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Abstract

Motohashi established an explicit identity between the fourth moment of the Riemann
zeta function weighted by some test function and a spectral cubic moment of
automorphic L-functions. By an entirely different method, we prove a generalization
of this formula to a fourth moment of Dirichlet L-functions modulo q weighted by
a non-archimedean test function. This establishes a new reciprocity formula. As an
application, we obtain sharp upper bounds for the fourth moment twisted by the square
of a Dirichlet polynomial of length q1/4. An auxiliary result of independent interest is a
sharp upper bound for a certain sixth moment for automorphic L-functions, which we
also use to improve the best known subconvexity bounds for automorphic L-functions
in the level aspect.

1. Introduction

1.1 A reciprocity formula
A landmark result in the theory of L-functions, because of both its structural beauty and its
applications, is Motohashi’s identity for the fourth moment of the Riemann zeta function [Mot97,
Theorem 4.2]: if F is a sufficiently nice test function, then∫

R
|ζ(1/2 + it)|4F (t) dt (1.1)

is equal to an explicit main term plus a cubic moment of the shape∑
j

L(1/2, ψj)
3F̌ (tj) + similar holomorphic and Eisenstein contribution, (1.2)

where the sum runs over Maaß forms ψj with spectral parameter tj for the group SL2(Z) and
F̌ is a certain integral transform of F given explicitly in terms of hypergeometric functions. This
is an important instance of a formula between two different families of L-functions that may be
regarded as a ‘reciprocity formula’. Choosing the test function F appropriately, it can be used,
for instance, to prove sharp upper bounds for the fourth moment of the Riemann zeta function
on the critical line in short intervals t ∈ [T, T + T 2/3]. Motohashi’s formula can also be inverted
to some extent; Ivić [Ivi01] used this to obtain Weyl-type subconvexity bounds for the L-values
L(1/2, ψj).
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Motohashi’s fourth moment identity

Motohashi’s proof starts by opening the four zeta values as Dirichlet series and integrating

over t, which, after a change of variables, gives a Dirichlet series containing a shifted convolution

problem

τ(n)τ(n+ h). (1.3)

A spectral decomposition then yields the spectral cubic moment.

A very different strategy was suggested by Michel and Venkatesh [MV10, § 4.5]: we interpret

(1.1) as a second moment of L-functions associated with an Eisenstein series E and choose F as

the corresponding local L-factors at infinity. Denoting the completed L-functions by Λ(s, E), we

have by Hecke’s integral representation and Parseval’s theorem (ignoring convergence)∫
R
|Λ(1/2 + it, E)|2 dt ≈

∫ ∞
0
|E(iy)|2dy

y
.

Decomposing spectrally (and suppressing the continuous spectrum for notational simplicity),

using Rankin–Selberg theory and Hecke’s integral representation again, this ‘equals’∫ ∞
0

∑
j

〈|E|2, ψj〉ψj(iy)
dy

y
≈
∫ ∞

0

∑
j

Λ(1/2, ψj × E)ψj(iy)
dy

y
≈
∑
j

Λ(1/2, ψj)
3.

This very beautiful idea comes with two technical challenges: first, none of the integrals converge

and some regularization is necessary; and second, while this works very nicely for the special

test function F (t) = |L∞(1/2 + it, E)|2, it is not easy to spell out what happens for general test

functions F . (See, however, recent work by Nelson [Nel19] on this approach.)
In this paper we offer yet another proof of Motohashi’s identity, which has the advantage

of working nicely in greater generality. The set-up we are interested in is as follows. For q ∈ N,
consider ∑

χ (mod q)

Ffin(χ)

∫
R
|L(1/2 + it, χ)|4F∞(t) dt

for some function Ffin. This can be seen as the proper adèlic analogue of (1.1), twisting ζ(s) by
the complete family of GL(1) characters nitχ(n). By elementary Fourier analysis, every Ffin is a
linear combination of character values. With applications in mind, we consider test functions of
the shape

Ffin(χ) = χ(a)χ(b) (1.4)

for some integers a, b ∈ N. It is straightforward to include a character average in Motohashi’s

proof, which essentially results in a shifted convolution problem (1.3) where h is divisible by q.

It is much less straightforward to include a general test function (1.4), because then the shifted

convolution problem becomes a sum over τ(n)τ(m) subject to the condition an ≡ bm (mod q).

The difficulty of such an extension (with sufficient control on a, b) was already observed in [DFI94,

p. 210]. A heuristic argument based on a different strategy that we sketch in § 1.4 suggests that

we should expect something like

∑
χ (mod q)

χ(a)χ(b)

∫
R
|L(1/2+it, χ)|4F (t) dt 

q1/2

a1/2

∑
ψj of level ab

λj(q)λj(b)L(1/2, ψj)
3F̌ (tj). (1.5)
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V. Blomer et al.

This indicates that the period integral approach will not be straightforward to extend because
at the very least some non-trivial combinatorics in the Hecke algebra (see [Zac19b] for how
this could look in a slightly different situation) must happen in order to generate the Hecke
eigenvalues on the right-hand side. As an aside, the left-hand side of (1.5) is symmetric in a, b
as long as F is even, while this is not directly apparent on the right-hand side (which is only
written in suggestive terms anyway). It follows from (2.3) that λj(b) = ±b−1/2, which to some
extent restores the symmetry.

