COMPOSITIO MATHEMATICA

Motohashi’s fourth moment identity for
non-archimedean test functions and applications

Valentin Blomer, Peter Humphries, Rizwanur Khan and Micah B. Milinovich

Compositio Math. 156 (2020), 1004-1038.

doi:10.1112/S0010437X20007101

A LONDON
FOUNDATION V/\\R MATHEMATICAL
COMPOSITIO AR [socieTy
MATHEMATICA 5 st 065

https://doi.org/10.1112/50010437X20007101 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X20007101
https://doi.org/10.1112/S0010437X20007101

<</\ Compositio Math. 156 (2020) 1004-1038

/ doi:10.1112/80010437X 20007101

Motohashi’s fourth moment identity for
non-archimedean test functions and applications
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ABSTRACT

Motohashi established an explicit identity between the fourth moment of the Riemann
zeta function weighted by some test function and a spectral cubic moment of
automorphic L-functions. By an entirely different method, we prove a generalization
of this formula to a fourth moment of Dirichlet L-functions modulo g weighted by
a non-archimedean test function. This establishes a new reciprocity formula. As an
application, we obtain sharp upper bounds for the fourth moment twisted by the square
of a Dirichlet polynomial of length ¢'/4. An auxiliary result of independent interest is a
sharp upper bound for a certain sixth moment for automorphic L-functions, which we
also use to improve the best known subconvexity bounds for automorphic L-functions
in the level aspect.

1. Introduction

1.1 A reciprocity formula

A landmark result in the theory of L-functions, because of both its structural beauty and its
applications, is Motohashi’s identity for the fourth moment of the Riemann zeta function [Mot97,
Theorem 4.2]: if F' is a sufficiently nice test function, then

/ (L2 + i) [*F (1) dt (1.1)
R
is equal to an explicit main term plus a cubic moment of the shape

Z L(1/2,4;)3F(t;) + similar holomorphic and Eisenstein contribution, (1.2)
J

where the sum runs over Maaf} forms 1; with spectral parameter ¢; for the group SLy(Z) and
Fis a certain integral transform of F' given explicitly in terms of hypergeometric functions. This
is an important instance of a formula between two different families of L-functions that may be
regarded as a ‘reciprocity formula’. Choosing the test function F' appropriately, it can be used,
for instance, to prove sharp upper bounds for the fourth moment of the Riemann zeta function
on the critical line in short intervals ¢ € [T, T + T2/3]. Motohashi’s formula can also be inverted
to some extent; Ivié [Ivi01] used this to obtain Weyl-type subconvexity bounds for the L-values

L(1/2,4;).
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MOTOHASHI’S FOURTH MOMENT IDENTITY

Motohashi’s proof starts by opening the four zeta values as Dirichlet series and integrating
over t, which, after a change of variables, gives a Dirichlet series containing a shifted convolution
problem

T(n)T(n+ h). (1.3)

A spectral decomposition then yields the spectral cubic moment.

A very different strategy was suggested by Michel and Venkatesh [MV10, §4.5]: we interpret
(1.1) as a second moment of L-functions associated with an Eisenstein series E and choose F' as
the corresponding local L-factors at infinity. Denoting the completed L-functions by A(s, E), we
have by Hecke’s integral representation and Parseval’s theorem (ignoring convergence)

0 d
/ IA(1/2 + it, B)|? dt ~ / B(iy) 2.
R 0 Yy

Decomposing spectrally (and suppressing the continuous spectrum for notational simplicity),
using Rankin—Selberg theory and Hecke’s integral representation again, this ‘equals’

| SR~ [ a0/20 % By Y ~ 3D A0/2.0,)

This very beautiful idea comes with two technical challenges: first, none of the integrals converge
and some regularization is necessary; and second, while this works very nicely for the special
test function F(t) = |Loo(1/2 +it, E)|?, it is not easy to spell out what happens for general test
functions F. (See, however, recent work by Nelson [Nell9] on this approach.)

In this paper we offer yet another proof of Motohashi’s identity, which has the advantage
of working nicely in greater generality. The set-up we are interested in is as follows. For ¢ € N,
consider

S Pl [ 1L0/2+ 01 Pult)

X (mod gq)

for some function Fy,. This can be seen as the proper adelic analogue of (1.1), twisting ((s) by
the complete family of GL(1) characters n'x(n). By elementary Fourier analysis, every Fg, is a
linear combination of character values. With applications in mind, we consider test functions of
the shape

Fiin(x) = x(a)x(b) (1.4)

for some integers a,b € N. It is straightforward to include a character average in Motohashi’s
proof, which essentially results in a shifted convolution problem (1.3) where h is divisible by gq.
It is much less straightforward to include a general test function (1.4), because then the shifted
convolution problem becomes a sum over 7(n)7(m) subject to the condition an = bm (mod q).
The difficulty of such an extension (with sufficient control on a, b) was already observed in [DFI194,
p. 210]. A heuristic argument based on a different strategy that we sketch in § 1.4 suggests that
we should expect something like

1/2 ]
> x(a)x(b)/ L2+t )P F@ A~ T ST A @M L/2,8) (). (15)
X (mod q) R a y; of level ab
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This indicates that the period integral approach will not be straightforward to extend because
at the very least some non-trivial combinatorics in the Hecke algebra (see [Zacl9b] for how
this could look in a slightly different situation) must happen in order to generate the Hecke
eigenvalues on the right-hand side. As an aside, the left-hand side of (1.5) is symmetric in a,b
as long as F' is even, while this is not directly apparent on the right-hand side (which is only
written in suggestive terms anyway). It follows from (2.3) that \;(b) = +b~/2, which to some
extent restores the symmetry.

We will present a proof of (1.5) in the spirit of recent reciprocity formulae of the first and
third authors [BK19a, BK19b] that deal with this more general set-up without essential structural
difficulties. We proceed to describe our first main result in detail. Let a,b,q € N, s,u,v € C, F be
an even holomorphic function that is Schwartz class on fixed vertical lines, and f an automorphic
form for SLa(Z) that is either cuspidal or the standard Eisenstein series (d/ds)E(z,5)|s=1/2-
We denote its Hecke eigenvalues by A(n), so that A(n) = 7(n) :=>_,_, 1 if f is Eisenstein. We
define

_ _ dz

Tonals.u0)i= 3 x@X0) [ Lls+50Lut 20Lw— 5 x DF )5 (16)

X (H}Oﬁl 9) (0) 211

X primitive
where the integration is over the vertical line 8z = 0. We may assume without loss of generality
that (a,b) = (ab, q) = 1. It is convenient to assume that F is divisible by (1—u)(v—1)? H?il(j—s).
A typical function we have in mind is

50

F(z) =™ (22 = (1 -’ = (0 = )P [[* = (1 - 9)%), (1.7)

j=1

which is positive for Rz = 0, s = u = v = 1/2. To get a nice-looking formula, we also need to
include non-primitive characters, and for simplicity we assume that ¢ is prime. For a suitable
correction polynomial Py(s,u, v, z) defined explicitly in (3.2) below and satisfying

Py(s,u,v,2) <14+ |X(q)], RNs,Ru,Rv>1/2, RNz=0, (1.8)

we define the analogue for the trivial character

dz

5 (1.9)

7-tr1v(8uv / C(s+2)¢(u+z)L(v—=z, f)P, (suvz)F(Z)

Note that our assumptions on F' imply that the integrand is holomorphic (since the poles of ¢
are cancelled) and that we can shift the z-contour in any way we want.
On the spectral side, we define

L(w w)L(l_SJ fx w)
MMaab g gy ) = Z Z @g/[faﬁ (s,u,v,1) 2 o , (1.10)
! AlabpeB*(A) N L(1,Ady)

where B*(A) denotes an orthonormal Hecke basis of Maafl newforms of level A and @2/7[,?7?1‘3(3,

u,v,1) is a (complicated, but) completely explicit expression defined in (3.21) that satisfies

Oabal (5,4, 0,9) Ko re 4P AT (14 Ny (@)) (1 + [tg]) 7 (abg)® (1.11)

1006
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for Rs, Ru, Rv = 1/2 and a < b. Similarly, we define

L(s+ufl+2v w)L(lferu f % 1/])
Mo =5 5 52 otisnn St HE A
q Alab ke2N peB; (A ! L(1,Ad™)

where B;(A) denotes an orthonormal Hecke basis of holomorphic newforms of weight & and level
A and @g%lq(s, u, v, 1) satisfies the analogous bound
923},(](3, U, 0, 1Y) Ls v Fe q1/2A*1/2k*30(abq)5 (1.12)

for Rs, Ru, fv = 1/2 and a =< b. For simplicity, we assume that a,b are square-free, so that the
Eisenstein spectrum is parametrized by 7(ab) cusps. We define (initially in (s + u + 2v) > 3
and R(u —s) > 1)

MES (s u,v)

a,b,q

B Eis C(s+u—21+2v _|_Z~t)<(s+u—21+2v —’L't)L(l stu 4t f) (1 stu —it, f) dt
= / Oatals w0, 1) C(1 1 2it)C(1 — 2zt) o

where @E}iq(s, u,v,t) is defined in (3.26) and satisfies

O (5, U, 0, t) Ksuve,F (abq)q"?(ab)?=1/2(1 + [t])~3° (1.13)

for Rs = Rv =Ru =1/2, t € R, where § < 7/64 is an admissible exponent for the Ramanujan
conjecture for the fixed form f (in particular, # = 0 if f is holomorphic or Eisenstein). The
expressions (s,u,v) for x € {MaaB}, hol} are obviously holomorphic in Rs, Ru, Rv > 1/2.

By contour shifts it is not hard to see that MaEilf q(s, u,v) has meromorphic continuation to this
region; see §3.9. In the intersection of Rs, Ru, Rv > 1/2 with R(s +u+2v) < 3, R(u—s) < 1 the
meromorphic continuation is given explicitly by the same term plus an additional polar term,

defined in (3.27). We define

*
a,b,q

Mapq(s,u,v) = MY (s u,0) + MES (s, u,v) + MES (s,u,v).

We are now ready to state the reciprocity formula to which we have already alluded.

THEOREM 1. Let q,a,b € N, q be prime, (ab,q) = (a,b) = 1, a,b be square-free, a < b. Let
1/2 < Rs, Ru, Rv < 3/4 and Rs < Ru. Suppose that F' is ho]omorph1c Schwartz class on vertical
lines, and divisible by (1 —u)(v — 1)? HJ 1(j —s). Then

7:1757711(37 u, U) + thriv(sv u, U) = Pa,b,q(sv u, U) + Ma,b,q(& u, 1)), (1’14)
where the ‘main term’ Py 4(s,u,v) is defined in (3.28) and satisfies
,Pazbaq(s’ u? v) <<57U7U=87F q(ab)_l/z—"_a(abq)E (1'15)

for Rs = Ru = Rv = 1/2, a < b, where 0 is an admissible exponent for the Ramanujan conjecture
for f.

