 St SN A A
(21, 22, 23) k§_0k!+z:2<+zl+2+2+ 5 +6+ )
2 2
+Z3(1+21+22+Z23+(21—222) +(21+222)Z3+Zg’+~~>.

Steps 1.2 and 1.3: By formulas (2.9a) and (2.9b) we obtain

b1,0,0 = bo,1,0 = bo,o,1 = 1,

1
b =bgoro=Db =—— k=1,
2k,0,0 0,2k,0 0,0.2k = 5
b =b =b _ ! E>1
2k+1,0,0 = 00.2641,0 = 00,0,2k41 = 55, B2
Thus
z9 Z% Z1%22 z5
L(Zl,ZQ,Zg)NK(Zl)+ZQ 1+Zl+f+*+7+*+
2 2 2 6
Z 21+ 2 2 21+ 29)z 22
fo(14meme 2Btz Edm)m 5 )
2 2 2 6
where
K (=) 1+zl asz1  aszy 1 1 B>
z — — oo a = — a = — =
1 1 + 1 + 1 + s U2k 2—4](}7 2k+1 2+4]€’
Step 1.4: By a recurrent formula (2.4) we obtain
22
L(Zl,Zg,Zg) NK(21)+ p) P}
e NN
T T 2 12
+ =
z3 (214 22)% (214 22)23 23
1 oy 3 23 ..
T > T 2t
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Step 2.1: We have

z
L(217227Z3) ~ K(’Zl) + 00 k : 2
T ()™ ()@ A 2z
k! 2 6 T2 6
k1=0
z
SN 3 '
—2zZ1 Z9 zZ3 z3
T g e) g lnm o)
k1=0
Steps 2.2 and 2.3: By formulas (2.10a) and (2.10b) we obtain
bi,1,0="01,0,1 =bo,1,1 = —1,
1
b =b =b =—— k=1,
2k,1,0 = 02k,0,1 = 00,2k,1 5 Ak’
b =0 =0 = ! k>1
2k+1,1,0 = 021,01 = D02kt 11 = —om s B2
Thus
22
L(ZhZQ,Zg) ~ K(Zl) + > > o
K(ez) 2145 2,21, 2172
(—21) 5 ( 21 6 + 9 6 +
23
+ Z Z Z :
K(—z1) — 29 (17z1752+~-~> 753(17251722*%34’"')
Step 2.4: By a recurrent formula (2.6) we obtain
z
L(z1,22,23) ~ K(z1) + 2
—2’2/2
K(—z)+ 5 3
T B -
6 2 6 36
z
* z : 23/2
—22 —Z3
K(_Zl) + Z9 + z3
1+21+5+... 1+21+2’2+€+"'

And so on, in the end we will get the corresponding three-dimensional regular
C-fraction with independent variables of the form

)
K(Zl) + asz2
K(=21) + K(m) 1 52
21 K(—a)+
Z3
+ )
—Z2 a223
K(=2) + = —a223 * K(z1) + Z2 ot a3Zz3
_ z
(21) + (=2 )+ 1 K(—zl)—l—. K(—Z1)+'

where the K (z1) and the ay, for k > 2 are defined by (3.1).
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We also note that it can be shown that the function

f(Z) — 821+22+"'+ZN

has a corresponding multidimensional regular C-fraction with independent vari-
ables (2.1), where for 1 <i; < Nandn >1

1
beil - 1’ b2nei1 = M7 b(2’ﬂ+l)eil = 2+4n
and for 2 <i, <i,_ 1, 1<p<k 1< <ixp—1L,k>landn>1
p— +

(1) _ 0

_ k _
bei(k+1) - (_1) ) bei(k)+277f€ik+l 9 _ 4’ bei(k)+(2n+1)eik+1 =

ExAMPLE 3.2. The function
fz) =042z +z+ - +2y)?

has an FMPS at z = 0 given by

L(Z)ZZ( L2 ( Zzl> ,

k=0

where (a)y, is the Pochhammer symbol, that is (a), = a(a+1)(a+2)...(a+ k —1)
for k > 1 and (a)o = 1. Applying recurrent algorithm constructed in § 2, we obtain
the corresponding multidimensional regular C-fraction with independent variables
(1.3), where a;(1y = 1/2, a;pq1) = (1/2) %41 for all i(k) € Ty and k > 1.