We will present a proof of (1.5) in the spirit of recent reciprocity formulae of the first and
third authors [BK19a, BK19b] that deal with this more general set-up without essential structural
difficulties. We proceed to describe our first main result in detail. Let a, b, q ∈ N, s, u, v ∈ C, F be
an even holomorphic function that is Schwartz class on fixed vertical lines, and f an automorphic
form for SL2(Z) that is either cuspidal or the standard Eisenstein series (d/ds)E(z, s)|s=1/2.
We denote its Hecke eigenvalues by λ(n), so that λ(n) = τ(n) :=

∑
ab=n 1 if f is Eisenstein. We

define

Ta,b,q(s, u, v) :=
∑

χ (mod q)
χ primitive

χ(a)χ(b)

∫
(0)
L(s+ z, χ)L(u+ z, χ)L(v − z, f × χ)F (z)

dz

2πi
, (1.6)

where the integration is over the vertical line <z = 0. We may assume without loss of generality
that (a, b) = (ab, q) = 1. It is convenient to assume that F is divisible by (1−u)(v−1)2

∏50
j=1(j−s).

A typical function we have in mind is

F (z) = ez
2
(z2 − (1− u)2)2(z2 − (v − 1)2)2

50∏
j=1

(z2 − (j − s)2), (1.7)

which is positive for <z = 0, s = u = v = 1/2. To get a nice-looking formula, we also need to
include non-primitive characters, and for simplicity we assume that q is prime. For a suitable
correction polynomial Pq(s, u, v, z) defined explicitly in (3.2) below and satisfying

Pq(s, u, v, z)� 1 + |λ(q)|, <s,<u,<v > 1/2, <z = 0, (1.8)

we define the analogue for the trivial character

T triv
q (s, u, v) :=

∫
(0)
ζ(s+ z)ζ(u+ z)L(v − z, f)Pq(s, u, v, z)F (z)

dz

2πi
. (1.9)

Note that our assumptions on F imply that the integrand is holomorphic (since the poles of ζ
are cancelled) and that we can shift the z-contour in any way we want.

On the spectral side, we define

MMaaß
a,b,q (s, u, v) :=

∑
A|ab

∑
ψ∈B∗(A)

ΘMaaß
a,b,q (s, u, v, ψ)

L
(
s+u−1+2v

2 , ψ
)
L
(

1−s+u
2 , f × ψ

)
L(1,Ad2ψ)

, (1.10)

where B∗(A) denotes an orthonormal Hecke basis of Maaß new forms of level A and ΘMaaß
a,b,q (s,

u, v, ψ) is a (complicated, but) completely explicit expression defined in (3.21) that satisfies

ΘMaaß
a,b,q (s, u, v, ψ)�s,u,v,F,ε q

1/2A−1/2(1 + |λψ(q)|)(1 + |tψ|)−30(abq)ε (1.11)
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Motohashi’s fourth moment identity

for <s,<u,<v = 1/2 and a � b. Similarly, we define

Mhol
a,b,q(s, u, v) :=

∑
A|ab

∑
k∈2N

∑
ψ∈B∗k(A)

Θhol
a,b,q(s, u, v, ψ)

L
(
s+u−1+2v

2 , ψ
)
L
(

1−s+u
2 , f × ψ

)
L(1,Ad2ψ)

,

where B∗k(A) denotes an orthonormal Hecke basis of holomorphic newforms of weight k and level
A and Θhol

a,b,q(s, u, v, ψ) satisfies the analogous bound

Θhol
a,b,q(s, u, v, ψ)�s,u,v,F,ε q

1/2A−1/2k−30(abq)ε (1.12)

for <s,<u,<v = 1/2 and a � b. For simplicity, we assume that a, b are square-free, so that the
Eisenstein spectrum is parametrized by τ(ab) cusps. We define (initially in <(s + u + 2v) > 3
and <(u− s) > 1)

MEis
a,b,q(s, u, v)

:=

∫
R

ΘEis
a,b,q(s, u, v, t)

ζ
(
s+u−1+2v

2 + it
)
ζ
(
s+u−1+2v

2 − it
)
L
(

1−s+u
2 + it, f

)
L
(

1−s+u
2 − it, f

)
ζ(1 + 2it)ζ(1− 2it)

dt

2π
,

where ΘEis
a,b,q(s, u, v, t) is defined in (3.26) and satisfies

ΘEis
a,b,q(s, u, v, t)�s,u,v,ε,F (abq)εq1/2(ab)θ−1/2(1 + |t|)−30 (1.13)

for <s = <v = <u = 1/2, t ∈ R, where θ 6 7/64 is an admissible exponent for the Ramanujan
conjecture for the fixed form f (in particular, θ = 0 if f is holomorphic or Eisenstein). The
expressions M∗a,b,q(s, u, v) for ∗ ∈ {Maaß, hol} are obviously holomorphic in <s,<u,<v > 1/2.

By contour shifts it is not hard to see that MEis
a,b,q(s, u, v) has meromorphic continuation to this

region; see § 3.9. In the intersection of <s,<u,<v > 1/2 with <(s+u+ 2v) < 3,<(u− s) < 1 the
meromorphic continuation is given explicitly by the same term plus an additional polar term,
defined in (3.27). We define

Ma,b,q(s, u, v) :=MMaaß
a,b,q (s, u, v) +Mhol

a,b,q(s, u, v) +MEis
a,b,q(s, u, v).

We are now ready to state the reciprocity formula to which we have already alluded.

Theorem 1. Let q, a, b ∈ N, q be prime, (ab, q) = (a, b) = 1, a, b be square-free, a � b. Let
1/2 6 <s,<u,<v < 3/4 and <s 6 <u. Suppose that F is holomorphic, Schwartz class on vertical
lines, and divisible by (1− u)(v − 1)2

∏50
j=1(j − s). Then

Ta,b,q(s, u, v) + T triv
q (s, u, v) = Pa,b,q(s, u, v) +Ma,b,q(s, u, v), (1.14)

where the ‘main term’ Pa,b,q(s, u, v) is defined in (3.28) and satisfies

Pa,b,q(s, u, v)�s,u,v,ε,F q(ab)
−1/2+θ(abq)ε (1.15)

for <s = <u = <v = 1/2, a � b, where θ is an admissible exponent for the Ramanujan conjecture
for f .

