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Landmark lecture on cardiac intensive care and anaesthesia:
continuum and conundrums*
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Abstract Cardiac anesthesia and critical care provide an important continuum of care for patients with
congenital heart disease. Clinicians in both areas work in complex environments in which the interactions
between humans and technology is critical. Understanding our contributions to outcomes (modifiable risk)
and our ability to perceive and predict an evolving clinical state (low failure-to-predict rate) are important
performance metrics. Improved methods for capturing continuous physiologic signals will allow for new and
interactive approaches to data visualization, and for sophisticated and iterative data modeling that will help
define a patient’s phenotype and response to treatment (precision physiology).
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IT IS AN HONOUR TO PRESENT THIS LANDMARK

lecture at the 7th World Congress of Pediatric
Cardiology and Cardiac Surgery, and in particular

to represent my colleagues in cardiac anaesthesia and
intensive care. The theme of the World Congress has
been centred around “bridging together”, and I wish
to build upon this, particularly around aspects of
transferring information, our interaction with tech-
nology, and how we may be able to generate new
insights with the analysis of continuous physiologic
signals.
First and foremost, our focus in the ICU and the

operating room has to be on the individual patient we
are caring for. It is easy to assign certain expectations
and outcomes based on a population of patients, but
within these populations, individual patients and their
phenotypes can be quite variable. It is also important to
observe the patient rather than simply the technology

that surrounds them. We rely on a wide range of
monitors and devices, most of which are not linked or
integrated. Indeed, the integration of physiologic sig-
nals is the responsibility of clinicians at the bedside and
we all know that this can be problematic. As clinicians,
we vary in our ability to absorb a range of information,
let alone interpret the relationship of these signals and
act upon them in a timely fashion.

Continuum of care

The cardiac operating room and the ICU are highly
complex environments where the interaction between
humans and technology is critical. These are envir-
onments in which specialised individuals come
together to perform their tasks. However, there
should be seamless integration and transfer of infor-
mation between these areas. Coordinated care is
essential and in many respects the critical care man-
agement starts in the operating room. We should see
the operating room and the ICU as a continuum of
care, and to facilitate the transfer of information and
care requires common understanding of the environ-
ments. It starts with common management plans,
such as the use of invasive lines and monitoring, the
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type of anaesthesia and impact this may have on
postoperative care, strategies around mechanical
ventilation and early extubation, and strategies
around fluid management and transfusion require-
ments. Almost all centres will have a formalised
process for the handoff of information from the
operating room to the critical care team. Often a
checklist is used to facilitate this, but the right
information must be transferred. Transferring under-
standing about the physiologic state of the patient and
the haemodynamic trajectory is critical. There is a
large amount of data generated in the operating
room, particularly from continuous physiologic sig-
nals, that stay locked within the operating room and
are not transferred with the patient to the ICU.

Patient journey

To improve the way we transfer information and
interact with technology, I think it is first important
to understand the patient journey and the current
state in which we work (Fig 1). In this figure, the
patient is central, our focus for the care we deliver.
On admission, we try to assign severity of illness
indices according to the disease or procedures that
may help us determine the expected outcome of the
patient. And then at discharge, we look at various
outcomes, benchmarks, and indices to determine and
compare the quality of care we have delivered. Over-
laying this is the structure of the environment and
systems for care, teams, and workflow, supported by
various guidelines and protocols, early warning systems
and quality metrics. We rely on categorical data
generated within the electronic health record and the
information streaming from monitors and devices to
help us make decisions. As noted in the figure, and
despite the structure overlaying patient care as

outlined, our decision nodes can bounce around and
may not be consistent between providers. Variability in
decision-making is well recognised and is often cited as
the cause for practice variability. Indeed, practice
variability is a focus for improving the quality of care
we deliver and reducing costs as well as unintended
resource utilisation. This, however, is too simplistic.
Practice variability may indeed be idiosyncratic;
however, I believe it is physiologic variability within
patients that leads to variability in decisions; this is
normal and appropriate for the management of patients
and allows for us to adapt care as needed. The key
therefore is being able to understand and convey the
evolving physiologic state of a patient, and this is the
where analysis of continuous physiologic signals in
either the operating room or ICU will be beneficial.