We emphasize that even though M, 4(s,u,v) depends on g, it only involves the spectrum of
level ab. This is the ultimate reason for the specific design of the term ﬁriv(s, u,v). In this sense,
our formula is a clean reciprocity formula, where the pair (level, arithmetic of weight function)
on the Dirichlet side is (g, ab) and on the spectral side is (ab, q).
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Theorem 1 contains a number of simplifying assumptions, most of which can be removed
without any structural difficulties at the cost of more technical work. If ¢ is not prime, we need
slightly more complicated correction terms for non-primitive characters. The assumption that F
has zeros at 1 —u,v — 1,5 — s, 1 < j < 50, can be relaxed considerably, and probably entirely
removed, but it saves us from computing several polar terms and buys us convergence without any
trickery. The regularity assumptions on F' can also be relaxed. The assumption that a is square-
free is only to keep the formulae a little simpler. The assumption that b is square-free is slightly
more serious and enables us to use the Kuznetsov formula in a version that involves only Fourier
expansions at infinity. For arbitrary b, one can use the analysis of Kiral and Young [KY19,
Lemma 2.5 and Theorem 3.4] instead. As mentioned before, the assumption (ab, q) = (a,b) =1
is without loss of generality, and if a and b are not of the same order of magnitude, our bounds
may deteriorate by (max (b, a)/min(b,a))?(") (this is unavoidable; see the sketch in §1.4).

The spectral side (1.2) of Motohashi’s original formula goes deeper in the spectrum (i.e. the
support of F' is larger) the more complicated the test function F is (e.g. in terms of oscillation).
Our formula features a similar phenomenon for the non-archimedean test function, except
that the spectral support now increases, in some sense orthogonally, in terms of the level instead
of the spectral parameter.

1.2 A sixth moment

In practice, we want to estimate the right-hand side of (1.5) for large ¢ and somewhat large a, b,
and a possible problem could be the occurrence of \;(¢) in (1.11) for MaaB forms v; for which
the Ramanujan conjecture is not known. The factor A;(b) is not a problem, since b divides the
level; see (2.3). A trivial bound on );(g), however, may invoke an undesirable factor of ¢’ due to
our limited knowledge of the Ramanujan conjecture. In order to avoid this, one may try to use
the extra average over the forms of level ab and apply the Cauchy-Schwarz inequality.! This is
successful if there is an additional average over a,b, and to this end we will prove the following
sixth moment bound, which is of independent interest.

THEOREM 2. Let Q,T > 1, and for q € N, let B*(q) denote an orthonormal basis of Hecke—Maaf3
newforms 1) of level q having spectral parameter t,,. Then

1/2w| 8 12
> z <= (QI)T°Q.
Dviry L(1,Ad%y)

|tw|<T

The emphasis here is on the @)-aspect, which is sharp up to the presence of Q)¢; the T-aspect
only needs to be polynomial. For comparison, it is classical, although technically difficult, to
understand the fourth moment for an individual large level q. Our result is easier because we
have an additional average over ¢ (which, however, is spectrally not easy to exploit), but also
harder because we study a higher moment. Any spectral method will have to complete the
discrete spectral sum to an entire spectral expression including Eisenstein series, and already
in the fourth moment one of the biggest obstacles is the fact that the additional continuous
contribution is quite large in the level aspect. It is not surprising that this becomes even worse
for the sixth moment, and here the artificially added Eisenstein term exceeds the targeted bound
by a substantial power of Q).

! Depending on the application, it may also be convenient to use Holder’s inequality with suitable exponents; see,
for example, [BM15].
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An overview of the method of proof and how the various technical and conceptual issues are
addressed will be given in §1.4. We present an immediate application of Theorem 2.

COROLLARY 3. Let g be prime. Then
S L2 ePet gt
YeB*(q)

for every € > 0. In particular, for ¢ € B*(q), we have
L(1/2’ Q]Z)) <<t¢,5 q1/5+9/15+€ < q0.2073.

This improves the §-dependence of the fifth moment bound in [BK19b, Theorem 3] and
provides the numerical subconvexity record for L(1/2,%) in the level aspect (the previous
exponent being 0.217 from [BK19b, Theorem 4]; cf. [KY17]).

1.3 Fourth moments twisted by Dirichlet polynomials

For many applications, in particular with respect to the amplification, mollification, or resonance
method, one wishes to augment moment results on L-functions by inserting well-chosen Dirichlet
polynomials — ideally as long as possible — that in effect often act as additional fractional
moments. This is classical for the Riemann zeta function, where Watt [Wat95], building on
work of Deshouillers and Iwaniec [DI82], proved

T
/O a2+ S anm

m<M

2
dt < ||a)? (MT)**e

for M < T'/* and an arbitrary sequence a = (a,,)1<m<as- This can be turned into an asymptotic
formula; see [Mot96, HY10, BBLR16]. Versions for Dirichlet L-functions with conductors
sufficiently small with respect to T" can be found in [HWWO04], along with applications to primes
in arithmetic progressions and short intervals. We also mention [F192] as an interesting variation
if the sequence is factorizable in the ring of multiplicative functions.

As an application of Theorems 1 and 2, we will prove the following analogous sharp upper
bound for a fourth moment of Dirichlet L-functions twisted by the square of a Dirichlet
polynomial of length up to ¢'/4.

THEOREM 4. Let q be a prime, 1 < M < ¢'/*, and {a(m)}1<m<ar a sequence of complex numbers
supported on square-free numbers. Then

> |2 alm)x(m)

X (mod q) ' m<M

2
L(1/2, )" << [lall3(Mq)'*=.

To get a feeling for the strength of the result, we mention that it implies trivially the Burgess
bound L(1/2,y) < ¢3/16+¢ for every non-trivial character modulo ¢. The reader may wonder to
what extent this upper bound can be turned into an asymptotic formula, but interestingly this
is a much harder problem than in the case of the Riemann zeta function. The reason is that a
d-mass at the point 1/2 is not a proper test function. On a technical level, the t-integral with a
holomorphic test function and the freedom to shift its contour is crucial to establish convergence
throughout the argument, even in the special case M = 1. Therefore, a corresponding asymptotic
formula can be achieved if an additional t-average (essentially of constant length) is included,
but for the central point individually, one has to use other methods (see, for example, [Houl6,
Zac19a]) that yield much weaker results. See [Wat08] for a slightly more general result, which,
however, is not independent of bounds towards the Ramanujan conjecture.

1009

https://doi.org/10.1112/50010437X20007101 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X20007101

V. BLOMER ET AL.

1.4 Heuristics

We conclude this introduction with a heuristic argument supporting relation (1.5) and the bound
in Theorem 2 as well as some additional comments. This section is not intended to provide proofs,
but may serve as a roadmap.

We start with (1.5). For the sake of argument, we will use approximate functional equations,
although our proof works with Dirichlet series in the region of absolute convergence and continues
meromorphically only at the very end (the great advantage of this is that we do not have to
deal with a root number term, and so we will ignore this term also in the present sketch). For
simplicity, we will also ignore the t-average whose purpose is to achieve convergence, as well as
all ‘main terms’ that arise in the course of the computation. We have

> x(@x®)IL1/2,x)[*

X (mod q)
~ Y o) Y MmO os
X (mod q) n,m,ri,ro<q'/? 12 n,m,r1,raxq/?

anm=briry (mod q)

Rather than solving a shifted convolution problem, we take an asymmetric approach and apply
Poisson summation only in one variable, say n. This gives

1 abnmryr
Loy 6(12 _
e "7m77’177'2xq1/2 e

Suppose that a < b. Then bnrire < amg, so we can apply the additive reciprocity formula

()= 20

1 Z <qu“1 T >
- el —= ).
q e am

n,m,r1,r2xq

to obtain

Applying Poisson summation in n,ry, 9, this gives roughly

% Z Z S(qrireb,n,am).

qul/Q n,ri,r2xa

If we assume for simplicity that b is prime and coprime to agmri7e (this is where the assumption
‘b square-free’ in Theorem 1 is used), then S(grire,bn,abm) = —S(qrirsb,n,am) by twisted
multiplicativity. For the Kloosterman sum on the left-hand side, we are in the ‘Linnik range’
V/qrirabn < abm, and an application of the Kuznetsov formula yields the right-hand side of (1.5).

A back-of-the-envelope computation for Theorem 2 looks as follows. By an approximate
functional equation, we have roughly

L2~ Y 73(n)73(m) Ay (n) Ay (1)

(nm)1/2

n,m<KQ3/?

for 1 € B*(q), ¢ < Q, where for simplicity we regard T as fixed; here 73(n) := > ,._, 1. Summing
Y € B*(q) and ¢ < Q by the Kuznetsov formula, the diagonal term is of size Q? and the off-
diagonal term looks roughly like

0y Y W ) S5(n,m, gc) (1.17)

C
4=Q n,m<kQ3/? cQ1/2? 9
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The key idea is to switch the roles of ¢ and ¢ and to apply the Kuznetsov formula backwards,
but this time viewed as a spectral summation formula of level c¢. This switching principle is well
known from sieve theory; here we apply it in an automorphic context, to some extent similar in
spirit to [DI82]. We obtain roughly

Q1/2 Z Z Z 73(n)73(m) Ay (1) Ay (M) '

1/2
e Q1/2 YEB*(c) nm<Q3/2 (nm)

Applying Voronoi summation on the long n, m-sum, we may hope to get complete square root
cancellation, obtaining the final bound Q3/2 for the off-diagonal contribution.

Apart from neglecting oldforms, whose presence is technically challenging, this heuristic
argument has an important deficiency: it ignores the continuous spectrum that needs to be
added artificially before applying the Kuznetsov formula, and this contribution is of size Q%% and
substantially exceeds our target bound. In particular, it is impossible to estimate (1.17) by Q32
as indicated, as we know in advance that it is of size Q°/2. This dilemma of a gigantic continuous
spectrum contribution is well known to experts and was first encountered in [DFI02], where the
contribution was carefully computed and matched with another main term that occurred at a
different stage of the argument. In [BHMO07], the problem was solved by introducing additional
zeros in the Mellin transform of the weight function in the approximate functional equation.
Unfortunately, this loses positivity (and therefore many convenient simplifications), and it is
also a very technical task to find the initial zeros at the end of the argument where they are
needed to make a certain main term disappear. In the present situation, we argue differently and
find a rather soft way to match two Eisenstein terms without actually computing them.

2. Preliminaries

2.1 Hecke theory
We generally denote Hecke eigenvalues, with or without subscript, by A(n). For newforms of level
N, we will often use the multiplicativity relation

Anm) = > pd)A(m/d)A(n/d). (2.1)
L

We have the general upper bound
A(n) < nfte. (2.2)

For a newform of level N = N Nj and trivial central character with Ny square-free, (N1, Na) = 1,

and some n | N1, we have
@) =n1? (2.3)

via [Ogg69, Theorem 2].

2.2 Functional equation for the Hurwitz zeta function
For a € R, s > 1, let

C(s,a) := Z (n4+a)”*

n+a>0
denote the Hurwitz zeta function. It has meromorphic continuation to all s € C with a simple
pole at s = 1 of residue 1 and satisfies the functional equation

((s,0) =D GF(—s)¢EI(1 - ), (2.4)
+
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where

G*(s) = (2m)°T(s) exp(ins/2)

and ¢(%)(s) is (the meromorphic continuation of) 3" e(an)n™*. For a € Q, this is a reformulation
of Poisson summation in residue classes.