We emphasize that even thoughMa,b,q(s, u, v) depends on q, it only involves the spectrum of
level ab. This is the ultimate reason for the specific design of the term T triv

q (s, u, v). In this sense,
our formula is a clean reciprocity formula, where the pair (level, arithmetic of weight function)
on the Dirichlet side is (q, ab) and on the spectral side is (ab, q).
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Theorem 1 contains a number of simplifying assumptions, most of which can be removed
without any structural difficulties at the cost of more technical work. If q is not prime, we need
slightly more complicated correction terms for non-primitive characters. The assumption that F
has zeros at 1 − u, v − 1, j − s, 1 6 j 6 50, can be relaxed considerably, and probably entirely
removed, but it saves us from computing several polar terms and buys us convergence without any
trickery. The regularity assumptions on F can also be relaxed. The assumption that a is square-
free is only to keep the formulae a little simpler. The assumption that b is square-free is slightly
more serious and enables us to use the Kuznetsov formula in a version that involves only Fourier
expansions at infinity. For arbitrary b, one can use the analysis of Kıral and Young [KY19,
Lemma 2.5 and Theorem 3.4] instead. As mentioned before, the assumption (ab, q) = (a, b) = 1
is without loss of generality, and if a and b are not of the same order of magnitude, our bounds
may deteriorate by (max(b, a)/min(b, a))O(1) (this is unavoidable; see the sketch in § 1.4).

The spectral side (1.2) of Motohashi’s original formula goes deeper in the spectrum (i.e. the
support of F̌ is larger) the more complicated the test function F is (e.g. in terms of oscillation).
Our formula features a similar phenomenon for the non-archimedean test function, except
that the spectral support now increases, in some sense orthogonally, in terms of the level instead
of the spectral parameter.

1.2 A sixth moment
In practice, we want to estimate the right-hand side of (1.5) for large q and somewhat large a, b,
and a possible problem could be the occurrence of λj(q) in (1.11) for Maaß forms ψj for which
the Ramanujan conjecture is not known. The factor λj(b) is not a problem, since b divides the
level; see (2.3). A trivial bound on λj(q), however, may invoke an undesirable factor of qθ due to
our limited knowledge of the Ramanujan conjecture. In order to avoid this, one may try to use
the extra average over the forms of level ab and apply the Cauchy–Schwarz inequality.1 This is
successful if there is an additional average over a, b, and to this end we will prove the following
sixth moment bound, which is of independent interest.

Theorem 2. Let Q,T > 1, and for q ∈ N, let B∗(q) denote an orthonormal basis of Hecke–Maaß
newforms ψ of level q having spectral parameter tψ. Then

∑
q6Q

∑
ψ∈B∗(q)
|tψ |6T

|L(1/2, ψ)|6

L(1,Ad2ψ)
�ε (QT )εT 8Q2.

The emphasis here is on the Q-aspect, which is sharp up to the presence of Qε; the T -aspect
only needs to be polynomial. For comparison, it is classical, although technically difficult, to
understand the fourth moment for an individual large level q. Our result is easier because we
have an additional average over q (which, however, is spectrally not easy to exploit), but also
harder because we study a higher moment. Any spectral method will have to complete the
discrete spectral sum to an entire spectral expression including Eisenstein series, and already
in the fourth moment one of the biggest obstacles is the fact that the additional continuous
contribution is quite large in the level aspect. It is not surprising that this becomes even worse
for the sixth moment, and here the artificially added Eisenstein term exceeds the targeted bound
by a substantial power of Q.

1 Depending on the application, it may also be convenient to use Hölder’s inequality with suitable exponents; see,
for example, [BM15].
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An overview of the method of proof and how the various technical and conceptual issues are
addressed will be given in § 1.4. We present an immediate application of Theorem 2.

Corollary 3. Let q be prime. Then∑
ψ∈B∗(q)

L(1/2, ψ)5e−t
2
ψ �ε q

1+θ/3+ε

for every ε > 0. In particular, for ψ ∈ B∗(q), we have

L(1/2, ψ)�tψ ,ε q
1/5+θ/15+ε � q0.2073.

This improves the θ-dependence of the fifth moment bound in [BK19b, Theorem 3] and
provides the numerical subconvexity record for L(1/2, ψ) in the level aspect (the previous
exponent being 0.217 from [BK19b, Theorem 4]; cf. [KY17]).

1.3 Fourth moments twisted by Dirichlet polynomials
For many applications, in particular with respect to the amplification, mollification, or resonance
method, one wishes to augment moment results on L-functions by inserting well-chosen Dirichlet
polynomials – ideally as long as possible – that in effect often act as additional fractional
moments. This is classical for the Riemann zeta function, where Watt [Wat95], building on
work of Deshouillers and Iwaniec [DI82], proved∫ T

0
|ζ(1/2 + it)|4

∣∣∣∣ ∑
m6M

amm
it

∣∣∣∣2 dt� ‖a‖2∞(MT )1+ε

for M 6 T 1/4 and an arbitrary sequence a = (am)16m6M . This can be turned into an asymptotic
formula; see [Mot96, HY10, BBLR16]. Versions for Dirichlet L-functions with conductors
sufficiently small with respect to T can be found in [HWW04], along with applications to primes
in arithmetic progressions and short intervals. We also mention [FI92] as an interesting variation
if the sequence is factorizable in the ring of multiplicative functions.