Understanding the physiologic state

One of our goals in the cardiac operating room and
ICU is to understand the haemodynamic response to
our therapies and the trajectory of a patient relative to
our management decisions. Let’s take the manage-
ment of cardiac output as a good example and where
variability in practice has been described.
Low cardiac output after paediatric cardiac surgery

is commonly referred to nowadays as a “syndrome” for
reasons that are not clear to me. A syndrome can be
defined as a set of features and characteristics that
appear together and characterise a disease or medical
condition. Hypoplastic left heart is a syndrome.
Trisomy 21 is a syndrome. I don’t believe that is
the case with cardiac output, particularly as the low
cardiac output “syndrome” is very poorly defined.
As an example, in a recent Cochrane review of the
prophylactic use of milrinone to prevent low cardiac
output syndrome in children undergoing surgery for

Figure 1.
Components to delivering a safe and efficient journey for a patient in the ICU. Decision nodes can be seen in colour, and while they can reflect
variability in decision making by clinicians, more commonly they reflect patient variability in physiology and response to management.
Characterising the physiologic variability is a goal of data science in critical care.
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CHD by Burkhardt et al:1 they listed the various
definitions used to define low cardiac output syn-
drome in the papers they reviewed for their analysis.
These are shown in Table 1. There is no single
defining set of characteristics and usually a number of
different features are used to lump patients within
the diagnostic category of this low cardiac output
syndrome.
A number of studies have examined low cardiac

output “syndrome” following paediatric cardiac
surgery. Gaies et al2 recently reported on seminal
postoperative complications following cardiac surgery
and the relationship to mode of death. In their study of
two centres (University of Michigan and Children’s
Hospital of Philadelphia) over a 5-year period, they
identified 191 patients who died (87% were neonates)
and the seminal complications that contributed to
downstream complications and mortality. The median
time to a seminal complication was less than 2 hours
and 73% of these seminal complications occurred
within 24 hours. They noted that low cardiac output
syndrome occurred at any time in 71% of their patients
and as the initial sentinel event in 38% of the patients.
Common definitions were used as defined in the PC4
dictionary, but of note, there is no unifying definition
for low cardiac output syndrome and for the purposes of
their study this was determined by consensus. Clearly,
low cardiac output is an early problem seen following
paediatric congenital cardiac surgery, and an early
detection and intervention may improve outcomes.
This is not new information; low cardiac output

following paediatric cardiac surgery has been known
for many years. In 1959, Boyd et al from John
Hopkins University published the first paper measur-
ing cardiac output soon after intracardiac surgery with
cardiopulmonary bypass in patients with CHD; none of
these patients were newborns or infants as this was
the very early days of cardiopulmonary bypass. Never-
theless, they measured cardiac output and mixed
venous oxygen content and demonstrated a decrease
that occurred some hours before clinical signs became
evident.3 A “sudden death syndrome” after cardio-
pulmonary bypass was described, and it was surmised

that this was invariably preceded by a period of low
cardiac output. Another study published in 1975 by
Grant et al also characterised changes in cardiac index
and mixed venous oxygen saturation in the immediate
postoperative period, demonstrating that a low cardiac
output occurred soon after completion of surgery with
a threshold level of around 2 L/min/m2.4 Perhaps the
most well-documented evidence of low cardiac output
after paediatric cardiac surgery was the study by
Wernovsky et al5 in the Boston Circulatory Arrest
Study, published in 1995. Cardiac output was mon-
itored in the immediate postoperative period by ther-
modilution. In 122 patients they demonstrated a fall
in cardiac index up to 20% within the first 6–12 hours
after surgery and this was associated with a rise in
systemic vascular resistance and pulmonary vascular
resistance. It is important to note that this appeared to
be time limited and that within 24 hours of surgery,
cardiac index had generally recovered to baseline and
that the systemic vascular resistance and pulmonary
vascular resistance had both fallen. It is also important
to understand the era in which these studies were
undertaken. In general, the bypass strategy was quite
different 20 years ago with larger priming volumes in
the cardiopulmonary bypass circuit, with low haema-
tocrits and with faster cooling and rewarming times,
and ultrafiltration was not routinely used; it is therefore
hard to relate these findings to the current era. Over the
past 20 years there have been considerable changes to
the bypass circuits, haematocrit, temperature manage-
ment, and myocardial protection, yet there has been
no subsequent follow-up studies that demonstrate
whether or not the decrease in cardiac index that was
reported 20 years ago is still evident in our patient
populations today.
A summary of currently used measures to assess