2.3 Functional equation for twisted automorphic L-functions
For a € R, s > 1, let

L(s,a, f): Zz\f , (2.5)

where, as before, f is a Hecke eigenform of the group SLg(Z), either Maafl with spectral parameter
t and parity € € {£1}, or holomorphic of weight k, or the standard Eisenstein series with A¢(n) =
7(n). If @ = a/c € Q with (a,c) = 1, this L-function has meromorphic continuation to all s € C
with a double pole at s = 1 with Laurent expansion

1 1 2y —2logc
<( + + O(l)) (2.6)

c\(s—1)2 s—1

if f is Eisenstein; note that this is independent of a. The twisted L-function satisfies the functional
equation (see, for example, [HMO06, §2.4])

(s,a/e, f ZGJF 7 L(s, xa/c, f), (2.7)

where

T'(s+ (k—1)/2)
T(1—s+(k—1)/2)

G]f(s) =ik (2m)t=2 G;(s)=0

if f is holomorphic of weight k& and

(a2 LGl +i)T(G(s —it)) T(3(1+s+it)T(3(1+ s —it))

+(g) =
Grs) F(E(1—s+it)T(3(1—s—it)) i FA2-s+it)I(3(2—s—it))

f

(2.8)

if f is Maafl with spectral parameter ¢ and parity € € {£1}. This also holds for f equal to the
standard Eisenstein series with { =0 and € = 1.

2.4 Fourier coeflicients

We quote from [BK19b, § 3] and refer to this source for more details and references. The cuspidal
spectrum is parametrized by pairs (¢, M) of I'g(N)-normalized newforms 1 of level Ny | N and
integers M | N/Np. The corresponding Fourier coefficients are

1 1/2 d
o) = S /IIN[( ) 3 SOLge) (9

for n € N, where v(N) =[], 5(1+1/p) and the multiplicative function &y is defined in [BK19b,
(3.10)] and satisfies in particular

2 -1/2 —
o= (1= ) ek = 0 Gan=1 @)

for pt Ny and in general
Ep(M,d) <. M*(M/d)°. (2.11)
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For —n € N we have py prn (1) = €ppy m,n(—n) if 1 is MaaB of parity ey € {£1} and py a,n(n)
= 0 if ¢ is holomorphic.

If N is square-free, the Fourier coefficients of Eisenstein series of level N are easy to
describe. They are parametrized by divisors v | N and a continuous parameter s = 1/2 + it.
The corresponding Fourier coefficients are given by (see, for example, [CI00, (3.25)])

e ) ) M0 S

YIN/v

where 7(n,t) = 32, 4., (d1/d2)" for n € N (and 0 otherwise) and |C(v, N,t)| = 1. For general
N, we follow [BK19b, §3] and parametrize unitary Eisenstein series of I'g(N) by a continuous
parameter s = 1/2 + it together with pairs (x, M), where y is a primitive Dirichlet character of
conductor ¢, and M € N satisfies ci | M | N. Note that the role of M is different than in the
cuspidal case. We write

1/2
- p p—1
won=( 11 %5 T 555)
pIN p|(M,N/M)
pH(M,N/M)
M = ¢, MM, where (Ma,cy) =1, M |cy,

so that ¢, | My and (M, Ms) = 1. The Fourier coefficients of the Eisenstein series attached to
the data (N, M,t,x) are

C(x, M, t)|n|* M\
(Nv(N)) 205 (ML) (1 + 2it, x2) \ M2

«<Ta(P e ¥ ko, (2.13)

pX7M7N(n7 t) =

6| Mo cMiéf=n
(e,N/M)=1
where |C(x, M,t)| =
2.5 The Kuznetsov formula
For = > 0, we define the integral kernels
+ ™ , N
T (x,t) = Sinh (t) (Joit(4mx) — J_9i(4mx)),
_ me
J (z,t) := m([gn(élwa:) — I_9y(4mx)) = 4 cosh(nt) Koi(47x),
TNz, k) := 2mif Sy (4mx) = T (x, (k — 1)/(2i)), k€ 2N.
If H € C3((0,00)) satisfies 27 HU) () < min(z, z~%/2) for 0 < j < 3, we define
o d
ZOH = / Tz, .)H(m)i
0 €T
for & € {4+, —, hol}, and for n,m, N € N, we have
Z S(:l:n,m,c)H<\/nm)
c c
Nlc
= AN (4 m; PEH) + ARS (20, m; LEH) + AR (20, m; LPUH), (2.14)

1013

https://doi.org/10.1112/50010437X20007101 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X20007101

V. BLOMER ET AL.

where

Al]\\]/laaﬁ n m; h Z Z P, MN mh(tw)a

NOM|N ’l/)GB* No)

_ dt
AR (n,m; h) ZJ\;/ po,N (1, 1) py, N (M, t)h(t )277 (N square-free),
” (2.15)
AL (n,m; h) Z /pX,MN n,t)py. N (m, t)h(t)—— (in general),
cZ|M|N 2

A mih)i= Y Y py N (n)py N (m)h(ky).
NOM|N wGB;:Ol(No)

(Recall that ¢ € B*(Ny) and ¢ € B ;(No) are I'g(IV)-normalized.) Conversely, if h is holomorphic
in an e-neighbourhood of |Jt| < 1/2 and satisfies h(t) < (1 + [t|)727% in this region for some
d > 0, then for n,m € N, we have [BK19b, (3.14)]

A%aaﬁ(n,m; h) + A]]“?\:/}S(n’m, h) = 6n,m/ h(t)wan;lw + Z S(n,cﬁl,C) %h(m)7

—oo c
Nle
(2.16)
where " % Jy(dm)
+ k3 2it\ATL
Hh( / T (x, t)h(t )ttanh(wt)2ﬂ2 = /Oo cosh(mt) h(t)t dt. (2.17)

2.6 Integral transforms
We generalize (2.17) slightly and define for s € C the transform J#;h by Zsh(x) := x° ¢ h(x).

LEMMA 1. Let s € C with §Rs < —10, and suppose that h is holomorphic in |3t| < (—Rs+15)/2,
satisfying h(t) < (1 + |t|)7! and having zeros at +i(2n — 1)/2, n € N, in this region. Then
H := J#;h satisfies the assumptions of (2.14), that is, 7 HY) (z) <4 min(z,z~3/?) for 0 < j < 3.

Proof. We record the formula [GR07, (8.411.10)]

Joj(4mx) (27 )it 1 0
CZsh(ﬂt) ~ V/AT(1/2 + 2it) cosh(t) /_1(1 —y*)*71/2 cos(4may) dy (2.18)

for R(2it) > —1/2, > 0. In particular,

& Jait(Am)

R(2it)
x ,
i Pa—— 1 J —-1/2 < R(24 A, 21
dxd cosh(rt) € <1_|_ m) (1 + [t]/z)’, /2 +¢e < R(2it) < (2.19)

for j,A € Ng:=NU{0}, € > 0. Let s € C with s < —10 be fixed. For x > 1 and 0 < j < 3, we
obtain

L . [oo 1\ .
2 HU) (z) < o™t / <1 + !) ()| dt < 2™ < 73/2,

and for x < 1, we shift the contour to R(2it) = —Rs+ 10 (not passing any pole by our assumption
on h), getting

2T HO (2) < x%/oo o\ 14+ 1 ’
oo \ 1+ [t] x
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LEMMA 2. Let s € C with Rs < 1, and suppose that h is even and holomorphic in |3t| <
(—Rs + 15)/2, satisfying h(t) < e~ !l and having zeros at +i(2n — 1)/2, n € N, in this region.
(a) The transform £+ #;h, defined for Rs < —10 by Lemma 1, has analytic continuation to
Rs < 1, and we have the Sears—Titchmarsh inversion formula £+ %h = h.
(b) We have the uniform bounds

i 1 —14+3Rs
‘h(r—2(1—%8))‘(1+|7‘|)H<1+‘2%3—7':|:%t‘> dr

+

o0

LT AHR(t) <ss /

—0o0

fort € RU[—i0,i6] and Rs < 1, and

’h(T— ;max(Q—k—%s,0)>‘(1+ ’T‘)H(‘;%Sﬂ:’r

+

oo

—1+Rs
=+ k) dr

for k € 2N, where the implied constants depend only on Rs (but not on t, k, h, Ss).

LK) < /

—00

Proof. For s < —10, we have, by definition,

Hsh(z) = a:sz/ 7J2”(4m:)h(7)7 dr,
T JR(ir)=(10-3s)/2 COSh(7T)

and we have an absolutely convergent double integral
& 1 ir (4 d
LA = — / (ot (A7) — g (A7) / Joirldmz) g4
0

sinh(mﬁ) R(iT)=(10—Rs)/2 COSh(?TT) x
To see the absolute convergence, we use (2.19) with j = 0 to bound Jig;(z) <; min(z?, 27%9)
for t € R U [—i6,i6], and we combine (2.19) with the bound J,(z) < z~/2 for 2 >> |v|? (which

follows from the asymptotic formula [GRO7, (8.451.1)]) to bound
J%T(x) < min(li—ﬂ?s+107x—1/2(1 + |T|)—§r‘:s+11).
We can compute the z-integral explicitly using [GR07, (6.574.2)], getting

LA = / I'(1-ys) cos(i7lr7' +ms/2)h(T)T H r(s —:iT‘i it).