As an application of Theorems 1 and 2, we will prove the following analogous sharp upper
bound for a fourth moment of Dirichlet L-functions twisted by the square of a Dirichlet
polynomial of length up to q1/4.

Theorem 4. Let q be a prime, 1 6M 6 q1/4, and {a(m)}16m6M a sequence of complex numbers
supported on square-free numbers. Then∑

χ (mod q)

∣∣∣∣ ∑
m6M

a(m)χ(m)

∣∣∣∣2|L(1/2, χ)|4 �ε ‖a‖2∞(Mq)1+ε.

To get a feeling for the strength of the result, we mention that it implies trivially the Burgess
bound L(1/2, χ)�ε q

3/16+ε for every non-trivial character modulo q. The reader may wonder to
what extent this upper bound can be turned into an asymptotic formula, but interestingly this
is a much harder problem than in the case of the Riemann zeta function. The reason is that a
δ-mass at the point 1/2 is not a proper test function. On a technical level, the t-integral with a
holomorphic test function and the freedom to shift its contour is crucial to establish convergence
throughout the argument, even in the special case M = 1. Therefore, a corresponding asymptotic
formula can be achieved if an additional t-average (essentially of constant length) is included,
but for the central point individually, one has to use other methods (see, for example, [Hou16,
Zac19a]) that yield much weaker results. See [Wat08] for a slightly more general result, which,
however, is not independent of bounds towards the Ramanujan conjecture.
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1.4 Heuristics
We conclude this introduction with a heuristic argument supporting relation (1.5) and the bound
in Theorem 2 as well as some additional comments. This section is not intended to provide proofs,
but may serve as a roadmap.

We start with (1.5). For the sake of argument, we will use approximate functional equations,
although our proof works with Dirichlet series in the region of absolute convergence and continues
meromorphically only at the very end (the great advantage of this is that we do not have to
deal with a root number term, and so we will ignore this term also in the present sketch). For
simplicity, we will also ignore the t-average whose purpose is to achieve convergence, as well as
all ‘main terms’ that arise in the course of the computation. We have∑

χ (mod q)

χ(a)χ(b)|L(1/2, χ)|4

≈
∑

χ (mod q)

χ(a)χ(b)
∑

n,m,r1,r2�q1/2

χ(nm)χ(r1r2)

(nmr1r2)1/2
≈

∑
n,m,r1,r2�q1/2

anm≡br1r2 (mod q)

1.

Rather than solving a shifted convolution problem, we take an asymmetric approach and apply
Poisson summation only in one variable, say n. This gives

1

q

∑
n,m,r1,r2�q1/2

e

(
abnmr1r2

q

)
.

Suppose that a � b. Then bnr1r2 � amq, so we can apply the additive reciprocity formula

e

(
nd

c

)
= e

(
−nc
d

)
e

(
n

cd

)
(1.16)

to obtain
1

q

∑
n,m,r1,r2�q1/2

e

(
qbnr1r2

am

)
.

Applying Poisson summation in n, r1, r2, this gives roughly

1

a2

∑
m�q1/2

∑
n,r1,r2�a

S(qr1r2b, n, am).

If we assume for simplicity that b is prime and coprime to aqmr1r2 (this is where the assumption
‘b square-free’ in Theorem 1 is used), then S(qr1r2, bn, abm) = −S(qr1r2b, n, am) by twisted
multiplicativity. For the Kloosterman sum on the left-hand side, we are in the ‘Linnik range’√
qr1r2bn � abm, and an application of the Kuznetsov formula yields the right-hand side of (1.5).

A back-of-the-envelope computation for Theorem 2 looks as follows. By an approximate
functional equation, we have roughly

L(1/2, ψ)6 ≈
∑

n,m�Q3/2

τ3(n)τ3(m)λψ(n)λψ(m)

(nm)1/2

for ψ ∈ B∗(q), q � Q, where for simplicity we regard T as fixed; here τ3(n) :=
∑

abc=n 1. Summing
ψ ∈ B∗(q) and q � Q by the Kuznetsov formula, the diagonal term is of size Q2 and the off-
diagonal term looks roughly like

Q
∑
q�Q

∑
n,m�Q3/2

τ3(n)τ3(m)

(nm)1/2

∑
c�Q1/2

S(n,m, qc)

qc
. (1.17)
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The key idea is to switch the roles of q and c and to apply the Kuznetsov formula backwards,
but this time viewed as a spectral summation formula of level c. This switching principle is well
known from sieve theory; here we apply it in an automorphic context, to some extent similar in
spirit to [DI82]. We obtain roughly

Q1/2
∑

c�Q1/2

∑
ψ∈B∗(c)

∑
n,m�Q3/2

τ3(n)τ3(m)λψ(n)λψ(m)

(nm)1/2
.

Applying Voronoi summation on the long n,m-sum, we may hope to get complete square root
cancellation, obtaining the final bound Q3/2 for the off-diagonal contribution.

Apart from neglecting oldforms, whose presence is technically challenging, this heuristic
argument has an important deficiency: it ignores the continuous spectrum that needs to be
added artificially before applying the Kuznetsov formula, and this contribution is of size Q5/2 and
substantially exceeds our target bound. In particular, it is impossible to estimate (1.17) by Q3/2

as indicated, as we know in advance that it is of size Q5/2. This dilemma of a gigantic continuous
spectrum contribution is well known to experts and was first encountered in [DFI02], where the
contribution was carefully computed and matched with another main term that occurred at a
different stage of the argument. In [BHM07], the problem was solved by introducing additional
zeros in the Mellin transform of the weight function in the approximate functional equation.
Unfortunately, this loses positivity (and therefore many convenient simplifications), and it is
also a very technical task to find the initial zeros at the end of the argument where they are
needed to make a certain main term disappear. In the present situation, we argue differently and
find a rather soft way to match two Eisenstein terms without actually computing them.