cardiac output at the bedside and their correlation
with objective measures is well described by Hoffman
et al.6 A handful of studies have demonstrated that
clinical examination may have a poor correlation with
objective measures of cardiac output.7 Hoffman et al6

showed that routinely monitored physiologic signals
in general also show poor correlation with measured
cardiac output. There is a weak positive correlation
with heart rate. Near infrared spectroscopy is a non-
invasive method for measuring oxygen delivery to
tissue beds, and may trend with changes in mixed
venous oxygen saturation but particular threshold
levels have varied. Serum lactate levels are used com-
monly as a marker for low cardiac output state but it
must be remembered that it is the rate of change of
lactate that is important as well as the absolute level,8

and that it is a late marker. In other words, once the
lactate level starts to rise, there has already been a per-
iod of inadequate oxygen delivery to the mitochondria.
This level is also confounded by a well-described

Table 1. Clinical characteristics that have been used to define low
cardiac output syndrome, as adapted from Burkhardt et al.5

Blood lactate >3mmol/L (27mg/dl) or increase in blood lactate of
at least 2mmol/L (18mg/dL) from baseline

Central venous oxygen saturation <50% in biventricular physiology
without shunts

Increase in arterial to central venous oxygen saturation difference
by at least 20% from baseline

Urine output <1ml/kg/hour
Peripheral skin temperature to core temperature difference of >7°C
Cardiac index as determined by Doppler echocardiography of
<2.2 L/in/m2
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metabolic uncoupling, especially if patients are hyper-
glycaemic in the immediate postoperative period.9 Of
all the biomarkers available, mixed venous oxygen
saturation is probably the best index to correlate with
cardiac output, although it is limited by intermittent
sampling. The continuous measurement with oxy-
metric catheters as advocated by Hoffman et al is rarely
undertaken in centres these days because of the poten-
tial complications associated with these catheters.
It is not surprising therefore that there is varia-

bility in our assessment and the measurement of
cardiac output when there is no unifying definition
and limited correlation with clinical indices. After
all, cardiac output is determined by a complex rela-
tionship between cardiorespiratory interactions,
interventricular interactions, and ventricular vascular
coupling. It is determined by the interactions
between end diastolic fibre length as the measure
of preload, the elastance of the arterial circulation as
the index of afterload, and the contractility of the
myocardium or ventricular elastance.

Conundrum

If we can’t define the “syndrome”, let alone accurately
measure it, how can we target a therapy to prevent or
treat it? Indeed, it is my view that we should stop
referring to low cardiac output as a “syndrome” but
refer to it as a physiologic state. Low cardiac output in its
simplest terms refers to the adequacy of oxygen
delivery and utilisation to meet metabolic demand. As
a physiologic “state” it is dynamic, subject to varia-
bility as all physiologic signals are, and has multiple
inputs. Understanding this state is particularly
important if we are to understand the modifiable risks
associated with the care we deliver both in the

operating room and the ICU. It is also possible to
better understand this state by utilising continuous
physiologic data and machine learning technique.

The promise of utilising big physiologic data

It is possible to utilise the data generated by continuous
physiologic signals at the bedside to help us understand
physiologic states and phenotypes in our patients fol-
lowing cardiac surgery. At the same time, it is impor-
tant to also understand that using big physiologic data
to determine these states will not replace the clinician
at the bedside, rather it will augment our decision
making, improve communication and information
transfer, and to a large extent, level the playing field
and reduce learning curves with respect to our experi-
ence and capability as clinicians.
We all know that there is a huge amount of data

streaming from various monitors and devices at the
bedside in our patients. This data are often described
as being large in volume, variety, velocity, veracity,
and is therefore vexing. If we describe data in these
terms (“v’s”), then we subconsciously assign difficulty
and uncertainty to the data. This should not be the
case and our work in the Department of Critical Care
Medicine at the Hospital for Sick Children has been
focussed on changing this view of big data so that we
can use continuous physiologic data to describe a
physiologic state and predict events within that state.
Our goal is to quantify “certainty” by ensuring
reliable, robust, and relevant data capture.