R(i7)=(10—Rs) /2 (2m)smi cosh(mT) - (1 - % +ir £ it)

dr. (2.20)

Here we can put any s with s < 1 in the integrand (and also shift the contour to, say, R(i7) = 5),
in particular s = 0, so that

h(r)r dr

2

L AH(E) = /

R(ir)=5 12 — T
The integrand is odd, so the integral equals half the sum of the two residues at 7 = £t and
part (a) of the lemma follows. To prove part (b) for £ #:h(t), we shift the 7-contour to
R(iT) = (1 — R(s))/2 and estimate trivially in (2.20) using Stirling’s formula. For Z"°\ 2 h(t),
we have the similar expression

i

LRk = / T(1 - s)(27) T (552 4 5 4 ir) h(r)T
° R(iT)=a F(% - % - ZT)P(% - % + T)P(% B % + iT) COSh(ﬂ-T)

this as
I'(1—s)cos(int + 2ms)h(T)T 4 (%5 +i7)
/ Soq H k+1 . dr.
R(ir)= (2m)$mi cosh(mT) (-5 +in)
The desired bound follows now from I'(z + w)/I'(z) <4 (1 4 |2])¥ for w € R and |z| sufficiently
large; see, for example, [GR07, (8.328.2)]. O
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3. Proof of Theorem 1

3.1 The set-up

We recall the definitions (1.6) and (1.9) for a prime ¢ and integers a,b satisfying (ab,q) =
(a,b) =1, a < b, and an even holomorphic test function F' that is rapidly decaying on vertical
lines and is divisible by (1 — u)(v — 1)? H?il( j — s). Initially we assume

2<Rs, Rv<3, 10<Ru<11. (3.1)

In this section all implicit constants may depend on s,u,v,e and F. Additional dependencies
will be mentioned. We proceed to define the correction polynomial Py (s, u, v, z), and to this end
we define three auxiliary quantities

T (s,u,0) = [ ¢D(s+2)¢D(u+2)L9D(v— 2, f)F(z)ﬁ
? R

omi’

TP (s,u,0) = ¢! 7" /R (A(Q) - q,ul_z)C(s +2)C D (u+ 2)L(v — 2, f)F(z)%,
TV (s,u,0) = / (2574720 — g (s 4 2)C(u+ 2) (v — 2, f)F(z)%.
R YUX)

Here ¢(@(s) := ((s) [I,,(1=p~*) and L9 (s, f) = L(s, f) [T,(1=As(P)p™" +p~2%) are the usual
L-functions with the Euler factors dividing ¢ omitted. We define

3
/EtriV(S? u, ’U) = Z E(j)(s, U, U),

Jj=1

so that (1.9) holds with

1 1 A(q) 1
Pq(s,u,v,z) = (1 - qs+z> <1 o qu+z> <1 o qv—* + q2v72z

1 1
_'_qlfsfv <)\(Q) . qv_z> <1 . qu+z) + q2757u72v o q17u72v+z. (3_2)

It is easy to see that this satisfies (1.8). In the range (3.1), we can open the Dirichlet series and
obtain

() dz
1) — E ’ ) e
7;,b,q(sv u, U) + 7:] (57 u, ’U) =q /(0) F(Z) ns+zmu+z7«vfz 27TZ"

(nmr,q) =1
anm=br (mod q)

o 1 A(r) dz
(2) — 4l—s—v _ [ S
T =0 [ PO(0- =) ¥ e

n7r? (m7q):1

_ B Algr) dz
“0f, O > | lan) Pt =(gr) == 2mi

n7T7(m7q):

A(r) dz

nSTEMUtTZpv=2 i’

T u0) == [ P -t 3

(0) n,r,m

We conclude that
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Tabia(8,1,0) = Topg(s,u,0) + T (s,0,0) + T (s, u,v)

B A(r) dz
=4 /(0) F(Z) Z nstzmutzpv—2 %

(m,q)=1
n=ambr (mod q)

Eventually the term 771(3)(5, u,v) will remove the last coprimality condition (m,q) = 1, but this

has to wait until the end of argument. Until then, we transform ﬁ,byq(s, u,v) and 7;(3)(3, u,v) in
a parallel fashion.

3.2 Poisson summation

We write the n-sum in terms of the Hurwitz zeta function with o = ambr/q and shift the z-
contour to the left to Rz = —4. Our assumption on F' implies that the potential pole at z=1—s
is cancelled. The m, r-sums are still absolutely convergent, and we apply the functional equation
(2.4), getting

Toals.u0) =3 [  FEEHI s = Y Arje(Fabrm/a) dz 3 5)
)

nl—s—zmu—l—zrv—z 271

n,r,(m,q)=1

F s+z I)G:t( 5 — Z) Z )‘(T) %

nlfsfzmu+zrvfz 271

A(r) dz

F *1—s— . A4

)G 5 Z)( )Zl nl=s—zmutzrv—z Orq (3.4)
n?q: 7T7m

/( 4) n,r,m

3.3 Reciprocity
For a € R\ {0}, we recall the absolutely convergent Mellin integral

dw
— sgn(a) —w
o) =[Gl gE,

C=(-2—ioo, -2 —dU[-2—i,HlU[H, -2 +dU[-2+i,—2 +ic0).

1:e< brn)/Gi <brn> d7w (3.5)
amgq amgq 271

and apply the additive reciprocity formula (1.16). This gives the absolutely convergent expression

Taba(s,u,v) = ;/(_4)/CF(Z)<2> _wGi(w)Gi(l .

A(r)e(£gbrn/(am))  dw dz

x>
nl s—ztwputz—wpv—z+w 27” 27-”
n,(m,q)=1,r

where C is the contour

n (3.3), we insert

We temporarily straighten the C-contour to tw = —3/5, picking up the polar term

N

n,(m,q)=1,r
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In the remaining double integral, we change variables w — w+ z (so that Rz = —4, Rw = 17/5),
exchange the two integrals, and in the inner z-integral we bend the contour to the right to the
contour

Clw)y=C—w= (-2 —w—ioco,—2 —w—i]U[-} —w—i, 5 — ]
Uy —w,—2 —w+dU[-2 —w+1i,—2 —w+ioco)

consisting of a union of straight lines. This picks up a polar term

_ Z/( / )F(—’U))Gi(l — s+ w)ql—s—i-w Z )\(r)e(:tqbrn/(am)) diw
I 17/5

nl—stwmu—wpv+w 94 ’

’,’1’7(’,7—"7(]):]",rl

which cancels the previous one. This shows that

~ _ A(r)e(E£gbrn/(am)) (b ™" dw
Tapq(s,u,v) = / @f S(w gl st - —, (3.6)
ol ) Zi: (17/5) . (w) N (mzq):l . pl=stwmu-wpvtw | g 2mi
where
b\ * dz
+ + +
&%, () = /C(w) F(2) (a) GHw+ )1~ 5~ )
_ (27r)s—w—le:|:i7r(w+l—s)/2/ F(2) 14 _Zr(w +2)0(1—s— Z)ﬁ_
C(w) a 21
Here we can straighten the contour and shift it to the far left to Rz = — A, say. This gives a sum
of polar terms of the shape
o (_1)71 s—w—1_ tir(w+1l-s)/2 ¢ ., e v _
pn(w) == ~——(2m) e F(—w —n) 'l-s+w+mn), ncNy,
n! a
and a remaining integral that is holomorphic in the half plane w > —A and bounded by
<pw.a (0/a)A(1 + |w])w=A=1/2 Since F(1 —s) =--- = F(50 — s) = 0, we conclude that @ib78
is
holomorphic in |Rw| < 48 and satisfies CIJai’bvs(w) < (14 |w])~1% (3.7)

as long as a < b and 0 < Rs < 3. We also observe that

> @y, (s)=0. (3.8)

+

1 :e<ibm) /Gi(w)<bm> dw
am ) Jo am 2

into (3.4) (similarly to (3.5), but with different variables), we obtain in the same way

T ue) =3 [, e Y Alr)e(tbrn (am)) <b>wd“’,.

! T J(17/5) b nl=stwpu-wpvtw \ g 2mi

Inserting

m?(n’q):17r

(The expression is still independent of a, b, even though the right-hand side seems to depend on
a,b.)
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3.4 Poisson summation again

We return to (3.6), split the n-sum into residue classes modulo am, express the n-sum in terms
of the Hurwitz zeta function, shift the w-contour to Rw = 0, and apply the functional equation
(2.4), getting

'T (s,u,v) Z Z / abs G (s —w)g st

t oe{+}

s e(ijﬁf”)ﬁﬁ?igﬁ”im (2) et a

(m,q)=1,r,n v (mod am)

Note that the possible pole at w = s is cancelled by (3.8). Similarly,

(s, 0) Z 3 / £ ()G (s w)r
+ oe{£}
b\ Mr)elony/(ama)) (BN, dw
* Z Z €< am> NS~ W U—w pv+w a (amQ) Gy (3.10)
7,mM,n v (mod gam)
(V7Q):1

3.5 Voronoi summation

Our next aim is to apply the functional equation for the r-sum. This requires some preparation
because bv is not necessarily coprime to am. Therefore we introduce various new variables.
We write (m,b) = 81 and b = 182, m = Sym/, (m/, B2) = 1. Next, we write (v,am’) = my,
(m1,a) = a1, and a = ajag, my = aymf, (m},az) = 1, and further m’ = mimq, v = aym)/
(', agmz) = 1. Dropping the primes for notational simplicity, we recast the second line in (3.9)
as

Yy ¥ 3 <iQ527“V> A(r)e(onv/(azfimz))  a*~!
s—w u—s+1,0+w Hw
a102=a 1 fa=b Tn (m1,0262q)= 1u(mod azfima) azmy ) n=(Bimims) r b
(ma,qB2)= (v,aama)=1
and the second line in (3.10) as
Z Z Z Z Z e(:i:ﬁg?‘l/) A(r)e(onv/(azfimaq)) a®*
sS—w u—s+1pv+w pw
oromea By b T (misaBeq)=1 v (qaBimy)  \ O2M2 /T (Bimima) r b
(m2,B2)=1 (v,aamaq)=1

Note that in both cases the mi-sum is C(a262Q)(1 +u — s). Both terms are now in shape to apply
Voronoi summation. We express the r-sum in terms of the twisted L-function (2.5), shift the
w-contour to Rw = —4 (picking up a possible residue at w = 1 — v), and apply the functional
equation (2.7). In this way we see that 7, 4(s, u, v) equals

Z Z / a, b s _0(8 - w)ql—s—i-w Z Z C(a2ﬂ2q)(1 +u— S)

+ ore{£} a1az2=a B B2=b

><G (1—v—w Z Z Z €<i7(m2’”’> A(r)e(onv/(azfims))

— —s+1p1—v—w
asmg ) nFW(Brmg)t sty
™1 (ma2,qB2)=1v (mod asfimsa) ( )

(v,agmao)=1

s—1
a 12020 W | (1)
(BiBa)” 2mi A1
. (6152)10 (042m2) 271 + ,Pa,b,q(sv u, U)> (3 )

1019

https://doi.org/10.1112/50010437X20007101 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X20007101

V. BLOMER ET AL.

where the polar term 73(5 b) q(s u,v) vanishes unless f is Eisenstein, in which case it equals

Piylb)’q(s,u,v) Res Z Z o bs (s —w)gl TV

t oe{+}

Z Z C(azﬂﬂl)(l +u— S)
a10=a /81,82212
as_lﬁ Ta2m2(n//8 ) *
X Z Z (ﬂlmQ;U—S—‘,—lns_wzwL <'U + w, ——, f‘)7 (312)

Q2Mm2
B1|n (m2,qf2)=1

where r.(n) denotes the Ramanujan sum. (Recall that by (2.6) the residue is independent of the
numerator  in the twist of the L-function.) Similarly,

3) (s5,u,v) Z Z / abs )G (s 7w)q1—w—u—2v

+ ore{£}

X Z Z C(O‘Qﬁ?q(l—i—u—s)G;T(l—v—w)

ajoz=a B Br=b

+76ouvr
MDD
N (ma,B2)=1v (mod gazBim2) a2ma
(v,a2maq)=1
A(r)e(onv/(aafimaq)) a®! 1—2v—20 AW | (2)
ns—w(ﬁlmQ)u—s—l-lrl—v—w pw (Oégmg) 27T +P (S,U,’U), (313)

where

73(22(1(5 u,v) Res Z Z (I)abs T (s —w)gtTYTuT

+ oe{+}

>N (P - s)

araz=a f) fa=b

a*1Byr n
DI N 1)
Brln (ma.a)=1 (ﬁlmQ)u stlps—whw mo
We will compute the two polar terms in a moment, but we observe already at this point that

now the time has come to combine the two main terms. Indeed, the main term in (3.13) simply

counteracts the condition (mz,q) = 1 of the main term in (3.11) and supplies the missing terms
q | m. Combining the two, we see that