ExXAMPLE 3.3. The function

(1 + Zl)_a(l + 22(1 + Zl)Qa)_B
(14 23(1 + 21)2¢(1 + 22(1 + 21)2)28)7

F(Oé>ﬁ7%21;22723) =

has a formal triple power series at origin given by

Lenzn) =Y O ()t Y (Z (‘,i?)k(—znk) B2y
k=0 1=0 \k=0 ’ '
oo oo oo 2l+1 xr
S (S (S E ) S ) Yy,
r=0 \1=0 \k=0 ’ ’ '

where «, 3, € Z. Applying recurrent algorithm constructed in §2, we obtain the
corresponding three-dimensional regular C-fraction with independent variables

U ey Ziy N b

1+Z 1(1) Z%_FZS“%)Z%_’_...’

’Ll 1 22:1 i3:1
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where
bei+pestqes = —Q; Degyges = =05 bey = =7, p =0, ¢ 20,
[n/2]([n/2] + (=1)")
bn51+P52+q63 = (n - 1)n , 2 2a p 2 Oa q 2 07
[p/21(Ip/2] + (=1)"B)
b e es — ) 2 27 q 2 07
pez+qes (p o 1)p
2 2 —1)4
bye, — /22l + (D)™)o
(¢ —1)g
(here ‘[.]’ means an integer part of the number).

ExAMPLE 3.4. The special case of the functions considered in examples 3.2 and
3.3, is the function

f(z1,22,23) = F(=1/2,—-1/2,—-1/2; 21,22, 23) = (1 + 21 + 22 —|—23)1/2

which has a formal triple power series at origin given by

— (=1/2)i

%l (—Zl — 29 — Z3)k. (32)

L(z1, 29, 23) =
k=0
Thus by example 3.2 the f(z1,22,23) has the corresponding three-dimensional
regular C-fraction with independent variables of the form

21/2 22/2
1+ Sy 7 7
L z1/4 L z1/4 + z1/2 z9/4
1+ 1+ 14 2
1+ 1+ 1+ 1+
23/2
I z1/4 21/2 ,2/4Jr 21/2  29/2 z3/4
1+ 14+ 05 4 2 1405 4 222 4 5

1+ 1+ 1+ 1+ 1+ 1+

The results of computation of the function f(z1,z22,23) and its approximations
fn(z1, 22,23), 1 < n < 10, for different values of z1, zo and z3 are given in table 1.

Analysis of the results of computation shows that the truncation error bounds
Ay (21,29, 23) = | f(21, 22, 23) — fn(21, 22, 23)| for the function f(z1, 22, 23) decrease
with increase in the index n and, at points close to zero, the approxima-
tion is the best:

Agy(1,2,3) = 1.49436 x 1075,
Ag,(4,4,4) = 411958 x 1074,

Ay (=0.1,—-1,1) = 2.22045 x 10716,
A,,(0.001,0.001,0.1) = 2.22045 x 10~ 6.
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Table 1. Values of f(z1, 22,23) and fn(z1, 22, 23) from algorithm for
fz1,22,23) = (1 + 21 + 22 + 23) /2
(21,22, 23) (—0.1, —=1,1)  (1,2,3) (4,4,4)  (0.001,0.001,0.1)
F(z1, 22, 23) 0.948683298  2.645751311 3.605551275 1.049761878

fi(z1, 22, 23)
fa(z1, 22, 23)
f3(z1, 22, 23)
fa(z1, 22, 23)
f5(21, 22, 23)
fo(z1, 22, 23)
J7(z1, 22, 23)
fa(z1, 22, 23)
fo(z1, 22, 23)
fio(z1, 22, 23)

0.950000000
0.948717949
0.948684211
0.948683322
0.948683299
0.948683298
0.948683298
0.948683298
0.948683298
0.948683298

4.000000000
2.361538462
2.726698392
2.626946223
2.649989938
2.644842099
2.64594046
2.645712938
2.645758944
2.645749817

7.000000000
2.833333333
3.972222222
3.475984556
3.656642379
3.586261429
3.612953179
3.602728839
3.606630066
3.605139318

1.051000000
1.049732444
1.049762578
1.049761861
1.049761878
1.049761878
1.049761878
1.049761878
1.049761878
1.049761878

According to theorem 7.2 [11, pp. 223-226] the formal triple power series (3.2)
has a corresponding regular C-fraction of the form