2. Preliminaries

2.1 Hecke theory
We generally denote Hecke eigenvalues, with or without subscript, by λ(n). For newforms of level
N , we will often use the multiplicativity relation

λ(nm) =
∑

d|(m,n)
(d,N)=1

µ(d)λ(m/d)λ(n/d). (2.1)

We have the general upper bound
λ(n)�ε n

θ+ε. (2.2)

For a newform of level N = N1N2 and trivial central character with N1 square-free, (N1, N2) = 1,
and some n | N1, we have

|λ(n)| = n−1/2 (2.3)

via [Ogg69, Theorem 2].

2.2 Functional equation for the Hurwitz zeta function
For α ∈ R, <s > 1, let

ζ(s, α) :=
∑

n+α>0

(n+ α)−s

denote the Hurwitz zeta function. It has meromorphic continuation to all s ∈ C with a simple
pole at s = 1 of residue 1 and satisfies the functional equation

ζ(s, α) =
∑
±
G∓(1− s)ζ(±α)(1− s), (2.4)
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where
G±(s) = (2π)−sΓ(s) exp(±iπs/2)

and ζ(α)(s) is (the meromorphic continuation of)
∑

n e(αn)n−s. For α ∈ Q, this is a reformulation
of Poisson summation in residue classes.

2.3 Functional equation for twisted automorphic L-functions
For α ∈ R, <s > 1, let

L(s, α, f) :=
∑
n

λf (n)e(αn)n−s, (2.5)

where, as before, f is a Hecke eigenform of the group SL2(Z), either Maaß with spectral parameter
t and parity ε ∈ {±1}, or holomorphic of weight k, or the standard Eisenstein series with λf (n) =
τ(n). If α = a/c ∈ Q with (a, c) = 1, this L-function has meromorphic continuation to all s ∈ C
with a double pole at s = 1 with Laurent expansion

1

c

(
1

(s− 1)2
+

2γ − 2 log c

s− 1
+O(1)

)
(2.6)

if f is Eisenstein; note that this is independent of a. The twisted L-function satisfies the functional
equation (see, for example, [HM06, § 2.4])

L(s, a/c, f) =
∑
±
G∓f (1− s)c1−2sL(s,±a/c, f), (2.7)

where

G+
f (s) = ik(2π)1−2s Γ(s+ (k − 1)/2)

Γ(1− s+ (k − 1)/2)
, G−f (s) = 0

if f is holomorphic of weight k and

G±f (s) = ε(1∓1)/2 Γ(1
2(s+ it))Γ(1

2(s− it))
Γ(1

2(1− s+ it))Γ(1
2(1− s− it))

∓
Γ(1

2(1 + s+ it))Γ(1
2(1 + s− it))

Γ(1
2(2− s+ it))Γ(1

2(2− s− it))
(2.8)

if f is Maaß with spectral parameter t and parity ε ∈ {±1}. This also holds for f equal to the
standard Eisenstein series with t = 0 and ε = 1.

2.4 Fourier coefficients
We quote from [BK19b, § 3] and refer to this source for more details and references. The cuspidal
spectrum is parametrized by pairs (ψ,M) of Γ0(N)-normalized newforms ψ of level N0 | N and
integers M | N/N0. The corresponding Fourier coefficients are

ρψ,M,N (n) =
1

L(1,Ad2ψ)1/2(Nν(N))1/2

∏
p|N0

(
1− 1

p2

)1/2 ∑
d|(M,n)

ξψ(M,d)
d

M1/2
λψ(n/d) (2.9)

for n ∈ N, where ν(N) =
∏
p|N (1 + 1/p) and the multiplicative function ξψ is defined in [BK19b,

(3.10)] and satisfies in particular

ξψ(p, p) =

(
1−

λψ(p)2

p(1 + 1/p)2

)−1/2

, ξψ(p, 1) =
−λψ(p)

1 + 1/p2
, ξψ(1, 1) = 1 (2.10)

for p - N0 and in general
ξψ(M,d)�ε M

ε(M/d)θ. (2.11)
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For −n ∈ N we have ρψ,M,N (n) = εψρψ,M,N (−n) if ψ is Maaß of parity εψ ∈ {±1} and ρψ,M,N (n)
= 0 if ψ is holomorphic.

If N is square-free, the Fourier coefficients of Eisenstein series of level N are easy to
describe. They are parametrized by divisors v | N and a continuous parameter s = 1/2 + it.
The corresponding Fourier coefficients are given by (see, for example, [CI00, (3.25)])

ρv,N (n, t) =
C(v,M, t)

(Nv)1/2ζ(N)(1 + 2it)

∑
b|v

∑
γ|N/v

µ(bγ)b

(
b

γ

)it
η

(
|n|
bγ
, t

)
, (2.12)

where η(n, t) =
∑

d1d2=n(d1/d2)it for n ∈ N (and 0 otherwise) and |C(v,N, t)| = 1. For general
N , we follow [BK19b, § 3] and parametrize unitary Eisenstein series of Γ0(N) by a continuous
parameter s = 1/2 + it together with pairs (χ,M), where χ is a primitive Dirichlet character of
conductor cχ and M ∈ N satisfies c2

χ | M | N . Note that the role of M is different than in the
cuspidal case. We write

ñN (M) =

( ∏
p|N

p-(M,N/M)

p

p+ 1

∏
p|(M,N/M)

p− 1

p+ 1

)1/2

,

M = cχM1M2, where (M2, cχ) = 1, M1 | c∞χ ,

so that cχ | M1 and (M1,M2) = 1. The Fourier coefficients of the Eisenstein series attached to
the data (N,M, t, χ) are

ρχ,M,N (n, t) =
C̃(χ,M, t)|n|it

(Nν(N))1/2ñN (M)L(N)(1 + 2it, χ2)

(
M1

M2

)1/2

×
∑
δ|M2

δµ

(
M2

δ

)
χ(δ)

∑
cM1δf=n

(c,N/M)=1

χ(c)

c2it
χ(f), (2.13)

where |C̃(χ,M, t)| = 1.