2
Taba(s,u.0) + T (s,0,0) = T 4(s,u,0) + Y PY) (s,u,0),
j=1
where
b8 U ) Z Z / o b S( (s — w)G;T(l — v —w)gt YT

t ore{£}

a7 T«
X Z Z Ca2ﬁ2q 1+U_S) ﬂlu s+21+wﬁw
2

aroe=a B fr=b

<Y 3 3 e<iTQ52VT> A(r)e(onv/(azfims)) dw (3.14)

— —s+2v+2w .1 —p—w ;
QoMo nS—wmi—s r 271
1 (ma,B2)=1v (mod azBimz2) 2

(v,azma)=1
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3.6 Computation of polar terms
In this subsection we compute 77( q(s, u,v) for j = 1,2. We consider first

Z Z C(%ﬁzfﬂ(l +u—s Z Z

as_lﬂl""a m (n) *
) i eww L\ vtw, —— f
araz=a B fo=b n (mg,qB2)=1 (BlmQ)u H (Bln)s o 212

corresponding to the last four sums in (3.12) for w in a neighbourhood of 1 — v. Substituting

Tagms () = Z dyp(da),
dido=asm
diln
we obtain »
§ Y X e
ara2=a 31 Ba=b 51 /82
d 1 *
X Z Z d/;LE'LUQ—)I mu—s+1 L<U + w, PR 7f)
(ma,qB2)=1dida=coms 1 2 2ma2

Z Z ((0625211) 14— 5) -

a1az=a B1B2=b BBy
d u—s—+1
% Z p(dz) Qg

*
L —_— .
dsfwfl (dldQ)u—s—i-l <’U +w, dids ’ f>
az|dids 1

(d1d2/a2,qB2)=1

We write (d1, ag) = Ay, A1As = ag, As | da, eventually getting

Pé}qu(s,u,v) Res Z Z (I)abs (s

—w)g' (s — w)
+t oe{+}
(A1A2629) _ A5) AV
PR m;tu(* e
a1 A1As=a B1P2=b 142
p(d2) L(v + w, * /Ay Agdyda, f)
X Z du wdu s+1 (3'15)
(d1d2,qA262)=1
(2.6), this is a linear combination of
Z Z (I)abq (1-v)G % (s+v—-1)g"*¢(s+v—1)
a1 A1 As=a 31 P2=b
C(A1A252¢J)(1 — s+ U)C(qAQBQ)(u +v)
C(aA262) (2 4 4 — s)ai_sAéﬂ)_sAlﬂi‘,@%_v
and derivatives thereof. The same computation shows that
Paig(s,u,v) = B2, X 80,06 6= w)d e w)
oE{:t}
C (A142629) 1 — s+ U) (AQ(]Q)AllU
x Z s T s—w—1 Z Z U QW 1-—s
q192=q il 011A1A2 a 31 82=b /B 6 (O[lAQ)
du wdu s+1
(d1,A2B2q2)= 1 2
(dz,Azﬁz)Z
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which is a linear combination of

Z Z Z (I)abq1—UG_U(S+U—1)C(S+U—1)

q192=q o1 A1 Aa=a 31 B2=b
q%—s—u—% C(A1A2ﬁ2q)(1 s+ U)C(Azﬁzlp)(u + v — 1)
gt (2B (24 u— s)ay CATTRAYBYB, Y

and derivatives thereof.

3.7 Application of the Kuznetsov formula
We return to (3.14) and recognize the v-sum as a Kloosterman sum. More precisely, the v-sum
vanishes unless 1 | n, so that the second and third lines of (3.14) equal

s—1 _s—2v—2w o
SOy (lesko (I4u—s %2~ D A(r)S(£7gB2r, on, azma) (3.17)

u QW S— Wy U—5+204+2w .1 —y—w
n m T
ajagz=a 31 PB2=b B ﬁ mn (m27/82):1 2

For (2,qaam) = 1, we have, by the twisted multiplicativity of Kloosterman sums,
S(£7qr,ofan, faaam) = rg, (r)S(£7qrBz, on, asm).
At this point, we use the fact that b is square-free; in particular, the Ramanujan sum rg, (1) does
not vanish. Write B1 = (52,7"), B231 = 62, r= ’I“IBI, (T/,BQ) = 1. Then
— 1
S(:th’l”ﬂg, on, agm) = TS(:ETQT’Bl7 O’BlBQﬂ,, BlBQOéQm)
T8, (7
(b(Bl) /
= ——"——5(£7qr", 0 Ban, Boagm),
BB :

so that (3.17) is equal to

Z Z ((@2B1B24) (1 4y — )u(By)astaf 202w
BiBY By

a1a2:a613132:b
Z Z A(rB1)S(£7qr,oBan, Bgagmg)

nsfwmg 5+2U+2wrl v—w

X

(r,B2)=1,n (ma,B2)=1

Here we can drop the condition (me, Ba) = 1, since otherwise the Kloosterman sum vanishes
(since (r, Bg) = 1). We remove the remaining condition (ms, B1) = 1 by Mébius inversion, getting

Z Z C(O‘QB2B3B4Q)(1+U—3) (By)u(Bs)as™ 1a§ 20—2w

IBquBlJru s+v+2wBl v

ajaz=a 1 B3 B4 B2=b
TB3B4 :I:T(]T‘ O'an BQBgOéQmQ)
DD oL

ns— wmg 5+2U+2wrl v—w

(r,B2)=1,n m2
Rearranging, we obtain the final expression

Y Gz 3 3 1(B2)u(Bs)aj

B%BQS u—1— 2’[})/2B§ UBL} v

~Lauc(e2B2BaBaa) (] — g 4 )

+ U,TG{:E} aja=a 6lB3B4B2:b
" Z A(rB3By) Z S(xoTqr, Bon,ms) T \V/qrBan
(stu—142v) /2, (1—s+u)/2 mo a,b,s,u,v mo )
(r,B2)=1,n BQB3oz2|m2
(3.18)
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for 7;*bq(s, u,v), where
U(z) = U507 (g) = gust2v-l o (w)G7T(1—v—w)G (s — w)a:gwd—w
- Ta,b,su,v - (—4) a,b,s ! 211
l+s—u—2v—w _(l—s+u4+w stu+2v—1+w
— (I)i T G—°
Jo o (P Yo (e ()
X x_wd—w

omi

In the region (3.1), the integrand is holomorphic in 20 — 8 < Rw < 34 (recalling (2.8) and (3.7))
and rapidly decaying on vertical lines; in particular, the assumption x/ Pl )(x) < min(z, x5/ 2)
for 0 < j < 3 of the Kuznetsov formula (2.14) is satisfied. By (2.14), the mg-sum equals

Al\é[aaﬁ(eqr, Bor; 20 4+ AES(eqr, Bor; 2°0) + A%Ol(eqr, Bor; thI\I/)
with B = ByBsas and € = o7. In the larger region
1/2 < Rs, R <3, Rs < Ru < 11, (3.19)

the integrand of ¥ is holomorphic in 20 — 1 < Rw < 32 (and meromorphic in |Rw| < 32) and
rapidly decaying on vertical lines. By [BK19b, Lemma 3a] and (3.7), we conclude that, uniformly
in this region,

LEV() < A+ )7, 2hN(k) <« k730 (3.20)

as long as a < b for t € RU[—7i/64,7:/64] and k € 2N. Recall again that ¥ depends on s, u, v,
which are currently restricted to (3.1).

3.8 The cuspidal contribution
We start with the analysis of the Maa$ spectrum. Inserting definitions (2.15) and (2.9) and using
the notation and conventions of §2.4, we obtain

Al\élaaﬁ(eqr’ BQT;XE\P) — Z Z Z pr’B(6QT)p¢,M,B(B2n)$E\P(t¢)

Bo‘B ¢EB*(Bo) M‘(B/Bo)

) [z, (1 =172
B (1-)/2 »1Bo
= > & ) L(1,Ad%))Bv(B)

Bol B yeB™(5o) M|(B] Bo)
did Bon
> G d)&u(M, d)) 2N (T A (= ) 2w (k).
d1 ds
dy,dg|M

Summing over n and r as in (3.18), we obtain
1-p?) did
(1 6 Z Hp|Bo( p Z § M d 1a2
> 2 3 » 1)&p(M, do)——
BolB B~ (Bo) w575y T ATV BY(B) <y, M
)\(’I"B3B4))\ (qr/dl) )\ (Bgn/dg) €
<y ¥ S LU(ty).

r(l=stu)/2 n(stu—1+2v)/2

(r,B2)=1

Since (¢, B) = 1, we have (di,q) = 1, and so by (2.1), the r-sum equals
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O(dy,Ba)=1 Z A(rd1 B3 By) Ay (qr)

d(1*5+u)/2 r(l=s+u)/2
1 (r,By)=1
lwmm o OB BB/G) o plAy(a/D) PV X v, (1= a4 u)/2)
- 1—s+u)/2 1—s+u)/2 1—s+u)/2 B _ :
dg lf 61|d1B3B4 5( / d2lq 5( o C( 2)(1 S+u)
(61,Bo)=1

Similarly, the n-sum equals

(Ba, da) \ T 14202 Ny (Bon/(do, B2))
do n(stu—1+2v)/2

((Ba,dp)\ BTuTI/2 1(B*)Ay(Ba2/((d2, B2)B*))
- (dz> Z (B*)(s+u71+2v)/2

L(w, (s +u— 1+ 2v)/2).