(21+Zz+23)/2 (21+22+23)/4 (Zl+22+23)/4
1 + 1 + 1 +

Let g,.(21, 22, 23) be the nth approximant of (3.4), n > 1, and let s, (z1, 22, 23)
be the mth partial sum of (3.2), n > 1. We give the truncation error bounds
Ay, (21, 22, 23), Dg, (21, 22, 23) = | (21, 22, 23) — fn(21, 22, 23)| and A, (21, 22,23) =
|f (21, 22, 23) — $n(21, 22, 23)| at point close to zero in table 2. From this it can be
seen that the truncation error bounds decrease with increase in the index n. The
approximation of f(z1, 22, z3) by the nth approximants f, (21, 22, 23) of (3.3) is bet-
ter then by the nth approximants g, (21, 22, 23) of (3.4) and the nth partial sum
sn(21, 22, 23) of (3.2).

- (3.4)

ExampPLE 3.5. Now, we consider the following function

1+ In(1 + z9e#1)
(8

f(ZhZQ) =

which has a formal double power series at origin given by

=)t (S (et )
SR (e) 6

1=0 \k=0
Applying recurrent algorithm constructed in § 2, we obtain the corresponding two-
dimensional regular C-fraction with independent variables

a1021 ap122

1+ 1+ a2021 + 1+ aiizi ap222 ’ (3'5)
a30z (212 a12%2 ap3z
1_~_301 1+211 1+ 121+032

1+ 1+ 1+ 1+
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Table 2. Truncation error bounds for

f(z1,20,23) = (14 21 + 22 + 23

)1/2

3

Ay, (0.1,0.1,0.1)

n

Ay, (0.1,0.1,0.1)

As, (0.1,0.1,0.1)

© 00 N O U W

—_
o

9.8246x1073
4.3886x10~4
1.6466x107°
5.5317x10"
1.7283%1078
5.1314x 10719
1.4672x 1071
4.0790x10~13
1.1102x10~
2.2204x10716

9.8246x1073
6.4054x 1073
4.1966x107°
2.7486x 1076
1.8003x10~7
1.1791x1078
7.7229x 10710
5.0583x10" 11
3.3129x 1012
2.1694x 10713

9.8246x1073
1.4254x1073
2.6207x 104
5.4331x107°
1.2114x107°
2.8362x1076
6.8774x10~7
1.7123x10~7
4.3516x1078
1.1243x1078

Table 3. Truncation error bounds for f(z1,z2) = (14 In(1 + z2€?*1)) /e

3

Ay (0.1,0.1)  Ap (-0.01,01)  Ap (-1,2) Ay (—1.5-1.5)

© 00 3 O U W N =

9.1089x1073
9.1615x 104
2.8325%x107°
2.9834x10~7
1.3227x1078
3.5439x 10710
1.1725x10~ 11
2.9377x10713
9.5479x 10710

10 2.2204x1016

5.5016x1073
1.0851x 1074
2.6530x106
5.7997x 108
1.4324x107°
3.1747x 1011
7.7649x10713
1.7319x 10~
4.4409%x 10716
2.2204x10716

6.3057x10 1
2.9723x107 !
3.6099x 102
3.6805x 103
1.0550x 1073
1.6880x10°
7.4420x1076
2.1980x 107
2.8629% 108
0.4623x10~ 10

3.1338
2.0090
3.9116x10~ !
2.8478x1072
9.5613x1073
1.8260x10™%
1.1861x10~%
8.6896x 10"
8.4861x 10~
1.9619x 108

where a1 = —1, agk; =1/(4k —2), aok+1,=—-1/(4k+2), a1 =1, apu =1/
(4l —2), ap 2141 =1/(41+2), k > 0, ] > 1. The results of computation of the trun-
cation error bounds Ay, (21, 22) = | f(21, 22) — fu(21, 22)|, where f,, (21, 22) is an nth
approximant of (3.5), different values of z; and z5 are given in table 3. From this
it can be seen that the truncation error bounds for the function f(z1,22) decrease
with increase in the index n and, at points close to zero, the approximation is the
best (like in the previous example).

4. Conclusion

Numerical experiments illustrate the efficiency of the constructed algorithm for
approximation of multivariable functions, which are represented by FMPS. Exam-
ples 3.2 and 3.4 show, on the one hand, the method of accelerate convergence of
regular C-fraction and, on the other, the method of computing square roots of
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some complex numbers by multidimensional regular C-fraction with independent
variables.

The question of the class of multivariable functions which are represented by
multidimensional regular C-fraction with independent variables remains open.
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