2.5 The Kuznetsov formula
For x > 0, we define the integral kernels

J +(x, t) :=
πi

sinh(πt)
(J2it(4πx)− J−2it(4πx)),

J −(x, t) :=
πi

sinh(πt)
(I2it(4πx)− I−2it(4πx)) = 4 cosh(πt)K2it(4πx),

J hol(x, k) := 2πikJk−1(4πx) = J +(x, (k − 1)/(2i)), k ∈ 2N.

If H ∈ C3((0,∞)) satisfies xjH(j)(x)� min(x, x−3/2) for 0 6 j 6 3, we define

L ♦H =

∫ ∞
0
J ♦(x, .)H(x)

dx

x

for ♦ ∈ {+,−, hol}, and for n,m,N ∈ N, we have∑
N |c

S(±n,m, c)
c

H

(√
nm

c

)
= AMaaß

N (±n,m; L ±H) +AEis
N (±n,m; L ±H) +Ahol

N (±n,m; L holH), (2.14)
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where

AMaaß
N (n,m;h) :=

∑
N0M |N

∑
ψ∈B∗(N0)

ρψ,M,N (n)ρψ,M,N (m)h(tψ),

AEis
N (n,m;h) :=

∑
v|N

∫
R
ρv,N (n, t)ρv,N (m, t)h(t)

dt

2π
(N square-free),

AEis
N (n,m;h) :=

∑
c2χ|M |N

∫
R
ρχ,M,N (n, t)ρχ,M,N (m, t)h(t)

dt

2π
(in general),

Ahol
N (n,m;h) :=

∑
N0M |N

∑
ψ∈B∗hol(N0)

ρψ,M,N (n)ρψ,M,N (m)h(kψ).

(2.15)

(Recall that ψ ∈ B∗(N0) and ψ ∈ B∗hol(N0) are Γ0(N)-normalized.) Conversely, if h is holomorphic
in an ε-neighbourhood of |=t| 6 1/2 and satisfies h(t) � (1 + |t|)−2−δ in this region for some
δ > 0, then for n,m ∈ N, we have [BK19b, (3.14)]

AMaaß
N (n,m;h) +AEis

N (n,m;h) = δn,m

∫ ∞
−∞

h(t)
t tanh(πt) dt

2π2
+
∑
N |c

S(n,m, c)

c
K h

(√
nm

c

)
,

(2.16)
where

K h(x) =

∫ ∞
−∞
J +(x, t)h(t)t tanh(πt)

dt

2π2
=
i

π

∫ ∞
−∞

J2it(4πx)

cosh(πt)
h(t)t dt. (2.17)

2.6 Integral transforms
We generalize (2.17) slightly and define for s ∈ C the transform Ksh by Ksh(x) := xsK h(x).

Lemma 1. Let s ∈ C with <s < −10, and suppose that h is holomorphic in |=t| < (−<s+15)/2,
satisfying h(t) � (1 + |t|)−10 and having zeros at ±i(2n − 1)/2, n ∈ N, in this region. Then
H := Ksh satisfies the assumptions of (2.14), that is, xjH(j)(x)�s min(x, x−3/2) for 0 6 j 6 3.

Proof. We record the formula [GR07, (8.411.10)]

J2it(4πx)

cosh(πt)
=

(2πx)2it

√
πΓ(1/2 + 2it) cosh(πt)

∫ 1

−1
(1− y2)2it−1/2 cos(4πxy) dy (2.18)

for <(2it) > −1/2, x > 0. In particular,

dj

dxj
J2it(4πx)

cosh(πt)
�j,A,ε

(
x

1 + |t|

)<(2it)

(1 + |t|/x)j , −1/2 + ε 6 <(2it) < A, (2.19)

for j, A ∈ N0 := N ∪ {0}, ε > 0. Let s ∈ C with <s < −10 be fixed. For x > 1 and 0 6 j 6 3, we
obtain

xjH(j)(x)� x<s+j
∫ ∞
−∞

(
1 +
|t|
x

)j
|h(t)t| dt� x<s+j � x−3/2,

and for x < 1, we shift the contour to <(2it) = −<s+10 (not passing any pole by our assumption
on h), getting

xjH(j)(x)� x<s
∫ ∞
−∞

(
x

1 + |t|

)−<s+10(
1 +
|t|
x

)j∣∣∣∣h(t− i

2
(10−<s)

)
t

∣∣∣∣ dt� x. 2
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Lemma 2. Let s ∈ C with <s < 1, and suppose that h is even and holomorphic in |=t| <
(−<s+ 15)/2, satisfying h(t)� e−|t| and having zeros at ±i(2n− 1)/2, n ∈ N, in this region.

(a) The transform L +Ksh, defined for <s < −10 by Lemma 1, has analytic continuation to
<s < 1, and we have the Sears–Titchmarsh inversion formula L +K0h = h.