B*|Bz/(d2,Bz)
(B*,By)=1

Putting everything together, the Maafl contribution to (3.18) equals

Z Z @Maaﬁ S w. v w)L(WJb)L(H%af ><¢)

a,b,q 3 R
AlabpeB*(A) L(1, Ad*y)
where
Oty (s, u,v,1))
_Z Z (1:FUT /2 (83—s—u—2v)/2 Z Z (B2) (B3) CYQ
u p(s—u—1-2v)/2 v v
+ o7e{£} araz=a 1 B3 B4By= b,B B )/ B1 Bl
A|BQB3012
% Z Z Ep (M, d1)Ey(M, do)dids((Ba, d2)/do) s Hu=1420)/2
M|(B2B3zaz /A) d1,d2\M MdglisJFU)/QLBz(f X ¢7(1—5+U)/2)Ca23334q(1 _S+u)
(d1,B2)=
,U,((Sl)A(dlBngl/(Sl /L (52 )\w q/(5
x Z e Z S0/
01|d1Bs By d2lq
(61,A4)=1
((B*)Ay(B2/((d2, B2)B*)) igr o tor
- 2 (B*)(+u—1+20)/2 LEV b () (3.21)
B*|(B2/(d2,B2))
(B*,A)=1

for ¢» € B*(A) of spectral parameter t, and parity €. Clearly this expression is holomorphic
in the region (3.19). We proceed to confirm the bound (1.11) for Rs = Ru = Rv = 1/2. This
requires a little more than a trivial bound of (3.21). The critical variable is Bs. In order to get
enough saving, we need to exploit some cancellation. To this end, we write M = M7 M, where
(M, B2) =1 and Ms | Ba. (Recall that ab is square-free.) Since (di, B2) = 1, we have d; | M,
and we write dy = dhdy with dfy | My, dj | M. In this way, the Ms-sum becomes

Z fd,(Mg, 1>fw(M27 dlzl)d/2/<(BQ, dg)/dg)(s+u71+2v)/2
My

dy|Mz|(Bz2/(A,Bz))

B*)\y(Bs/((d", By)B*
Z M( zBlig(si{L((lf%)/QQ) )) :

x (3.22)

B*|(B2/(dy,B2))
(B*,A)=1
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If By | A, this is equal to Ay(B2) < B2_1/2 by (2.3). If By t A, this is equal to

1 Ep(p, 1)?
H ((Aw(]?) - M) <1 + B + &y (p, Déy(p,p) |-
p|B2

By (2.10), the leading term Ay (p) cancels (to first-order approximation), and each p-factor in the
preceding display is bounded by p~/2 4+ p?~1 <« p=1/2 for Rs = Ru = Rv =1 /2. Hence in all

cases the Ma-sum is < B;1/2+5. Combining with (3.20) and (2.11), we obtain
1/2 ,1/2-6
Maaf (abq E 12 d d (1 + P‘iﬁ(Q)D
Oubg (5, 0,9) < (L [ty])% Z Z Z 1/2B3/279M1—2931/2
araz=a 31 B3 B4 Ba=bdy,d2|M|(B2Bsaa/A) 3 2
A‘BQBSO{Q (M,BQ)—l

for s = Ru = Rv = 1/2. This is increasing in dy, ds, and the result is increasing in M, so that
one easily confirms (1.11).

The same formula holds for the holomorphic contribution to (3.18), except that the transform
XiUT\I/iEbfs’Tuv(tw) has to be replaced with XhOI\I/i}f;’Tu’v(kw) and €y = 0 if £07 = —1. The
corresponding bound (1.12) is even simpler to obtain because § = 0 in the holomorphic case.

3.9 The Eisenstein contribution
By (2.12), we have

A%QSBB&Q (eqr, Bor; L°W)

1
B‘C(BQB3O‘2 1+2lt Z Z Z

|BQB3012 b17b2|v ~1,y2|B2Bzaz /v

1(b1m)p (5272)61b2<b172) 77< cil J)n(BQn —t)i” ()gt- (3.23)

bam bim baye’ T

We saw in the previous subsection that the Bs-variable was the most critical variable, and we
finally used the strong bound (2.3) to get a sufficient saving. We do not have a direct analogue
of this bound in the Eisenstein case when we make the choice of basis arising from (2.12), but
luckily we can obtain additional cancellation by summing non-trivially over the cusps v. This
again requires some subtle manipulations.

Since (Ba, Bgaz) = 1, we write v = vyvp with vy | Bsag, va | Bsag, bj = b;b;-’, where b;- | v1,
VY | vo, and v; = 77, where v | Ba/v1, 7] | Bsaz/va. The key observation is that (g7, B2) = 1 in
our application, so that b} =~} = 1. In this way, we can recast the previous v, by, ba, y1, y2-sum

2. > X

, b:zllvl\B2 Y5|(B2/v1) 71 775 (B3 ez [v2)
by b4 |v2| Bsaa

it
o PO ROYNDOYS (Vg \" (ar (- Ban
Vi bob3y W) \babng )

We consider only the Bs-part,

> % Lo (2) (), 2

by|v1| B2 v5|(B2/v1)
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for fixed b, ~4, where we parametrize vi = byb*, Ba/v1 = v4v*, getting

1 72 & n
Z b ( 2 2) b/ b/Q/,yé/

byb* v, y*=Ba

i

We must have by~ | n, so we write n = by~v5n*. Applying the Hecke relation (2.1) for n(n,t), we
272 272

obtain ,
> (6)l (b37) )", (2 (T

bhb*v4y*=B2
6| (n* ’b*,y*)

We parametrize & = 0182, b* = d1bg, v* = d27y0, so that the previous line is equal to

S w0 () it -omw-0n(1 1),

b461bov4d270=DB2
5162|n*

The key point is now that, by M&bius inversion, the b, 5, yo-sum disappears, so that (3.24) is

equal to
n*
Z (5152)5 bn(b(b —t)77<5162> _t>a

01bgd2=B
6152|n*

and hence (3.23) is equal to

Z Z p(b17y1) p(b2y2)b1ba (b172>itn< qr t>
BsBaa 1) |2 ’
Rb17b2\U\B3a2 "/1,72\33a2/UUB2B3a2K( o 2)(1+21t)| b2 b
bay2|n
1(6102)n(bg, —t n y dt
2 (12219(0 )77<b 5105 >$ )5
S1b0d7=DBs 100 2720102
0192|n

After this manoeuvre, we are now in shape to sum over r and n as in (3.18). This gives

Z Z (b171) p(b2y2)b1b2 <b1’yz>it Z w(8162)1(bo, —t)
’l)BngOx2|<(B2B3a2)(1+2it)’2 bay1 d1bo

R b1 balvBsas 71,72|(Bsaz /v) d1bod2=B2
A(rbim1B3Ba)n(qr,t) n(n, —t) + dt
LTt
X ( BZ): ) (bl’YlT)(l_s+u)/2 Z (b2725152n)(s+u—1+2v)/2 ( )271'
r,bD2)=

The n-sum can be easily evaluated in terms of the Riemann zeta function. The r-sum requires
multiple applications of (2.1). Checking local factors, we confirm that, for (B, q) = (B2, Bq) = 1,
B square-free, and ¢ prime, we have

ArB r,t ) — A - Ap) — ,Op~* A(r)n(r, t
T (rB)n(gr,t) _ n(a,t) — Ag)q 11 (p)1 n(p; t)p 3 (r)n(r,t)

rZ 1— q72z _ p72z rZ

(Ba,r)=1 p|B (Ba,r)=1

Putting everything together, the Eisenstein contribution to (3.18) is equal to
/ @Els s t)C(S+U31+2v + Z't)L(S*HLle*FZ’U _ Zt)g(lfgﬁ’u + it,f)[/(l*é‘l’u o Zt, f) ﬂ

abal C(1 4+ 2it)¢(1 — 2it) 2(7r’ |
3.25
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where
(8—s—u—2v)/2 s—1
Eis q p(B2)u(Bs)ai " ay
Outalswv =3 > >, > e 2 e iy
+ o,re{t} c1az= =a 31 Bs B4B2=b lB2 B3 B4
bm)”n(q,t) — Mgq)q~(1ms+w/2

Y 3 pb171)p(b2y2)bibo
vBy B3 |((B2B302) (1 4 2t )2 \ bam 1 ¢g-(—s+v)

b1,b2|v| B3z y1,72| (B3 /v)
1(9162)n(bo, —t)

A(p) — n(p, t)p~-stw)/2

X
(Slb(%:B 51b0(b1,yl)(1—s+u)/2(b2725152)(s+u—1+2v)/2 p|b}1_13334 1— p—(l—s+u)
% CB233012(1 + Qit)CBzBsaz(l - 2it) gio’T +,0,7 (t)
CooBsBaq(1 — 5+ u) L, (=514 +it, f) L, (=51 — it, f) Yabswe

(3.26)

The term (3.25) is clearly holomorphic in the range (3.1) and it can easily be extended as long
as R(u — s) > 1 and R(s + u + 2v) > 3. To pass these two hyperplanes, we observe that the
presence of the Riemann zeta function in the numerator contributes residues, and so we apply
the argument of [BK19b, Lemma 16] to show that the meromorphic continuation of (3.25) in the
region f(u — s) < 1 and R(s + u + 2v) < 3 is given by the same expression plus the polar term

OFs (s u,v, t)C(W + it)

(3) .\ a,b,g

= :l:
Pang(s:1:0) =) i es gy () C(1+ 2it)C(1 — 2it)
t=+i(3—s—u—2v)/2

142 1- 1-
xg(sﬂz“} —z‘t)L(‘;“‘ +it, f)L(‘;“‘ _it, f). (3.27)

A trivial estimation confirms (1.13) for the term on the right-hand side of (3.25) with Rs = Ru =
Rv=1/2,t € R, a < b (which differs from the meromorphic continuation of (3.25) to this region
by (3.27)).

It remains to meromorphically continue and bound the joint polar term

3
Papqg(s,u,v) = ZPé?lz’q(s,u, v), (3.28)
j=1
where we recall (3.15) and (3.16) for j = 1,2. In these cases, it is easily seen that Péqu(s,u,v)
continues meromorphically to a neighbourhood of (3.19), and for 1/2 — e < Rs = Ru = Rv <
1/2+¢€, a < b, we have the bound

P (s, u,0)| + [P (5,u,0)] < qlab)~/?(abq)?

a,b,q
away from poles. The treatment of be), q(s, u, v) requires slightly more effort, because we need to

ang’q(s,u,v,t) for |St| < 1/2. The meromorphic continuation of .,?i‘”\lfai”b‘jgu’v(t) with

at most finitely many poles (and hence of G)aEfliq(s, u,v,t)) to that region follows from [BK19b,
Lemma 3b]. Again, a trivial upper bound yields

analyze ©

S
(ab)1/2—9

for fixed s,u,v,t with 1/2 —e < Rs = Ru = Rv < 1/2 + ¢, |St| < 1/2+ ¢, a < b away from
possible poles, so that also

Ob4(5,u, 0, 1) < (abg)®

q

3)
Popqlsu,v) < (GbQ)EW
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in the region 1/2 — e < Rs = Ru = Rv < 1/2 + ¢, away from possible poles. We have established
(1.14) as an equality of meromorphic functions, but since all terms except possibly Pgp (s, u,v)
are holomorphic for s = Ru = Rv = 1/2, Py p4(s, u, v) must also be holomorphic for s = Ru =
Rv = 1/2, and the general bound (1.15) then follows by Cauchy’s integral theorem in the same
way as at the end of [BK19b, §10].

Remark 1. We briefly discuss an alternate approach to dealing with the Eisenstein contribution
suggested by the referee. Instead of inserting the expression (2.12) for the Fourier coefficients
of the Eisenstein series into (3.23), we could use an identity akin to the expression (2.9) for
the Fourier coefficients of cuspidal newforms. Such an identity follows from the work of Young
[Youl9, §8.5]. With this identity in hand, the treatment of the Eisenstein contribution can be
done via the same process as for the cuspidal contribution, as in §3.8. A key difference is that
when we arrive at an expression of the form (3.22), we cannot have By | A, because there are no
Eisenstein newforms of level N with trivial central character such that p || N for some prime p.

Thus instead of the bound Ay (B2) < B;l/Q when By | A by (2.3), we have the stronger bound
Ay(B2) = 0, which gives us the requisite savings.