A platform for using physiologic data

Before embarking on a programme to utilise con-
tinuous physiologic data, I think it is important that

Figure 2.
The approach taken to harnessing continuous physiologic data in the Department of Critical Care Medicine at The Hospital for Sick
Children, Toronto.
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organisations have an understanding of what they are
trying to achieve. At SickKids, we use the approach
as outlined in Figure 2. We capture data streaming
from all devices at the bedside and store this data
permanently. Our view is that this is patient data,
that it should be stored permanently rather than
purged at certain intervals or for defined research
protocols, and that at this point in time we cannot
be assured that we know all the features or char-
acteristics of a physiologic signal. Storing the data
permanently allows for later use, although it creates
problems related to data storage and access, which
I will address below. Our view is that the data will be
for clinical use, which is the case using the T3 plat-
form (Etiometry LLC, Boston, Massachusetts, United
States of America), that it will be used for research,
and be available for sharing; and these data will be
used for iterative modelling, which would then allow
us to utilise this data real-time for online information
and understanding of the trajectory of a patient, and
ultimately for additional understanding and new
knowledge about the care of a patient.

Can we trust the data?

Being able to trust the data is critical. Ying Ling Lin
et al undertook a study evaluating the barriers to the
implementation of new technology (the T3 platform),
and the utilisation of continuous physiologic data in
critical care.10 For nurses and respiratory therapists,
the primary concern was around usability of a data
science platform. For the physicians, however, the
primary concern related to functionality of the data
platform, such as what the data actually meant or
whether data modelling provided new information
beyond that they were otherwise already aware of.
Understanding the data journey is also key. The

idealised state, perhaps one that monitoring compa-
nies would have us believe, is that data are somehow
seamlessly captured at the bedside, transferred
through a data pipeline into an analytic platform of
neural networks for research and for clinical purposes.
Practically, this is not as simple as it sounds.

Data in motion

In fact, we deal with data in motion, time series data.
As a result, there are a number of bottlenecks from
input through to output of this data (the data is
I/O bound). Each of these bottlenecks needs to be
understood and solved if we are to make sure that we
have robust data available for analysis. These bottle-
necks in data flow include:

∙ Data continuity: This starts with the correct
association of the patient with the monitoring
system. It includes the correct placement of various

leads and sensors and the attention to detail to
make sure that the signal being generated
accurately reflects the system being measured. An
example is the use of intra-arterial catheters and
the potential for damping of the signal within the
line if incorrectly managed or appreciated. At the
Hospital for Sick Children, we are developing a
system that enables us to look for data gaps and loss
of continuity in a graphical format for each bed
space. Knowing this information real-time then
allows for any gaps in data or problems with
continuity of data to be addressed at the point of
care rather than trying to make assumptions later
on during analysis, or worse, not having that data
available for analysis at all.

∙ Data quality and labelling: Signal processing is
important to derive the features of the signal, such as
amplitude and frequency, but also the quality of the
signal with respect to artefacts, phase shifting, or
problems with time stamping. Another component
is appropriate and real-time data labelling to
facilitate supervised machine learning. An example
is a patient with heart block being externally paced
after surgery. It was noted by one of our data
scientists that there were a group of patients who had
no variability in their heart rate signals. Remember,
that physiologic variability is normal; loss of
variability may indicate an evolving disease state,
and it is possible that recovery of variability indicates
appropriate response to therapy. In this particular
circumstance, we realised that the problem was not
with the patient and the generation of the signal,
rather that these patients were all receiving fixed
atrial pacing for various reasons; if we lumped the
data from these patients into an algorithm which
used variability of heart rate as an output, then the
algorithm would clearly be inaccurate. Being able to
label this type of signal is critical for later analysis.

∙ Data architecture: This is key for any data storage
platform to ensure the data are accessible and analysis
ready. The data science team at the Hospital for Sick
Children has developed an architecture that allows
the continuous physiologic data to be highly
compressed and indexed such that it is readily
accessible for analysis. In our current development,
we are processing over 200,000 bytes/second of
physiologic data, which is around 55 terabytes/year
of uncompressed data. Using our unique compres-
sion algorithms, we are able to compress this to 1/
100 of the size, which immediately solves problems
related to the storage of massive amounts of data over
time. As important, the compression of the data and
the indexing of the files facilitates rapid retrieval.