(b) We have the uniform bounds

L +Ksh(t)�<s
∫ ∞
−∞

∣∣∣∣h(τ − i

2
(1−<s)

)∣∣∣∣(1 + |τ |)
∏
±

(
1 +

∣∣∣∣12=s− τ ±<t
∣∣∣∣)−1+<s

dτ

for t ∈ R ∪ [−iθ, iθ] and <s < 1, and

L holKsh(k)�<s
∫ ∞
−∞

∣∣∣∣h(τ − i

2
max(2− k −<s, 0)

)∣∣∣∣(1 + |τ |)
∏
±

(∣∣∣∣12=s± τ
∣∣∣∣+ k

)−1+<s
dτ

for k ∈ 2N, where the implied constants depend only on <s (but not on t, k, h, =s).

Proof. For <s < −10, we have, by definition,

Ksh(x) = xs
i

π

∫
<(iτ)=(10−<s)/2

J2iτ (4πx)

cosh(πτ)
h(τ)τ dτ,

and we have an absolutely convergent double integral

L +Ksh(t) = −
∫ ∞

0

1

sinh(πt)
(J2it(4πx)− J−2it(4πx))xs

∫
<(iτ)=(10−<s)/2

J2iτ (4πx)

cosh(πτ)
h(τ)τ dτ

dx

x
.

To see the absolute convergence, we use (2.19) with j = 0 to bound J±2it(x)�t min(x2θ, x−2θ)
for t ∈ R ∪ [−iθ, iθ], and we combine (2.19) with the bound Jν(x)� x−1/2 for x� |ν|2 (which

follows from the asymptotic formula [GR07, (8.451.1)]) to bound

J2iτ (x)� min(x−<s+10, x−1/2(1 + |τ |)−<s+11).

We can compute the x-integral explicitly using [GR07, (6.574.2)], getting

L +Ksh(t) =

∫
<(iτ)=(10−<s)/2

Γ(1− s) cos(iπτ + πs/2)h(τ)τ

(2π)sπi cosh(πτ)

∏
±

Γ
(
s
2 + iτ ± it

)
Γ
(
1− s

2 + iτ ± it
) dτ. (2.20)

Here we can put any s with <s < 1 in the integrand (and also shift the contour to, say, <(iτ) = 5),
in particular s = 0, so that

L +K0h(t) =

∫
<(iτ)=5

h(τ)τ

t2 − τ2

dτ

πi
.

The integrand is odd, so the integral equals half the sum of the two residues at τ = ±t and
part (a) of the lemma follows. To prove part (b) for L +Ksh(t), we shift the τ -contour to
<(iτ) = (1 − <(s))/2 and estimate trivially in (2.20) using Stirling’s formula. For L holKsh(t),
we have the similar expression

L holKsh(k) = ik+1

∫
<(iτ)=a

Γ(1− s)(2π)−sΓ
(
k−1

2 + s
2 + iτ

)
Γ
(
k+1

2 −
s
2 − iτ

)
Γ
(

3−k
2 −

s
2 + iτ

)
Γ
(
k+1

2 −
s
2 + iτ

) h(τ)τ

cosh(πτ)
dτ

for any a ∈ R satisfying k − 1 + <s + 2a > 0, say a = max((2− k −<s)/2, 0). We can rewrite
this as ∫

<(iτ)=a

Γ(1− s) cos(iπτ + 1
2πs)h(τ)τ

(2π)sπi cosh(πτ)

∏
±

Γ
(
k−1

2 + s
2 ± iτ

)
Γ
(
k+1

2 −
s
2 ± iτ

) dτ.
The desired bound follows now from Γ(z +w)/Γ(z)�w (1 + |z|)w for w ∈ R and |z| sufficiently
large; see, for example, [GR07, (8.328.2)]. 2
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3. Proof of Theorem 1

3.1 The set-up

We recall the definitions (1.6) and (1.9) for a prime q and integers a, b satisfying (ab, q) =

(a, b) = 1, a � b, and an even holomorphic test function F that is rapidly decaying on vertical

lines and is divisible by (1− u)(v − 1)2
∏50
j=1(j − s). Initially we assume

2 < <s, <v < 3, 10 < <u < 11. (3.1)

In this section all implicit constants may depend on s, u, v, ε and F . Additional dependencies
will be mentioned. We proceed to define the correction polynomial Pq(s, u, v, z), and to this end
we define three auxiliary quantities

T (1)
q (s, u, v) :=

∫
R
ζ(q)(s+ z)ζ(q)(u+ z)L(q)(v − z, f)F (z)

dz

2πi
,

T (2)
q (s, u, v) := q1−s−v

∫
R

(
λ(q)− 1

qv−z

)
ζ(s+ z)ζ(q)(u+ z)L(v − z, f)F (z)

dt

2πi
,

T (3)
q (s, u, v) :=

∫
R

(q2−s−u−2v − q1−u−2v+z)ζ(s+ z)ζ(u+ z)L(v − z, f)F (z)
dz

2πi
.