4. Proof of Theorem 2

4.1 Initial manipulations
Let P =T4Q. By ‘negligible’, we mean a quantity that is O(P . By a dyadic decomposition, we
may replace the conditions ¢ < Q, |ty| < T with %Q <q<Q, %T <ty <Torty € [0,1]U[—i6, 0]
where in the last case we formally put T' = 1.

Let E5 denote the standard minimal Eisenstein series for SL3(Z) with Fourier coefficients

A(n,m) = Y p(d)rs(n/d)rs(m/d).

d|(n,m)

—100)

Then, for ¢ € B*(q) with |t,| < T, we have

L(s,¥)* = L(s,9 x E3) = Z Z An, m) Ay ( )—Pq(s)zw

n (m q n,m

=TI 252) (=575

plg

for Rs > 1, where

is holomorphic and uniformly bounded in Rs > 1/2. By a standard approximate functional

equation, we have
A(n, m)Ay(n) nm?
3 ) Y
IL(1/2,¢)°| < 2 E nl/2m, Vi q3/2 )

n,m
where
pP(L
y 27?1/ +u
>< Ttutep+ity) T3 +utep—ity)? o, 2 _,du
- T ety T —.
T( (3 + e +ity))’T(5(5 + ey — ity))? u
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Shifting the contour to the far right, we see that Vi (y) is negligible if y > T3P¢. Remembering
this, we shift the contour to Ru = . There we may truncate the integral at |Su| < P at the
cost of a negligible error. Applying a smooth dyadic decomposition, we have shown that

P A(n,m)Ay(n) [ nm?
3 € ) P
L(1/2,9) <<5P/ 5 > > T v< )‘dv,
T 2v=N<Q?3/2T3pe

where V has support in [1,2], is independent of v, and satisfies V) (y) <, 1 for all j € No.
Multiplying two such expressions together and using the Cauchy—Schwarz inequality, we obtain

L(1/2,9)°

<. P® max max g
\v\gP‘f N<Q3/2T3P8

n,m

Aml,mlm(m,mgnw(nlw(nz)V(mm%)V(W%).

n1,n2,M1,ma2 (nlm%)1/2+iv(n2m%)1/2_iv N L

For ¢ € B*(q), we have

Ay () Ay (m) < 1 ) -

AP\ Ap\m) - 1

L(1,Ad%y) qg o) Peta(®)ppig(m)
by (2.9). For the purpose of Theorem 2, it therefore suffices to bound

S,(Q,T,N) : ZW(Q> we%*: hr(ty)
(9)

> Aln,ma) A(na, ma)py,1,4(n1)py,1,4(n2) |, (mm? ) v <n2m§>

(nym2)1/2+iv (nym32)1/2—iv

X

ni,n2,mi,ma

where N < Q%/2T3P¢, |v| < P¢, and

hp () = e~/ LEHIJ <T12 <t2 + W) ) .

n=1

Note that this function satisfies the assumptions of Lemmas 1 and 2.

4.2 The Eisenstein contribution associated with the trivial character

The 1-sum in (4.1) can be evaluated by the Kuznetsov formula (2.16). To this end, we need
to add, using positivity, the contribution from the oldforms and the continuous spectrum. As
mentioned in the introduction, this manoeuvre is costly, and we single out the contribution of
the continuous spectrum associated with the trivial character:

SHQ,T,N) : ZW( )QZ/hT

y Z A(m,ml)A(nz,’mz)/)triv,M,q(nl,t)Ptriv,M,q(nz,t)v nim? v nam3\ dt
(nym3)1/2+iv (ngm3)t/2—w N N Jor’

ni,n2,mi,msa

which we rewrite in more compact form as

////Vzl (22) W (s)Q' o N1 22

Di(s,1/2 +iv + 21,1/2 —iv + 29;0,0)
5 hr(t) 5
IC(1 + 2it)]

dt dsdz dzo
2 (2mi)3

where
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Dt(s7 Z1,22,W1, WQ)

i t) priv g (2, 1)
= |¢(1 + 2it)|? Z Z A(n1, m1) A(ng, m2) priv,M,q (111, 1) Preiv, 0, (N2, )

¢* (nam?)= (nym3)=mi* my™

g,n1,m2,m1,m2 M|q

Recalling the definition (cf. (2.13))

’C(l + 21t) ‘Zptriv,M,q (nla t)ptriv,M,q(n% t)

¢ (1 + 2it) [2(ng /na) Z 0102 (M [01) (M /62) Z <CQ> 2it
= - g |
qr(q)ig (M) 1 ol M i 026;2:”2 c1
(c1,4/M)=1 (c2,9/M)=1

we see that (for ¢ € R) the series Dy(s, z1,z2; w1, wa) is absolutely convergent in s > 0, Rz,
Rzo > 1, R(z1 +w1), R(z2 + w2) > 1/2, and admits an Euler product of the shape

(1t 2350

7j=12 =+

+0 ( p2min(Rz: ,%22,%:([21+W1),%(22+W2)) + péres+min(afezl,11)+min(sfe22,1) > ) g
where the bounds in the error term hold uniformly in
Rz1, Rzo, R(z1+w1), R(ze+wz), RNs+ min(Rz1, 1)+ min(Rze, 1) > 0.
In particular, we have
Dy(s, z1,zo; w1, W) = ((s + 1)((z1 +it)3¢(z1 — it)3C (22 +it)3C (2o — it)3Ei (s, 21, 293 w1, wo), (4.3)
where &(s, z1,z2; w1, w2) is holomorphic and uniformly bounded in
Rz1, Rza, N(z1 +w1), R(z2 +w2) > 1/2+¢, RNs+ min(Rz, 1) + min(Rzg,1) > 1+¢, (4.4)

as long as St = 0. Hence in (4.2), we may shift the contours to s = —1+¢ (picking up a residue
at s = 0), and in the remaining integral we shift the z;, zo-contours to Rz; = Rzo = 1/2 + ¢,
getting

. C(1/2 4 v + 21 £it)3C(1/2 — iv + 2o £ it)3
S:(Q,T,N)
@rm=wor [ [ [T] e
K E(0,1/2 4+ 10+ 21, 1/2 — v+ 203 0,007 (21)T (2) N 2 () 2192 4y pvpey,
(2mi)2 27
(4.5)

4.3 Applying the Kuznetsov formula twice
By the Kuznetsov formula (and positivity), we obtain

S(@,T,N) +8;(Q,T,N)

coxw(g) ¥ Awiven y(nd)y (md)

ni,n2,mi,ma

0o ttanh(7t) dt S , N2, TL o
X <5n1,n2/ hT(t)Eimz(;T) Z (nl N9 qc ( 1 2))

—00 c
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The diagonal term is easy to deal with and is trivially bounded by
O.(P°Q*T?). (4.6)
By Mellin inversion, we can recast the off-diagonal term as

—~ A(ny,my)A(ng, ms) <n1m2> <n2m2)
sty = T 1% Llv 2
/(_12) Q (s) Z (i m2) 20 (ngm2) 2= (nyng) /2 N N

ni,n2,mi,ma

" Z nl,n27q0)%hT<\/n1n2>dS

qc 271

with Ashp(z) = 2 hp(x) as in §2.6. Applying the Kuznetsov formula immediately in the
other direction (which we may do by Lemma 1, but this time the summation is over ¢ instead
of ¢), we obtain by (2.14) that the previous expression is equal to

QW (s) Z A(n;,ml)A(”%mQ) V(nlm%>v<nzm§)

(nlm%)1/2+w(n2m%)1/2_w(n1n2)5/2 N N

(—12) n1,Nn2,M1,m2

x Y (A (0 ng; LT hr) + AT (ny, ng; L Hahr) + AL (1, ng; LM\ Hohr)) 5 — ds

2mi
(4.7)

Lemma 2(b) implies that £+ #:hp(t) has analytic continuation to fs < 1, and we proceed to
derive a uniform bound. If [t| > 10|Ss| (so that ¢ & |Js| < t), we have

ST g ) eI )
$+<}i§h t <</ © T / — dt
A B o N G 71 e e M ey b
T2 T2+max(0,—§)?s)

If [t| < 10|Ss|, we have trivially £+ #hr(t) < T?, so that altogether we obtain the uniform

bound
T2+max(0,—§Rs)

T+ TP

The problematic expression in (4.7) is the part of AXS(ny, no; L+ #,hr) that is associated
with the trivial character. We spell this out explicitly as

Sy (Q,T,N) = / / / / (21)V (22) W (s)Q o N*1H22
20 (20) J(-12)

—$,1/2+iv+8/2+ 21,1/2 —iv + /2 + 29; —5/2, —5/2)
|C(1 4+ 24t)|?

ﬁdsdzldzg

2 (2mi)3

L Hhp(t) <qs (14 |Ss])2 2% (4.8)

X $+<%/ShT(t)

Shifting the s-contour to the far left and simultaneously the zi, zo-contours to z; = %(1 —
Rs) + e, we see from (4.8) that the t-integral is negligible for |t| > \/NT/QP¢. In particular, we
may truncate at [t| < (T'+ /NT/Q)P*=.

Next we shift the s-contour to Rs = e, past the pole at s = 0. By Lemma 2(a), the residue
matches exactly the main term in (4.5) except for the truncation of the t¢-integral, but by the
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rapid decay of £t ¥ hy = hr for |t| > T, we may reinsert the tail at the cost of a negligible
error.

To estimate the remaining integral, we shift the z1, zo-contours to left, past the triple poles
at z1 = 1/2 —iv—s/24it, z0 = 1/2 —iv — s/2 £ it to Rz1, Rza = €. Thus we need to bound the
contributions from the remaining integral and the two residues. The remaining multiple integral
contains a t-integral that can be bounded by

1
<2+E+it+i7>

where 7 = £v 4 Qz; + \ss] and we used Heath-Brown’s twelfth moment bound [Hea78]. Thus
the total contribution of the remalnlng 1ntegra1 is O.(QT?P?). It remains to deal with the two
residues. Here the rapid decay of W and V1 2 and their derivatives at z = 1/2+7v—s/2+it makes
the t-integral rapidly convergent regardless of the real part of s, so we may shift the contour to
Rs =1 —¢ (so that Rz; = €), getting a contribution of O.(Q*T?P?).

Combining (4.6) and the error term in (4.5) with the previous two error terms, we have
accomplished so far the bound

12
T2

W dt <<5 T2(1 -+ |TD2P€

<Le /
[tI<(T++y/NT/Q)P

S.(Q,T,N) <. P*(Q*T? + NT)

(—12) e (nlm )1/2+w( nam %)1/2—zv(n1n2)8/2
X Z (AMaaB () nor LY Hhy) + AZS* (ng,ng; LT Hhy) + AL (ng, noy LMV R ));;
(4.9)

where A}cais’* denotes the contribution of level-c¢ Eisenstein series without the trivial character.