I would like to recognise the data science team in the
Department of Critical Care Medicine at SickKids
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(see acknowledgements). This team is critical to the
meaningful use of physiologic data and they are
embedded directly within the daily life of our unit.
They bring expertise in data architecture, computer
programming and engineering, signal processing,
and machine learning that allows us to make sense
of all the data streaming from devices and monitors at
the bedside. Moreover, this clinical engineering team
has enabled us to move from describing data in terms
of “v’s” to one that I refer to as “r’s”, i.e., reliability,
robust and responsive, relational, and relevant. In other
words, rather than thinking of this data in terms of
quantifying uncertainty, we can now use it to quantify
certainty. I think this is a very important concept,
particularly if we are to trust the data.

Data analysis

Once the data has been obtained and you’ve ensured
continuity, quality, and the architecture, the next
step is to make sure that the data can be readily
analysed. This involves developing specific
application program interfaces to facilitate the ana-
lysis of the data using distributive computing
networks. We are fortunate at the Hospital for Sick
Children to partner with the Center for Computa-
tional Medicine at the Research Institute, which will
enable us to undertake very detailed analyses in
shorter time frames. I therefore believe we are getting
closer to a model that resembles Google; our goal
should be to have online analytics at the bedside
whereby we ask a specific question about a patient or
a patient population, and results are accessible almost
immediately.
A number of centres are working on ways in

which to utilise continuously streaming physiologic
data to develop predictive algorithms. One of the first
papers published around this work in paediatric
cardiac critical care was by Rusin et al from Texas
Children’s Hospital. They demonstrated a predictive
algorithm of imminent deterioration by the real-time
processing of physiologic data in a small number
of patients after Stage I palliation for hypoplastic left
heart syndrome.11 The strength of their work
demonstrates that changes in physiologic signals
occurred earlier than were detected by the clinician at
the bedside before the critical event.

Physiologic phenotype and personalised
physiology

Part of our work to date at The Hospital for Sick
Children has focussed on describing the physiologic
phenotype, and in particular developing iterative
targets or boundaries for physiologic signals.
Currently, the “normal” range of a physiologic signal

is derived from standard nomograms, although it’s
important to appreciate that these have been devel-
oped from healthy children and may not apply at all
to the patients we manage following cardiac surgery.
We have examined the distributions of heart rate and
systolic blood pressure on admission to the CCCU
(Fig 3).12 In our subsequent work analysing over one
billion data points (in press), the centiles and
boundaries for heart rate and blood pressure accord-
ing to diagnosis and time in the ICU have been
developed. A new finding is that despite the wide
range across a population of patients, individual
patients within that population actually maintain a
much tighter range for their heart rate and systolic
blood pressure. We can therefore describe the
boundaries for physiologic signals for a population
of patients, and within that population, the target
ranges for particular patients.
The physiologic phenotype is clearly going to

vary by age and weight, but also by diagnosis and
procedure, the treatments we delivery, by clinician
preference, and by time (i.e. postoperative day 1
versus subsequent days). It is important to under-
stand therefore that the targets and boundaries for
physiologic signals are dynamic and it should be
possible to utilise population-based and individual
data to know what the targets for a physiologic
variable should be for any point in time. Indeed, this
is a demonstration of personalised physiology.

Challenges in cardiac critical care

Two important challenges in cardiac critical care
include:

∙ Being able to define our modifiable risk; in other
words, what is the contribution of our management
decisions to either harm or outcomes in patients
that we care for. This is a potential target for
improvement and could be facilitated by under-
standing the physiologic state of our patients.

∙ While “failure-to-rescue” is an important measure
of systems and how we respond to an event,
more important is perhaps our “failure-to-predict”.
I contend this should be our primary metric of
clinical performance, that is, being able to predict
an evolving clinical state. To do so will only be
augmented from the wise utilisation of big
physiologic data.

To understand modifiable risk and have a low failure-
to-predict, we need to understand the physiologic
phenotype and state of our patients. Our
current work we are undertaking in this regard is to
define a state of inadequate oxygen delivery and to
evaluate the coupling (or uncoupling) between
systems such as cardiorespiratory interactions. The
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capture and utilisation of big physiologic data
enables us to do this. The ultimate goal of collecting
and structuring physiologic data for analysis is that
we can create a physiologic databank that will be
open source for shared learning. Thereby, we will
leverage our expertise across critical care and really
start to learn from our practices and from each other.
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