4.4 The endgame
We consider the Maafl contribution in (4.9) given by

SHITT A(n1,my)A(nz, m2)py m,n (1) py,ar,n (M)
TEYeY Sy

(-12) co M e peB*(co) T1,m2,m1,ms (mm%)1/2+w(n2m§)1/271'1;(”1”2)8/2
2
nymj noms " ds
v (27 (P2) 1 s

Shifting the s-contour to the far left, we see that we can truncate both the c-sum and the ¢-sum
at c(1+|ty]?) < PENT/Q at the cost of a negligible error (recall (4.8) and the rapid decay of V).
Having done this, we shift the s-contour back to Jts = 0. By Mellin inversion, we obtain

IASICD DS cf:c> a2 [ [ Ne=veie)

¢ colcpeB*(c plco
c(1+ty |2 )<PENT/Q

DMaaﬁ(1/2+w—|—s/2+z1,1/2—w—i—s/2+Z2, —5/2,—5/2)
L(1,Ad*)

dz1 dz9 ds

X LT Ahn(te) oy (27i)2 2mi’

(4.10)
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where (recalling the notation in (2.9))

DM%B(Zh Z9, W1, Wz)

L(1,Ad*y)cv(c Z Z A(ny, my)A(ng, ma) py v c(n) Py ae(m)

R HP|C°(1 P M\ /o) 1,2, M (n1m3)?1 (ngm3)z2m3" m3*
for ¢ € B*(¢p) with ¢ | ¢. Using (2.9) and (2.11) (with 6 < 1/2), we see as in (4.3) that
DR ) = B P P, (410
where
51\/{2&3(217 Z9, W1, Wy) Ke

uniformly in Rz, Rz, R(z1 + w1), R(z2 + w2) > 1/2 + €. The convexity bound for L(z, 1)) is
L(z,%) < (co(1 + [ty| +[32])")/*Fe, Rz >1/2.

We can afford to use the convexity bound on four of the six L-functions in (4.11). We may then
truncate the s, 21, zo-contours at height P¢, and after a trivial estimation, we bound (4.10) by

2 TQ

7(1 ) (4.12)

NT 1 1
. 1 1 .
< P Q—Q |§?<a§e Ec wGBE* C‘L(2+€+z§,w>
c(1+|tw\2)<P€NT/Q

It is an easy exercise with the Kuznetsov formula or the spectral large sieve to obtain a Lindelof
on average bound for the second moment, which can safely be left to the reader: the length of
the approximate functional equation in each factor is O.(P*c'/?(1 + |ty])), so the Kloosterman
term in the Kuznetsov formula is essentially invisible. Thus by Weyl’s law, the total contribution
of the previous expression is
<. PENQTQQ—I <. P€Q2T8

for N < Q%273 P¢, and this majorizes all preceding error terms.

The contribution of ASOl(nl, ng; LM% hr) can be bounded in same way using the analogous
bound for "' #hr in Lemma 2(b).

Finally, for the contribution A, is’*(nl,ng;f T #shr), we observe that after removing the
trivial character, the analogously defined function

Eis
D(X,t),e(zl7 227 W17 WQ)

A(ny, m1)A(n2, m2) py,m.e (1) py,m,c(m)
|L(1 +22t X Z Z 2\z; 2\zo 2w1 _ 2wa
2| M|en1,n2,ma,mo (nimq)® (nama)=2my ™ m
is pole-free in Rz1, Rzo, R(z1 + w1 ), R(z2 + we) = 1/2 + € since y is primitive of conductor > 1,
and it can be approximated by L(z; +it, x)3L(z1 —it, X)2L(z2 +it, x)3L(z2 —it, X)? in this region
up to a holomorphic factor bounded by O.(c?). Here we can even afford to apply the convexity
bound for all 12 Dirichlet L-functions. The quantity corresponding to (4.12) is then

NT 3/2 #{X . o2 ’ C}T2 NT 3/2
P€Q< ) / X dt <. P°Q <> <. PEQ7/ATS,
Q Z (42PNt (1 +[t?) Q

This completes the proof of Theorem 2.
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5. Applications

It is now an easy task to prove Corollary 3 and Theorem 4. For both applications, we need the
following auxiliary result.

LEMMA 3. Let T > 1, N,g € N, (N,q) = 1. Then

2
2 L /l\w‘ﬁid)? /T’ < (NTq)*(T?N + ¢'/?).
wEB*(N) ( ) ¢)

This is a simple application of the Kuznetsov formula and Weil’s bounds for Kloosterman
sums; see, for example, [BM15, Lemma 12] or its ancestor [Mot97, Lemma 2.4].

5.1 Proof of Corollary 3
From [BK19b, §12.1], we quote

5 4
S L2000t < gt max Y el% S LU ()| 40, 5.1)

2
dJGB*(q) |T|<(10gq)2 E<q1/2+5 fEB*(q) L(l, Ad f)
where
Loo(1/2+e+1i1, f) Gy(e +iT) ot
he(ts) = + |t
=Ty G ¢ U
with
1000

:H H <;+els+i62tf—|—j>.

J=0 €1,e2e{£1}

This is an application of a carefully designed approximate functional equation. Now the formula
two displays below [BK19b, (11.4)], together with [BK19b, Lemma 1], shows that for ¢ prime,

¢(q) L(/2, /)| (a>1/2 O+, 1
A ,/\/l o(1/2,1/2. b, + 0
q2 fEBZ*(q) L(17Ad2f) (;Z / / b ( ! )

with b, = (h;,0) in the notation of [BK19b, (1.3), (1.7)]. Here the error term also includes the
oldforms of level 1. On the other hand, [BK19b, (11.4)] states that

> ML (1/2,1)2, h7)<a>1/2<<5(£q)ez<z>l/2< + = +Z\M (1/2,1/2; 1/21/2h7)|>

ab=¢ ab=/

uniformly in |7] < (log ¢)?, and the analysis of [BK19b, §11] shows

] (1/2, ))* [As(q,1/2)]
T,(1/2,1/2, 7, 1/2 1/207) <e (aq) < iz T 1/22 Z 1/Ad2 | (1f+q|tf!)15)
aola fEB*(a

again uniformly in |7| < (logq)?) where As(q,1/2) := A¢(q) — ¢~ /2 for ¢ prime. Combining
g g f f
these estimates, we obtain
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#(q) L(1/2, f)* \
—5 — = Ar(O)h(ty)
2 P )L(l Ad?%f)

(1 0 1 1L(1/2, HI* A+ [Ar(a)])
e (fq) <gl/2 + q1/2 + (gq)l/Z Z Z L(l Adzlﬂ) (1 + ‘tf|)15 >

aoll fEB*(ag)

Substituting back into (5.1), this yields

—t2 e 1 L(1/2, £)* (14 |
2 Hmere s 2 <€ q'? qu/’zz Z N /diﬁ’) (( +||t§(|;11)l)>

YeEB*(q) £<qt/?+e alt feB*(a

gl gl/2e Z Z \L 1/2 J; ’4 (14 [Ar(q)])
5
a<ql/2+5 feB* d ¢) ( + ’tf’)

4
Ve | 1/24e [L(/2, NI A+ [Ar()])
D ;WE; L(1,Ad*p) (L4 [te)'5

So far this is essentially a restatement of the analysis in [BK19b], but now we insert an additional
application of Holder’s inequality. In this way, we obtain

Yo L(1/2,9)

YeEB*(q)

L(1/2, f)|° 2P
<. 1+€+ 1/2+¢ a ( |
T i A 2;4 fe%‘: L(1, AdZ0)(1 + [t/])

L+ [As(a)]) 8
(Z,2, madont o)

By Theorem 2 and Lemma 3, we obtain

Yo L/2,w) e < ¢f <q+q1/ max L w2 4 g2 9/3> <. 'O/t
A<q +e
YeB*(q)

5.2 Proof of Theorem 4

By a dyadic decomposition, we can replace the summation condition m < M by m =< M. Let us
also assume without loss of generality that ||al/oc < 1. In order to apply Theorem 1, we would like
to bound L(1/2,x) by a small integral over the imaginary axis. This can be done by a standard
argument based on the functional equation and the residue theorem (which seems to have been
first applied by Heath-Brown [Hea78, Lemma 3]) as follows. Fix 0 < £ < 1/10 and suppose that
X is a primitive character modulo q. We have

252
4 g™ ds B L% * ds
L(1/2,%) _/(E)L(1/2+s,x) g 2m,+/(5) L/2- 50
ds
= [ L Yf(s)—
[ rasz4 500
()
where )
o) = (14 PRGN (0) T
B L(3(3 —s+a)t\n s
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with a = 0 if x is even and a = 1 if x is odd. Applying the same argument again, we have

ds
omi’

L2 s’ = [ 2A/2 4w g

where

L33 +s+u+a)t (q>4U> o2

gs(“):_<”r<§<5+s—u+a>>4 7)) u

Inserting and changing variables, we obtain
4 4 dv
(0)

where

Now choosing F' as in (1.7), we get

dz

IL(1/2,0]* <. ¢° /(0) L(1/2+ 2,x)*L(1/2 — z,Y)zF(z)%.

Opening the square, we have

2
> | > alm)x(m)

x (mod q) m=xM

/20 < M>+¢> > |Topmag(1/2,1/2,1/2)]
d mi,moxM/d
(m1,ma)=1

with the notation as in (1.6) in the special case where f is the standard Eisenstein series with
6 = 0. By Theorem 1 and (1.8) we have

2
> alm)x(m)] [L(1/2,x)["
X (mod q)' m=xM
<M (M) +gY Y S Mo g1/, 1/2,1/2)).

d mi,maxM/d*€{Maafl,hol,Eis}
(m1,m2)=1

We only deal with the Maafl case; the other two cases are similar but easier. By (1.10) and
(1.11), we have

DD My, (1/2,1/2,1/2)]
d ml,mgxM/d
(m1,m2)=1

¢'? (1+ Py(g))) L(1/2,9)?
«@ry ¥ oS % 4 o
/2 30 2
d ”Zl,mzﬂfw/dN|m1m21peB* N 1+|t1/1|) L(l,Ad 1/})
mi,m2)=1

We drop the condition (mq,mg) = 1 and write mimgo = m = NK, obtaining by the standard
divisor bound that the previous display is bounded by
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: 0 (1+ Pala)]) LO/2,0)°
e (M
MY NE 2 T LLAR)

e g2 M* (1+ Mg (@)]) L(1/2,4)°
e (qM a7y
< (qM) zd:N<<%:2/d2 d2N3/2 qu;N) (1+ |t¢|)30 L(l,Ad2¢)
1+ Py(@)]) L(1/2,9)?

<. 1/2 r2y1+e )
(@M s, N3/2 sz;v wEBZ* wy ([P L(1, Ad)

By the Cauchy—Schwarz inequality, Theorem 2, and Lemma 3, this is

<. (q1/2M2)1+6NH<1<a]\}/§2 N3/2 (N+q1/4j\/'1/2)/\/'<< (q 1/2M2)1+5(M+q1/4).

For M < ¢*, we obtain altogether

Yo D alm)x(m)

X (mod ¢q)'m=xM

2
IL(1/2,)* <= (Mg)*T,

as desired.
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