Here ζ(q)(s) := ζ(s)
∏
p|q(1−p−s) and L(q)(s, f) = L(s, f)

∏
p|q(1−λf (p)p−s+p−2s) are the usual

L-functions with the Euler factors dividing q omitted. We define

T triv
q (s, u, v) :=

3∑
j=1

T (j)
q (s, u, v),

so that (1.9) holds with

Pq(s, u, v, z) =

(
1− 1

qs+z

)(
1− 1

qu+z

)(
1− λ(q)

qv−z
+

1

q2v−2z

)
+ q1−s−v

(
λ(q)− 1

qv−z

)(
1− 1

qu+z

)
+ q2−s−u−2v − q1−u−2v+z. (3.2)

It is easy to see that this satisfies (1.8). In the range (3.1), we can open the Dirichlet series and
obtain

Ta,b,q(s, u, v) + T (1)
q (s, u, v) = q

∫
(0)
F (z)

∑
(nmr,q)=1

anm≡br (mod q)

λ(r)

ns+zmu+zrv−z
dz

2πi
,

T (2)
q (s, u, v) = q1−s−v

∫
(0)
F (z)

(
λ(q)− 1

qv−z

) ∑
n,r,(m,q)=1

λ(r)

ns+zmu+zrv−z
dz

2πi
,

= q

∫
(0)
F (z)

∑
n,r,(m,q)=1

λ(qr)

(qn)s+zmu+z(qr)v−z
dz

2πi
,

T (3)
q (s, u, v) = q2−s−u−2v

∫
(0)
F (z)(1− qs+z−1)

∑
n,r,m

λ(r)

ns+zmu+zrv−z
dz

2πi
.

We conclude that
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T̃a,b,q(s, u, v) := Ta,b,q(s, u, v) + T (1)
q (s, u, v) + T (2)

q (s, u, v)

= q

∫
(0)
F (z)

∑
(m,q)=1

n≡ambr (mod q)

λ(r)

ns+zmu+zrv−z
dz

2πi
.

Eventually the term T (3)
q (s, u, v) will remove the last coprimality condition (m, q) = 1, but this

has to wait until the end of argument. Until then, we transform T̃a,b,q(s, u, v) and T (3)
q (s, u, v) in

a parallel fashion.

3.2 Poisson summation
We write the n-sum in terms of the Hurwitz zeta function with α = ambr/q and shift the z-
contour to the left to <z = −4. Our assumption on F implies that the potential pole at z = 1−s
is cancelled. The m, r-sums are still absolutely convergent, and we apply the functional equation
(2.4), getting

T̃a,b,q(s, u, v) =
∑
±

∫
(−4)

F (z)G±(1− s− z)q1−s−z
∑

n,r,(m,q)=1

λ(r)e(∓abrnm/q)
n1−s−zmu+zrv−z

dz

2πi
(3.3)

and

T (3)
q (s, u, v) = q2−s−u−2v

∫
(−4)

F (z)(1− qs+z−1)G±(1− s− z)
∑
n,r,m

λ(r)

n1−s−zmu+zrv−z
dz

2πi

= q2−s−u−2v

∫
(−4)

F (z)G±(1− s− z)
∑

(n,q)=1,r,m

λ(r)

n1−s−zmu+zrv−z
dz

2πi
. (3.4)

3.3 Reciprocity
For α ∈ R \ {0}, we recall the absolutely convergent Mellin integral

e(α) =

∫
C
Gsgn(α)(s)|α|−w dw

2πi
,

where C is the contour

C = (−3
5 − i∞,−

3
5 − i] ∪ [−3

5 − i,
1
10 ] ∪ [ 1

10 ,−
3
5 + i] ∪ [−3

5 + i,−3
5 + i∞).

In (3.3), we insert

1 = e

(
± brn

amq

)∫
C
G±(w)

(
brn

amq

)−w dw
2πi

(3.5)

and apply the additive reciprocity formula (1.16). This gives the absolutely convergent expression

T̃a,b,q(s, u, v) =
∑
±

∫
(−4)

∫
C
F (z)

(
b

a

)−w
G±(w)G±(1− s− z)q1−s−z+w

×
∑

n,(m,q)=1,r

λ(r)e(±qbrn/(am))

n1−s−z+wmu+z−wrv−z+w
dw

2πi

dz

2πi
.

We temporarily straighten the C-contour to <w = −3/5, picking up the polar term∑
±

∫
(−4)

F (z)G±(1− s− z)q1−s−z
∑

n,(m,q)=1,r

λ(r)e(±qbrn/(am))

n1−s−zmu+zrv−z
dz

2πi
.
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In the remaining double integral, we change variables w 7→ w+z (so that <z = −4, <w = 17/5),
exchange the two integrals, and in the inner z-integral we bend the contour to the right to the
contour

C(w) = C − w = (−3
5 − w − i∞,−

3
5 − w − i] ∪ [−3

5 − w − i,
1
10 − w]

∪[ 1
10 − w,−

3
5 − w + i] ∪ [−3

5 − w + i,−3
5 − w + i∞)

consisting of a union of straight lines. This picks up a polar term

−
∑
±

∫
(17/5)

F (−w)G±(1− s+ w)q1−s+w
∑

n,(m,q)=1,r

λ(r)e(±qbrn/(am))

n1−s+wmu−wrv+w

dw

2πi
,

which cancels the previous one. This shows that

T̃a,b,q(s, u, v) =
∑
±

∫
(17/5)

Φ±a,b,s(w)q1−s+w
∑

n,(m,q)=1,r

λ(r)e(±qbrn/(am))

n1−s+wmu−wrv+w

(
b

a

)−w dw
2πi

, (3.6)

where

Φ±a,b,s(w) =

∫
C(w)

F (z)

(
b

a

)−z
G±(w + z)G±(1− s− z) dz

2πi

= (2π)s−w−1e±iπ(w+1−s)/2
∫
C(w)

F (z)

(
b

a

)−z
Γ(w + z)Γ(1− s− z) dz

2πi
.

Here we can straighten the contour and shift it to the far left to <z = −A, say. This gives a sum
of polar terms of the shape

pn(w) :=
(−1)n

n!
(2π)s−w−1e±iπ(w+1−s)/2F (−w − n)

(
b

a

)w+n

Γ(1− s+ w + n), n ∈ N0,

and a remaining integral that is holomorphic in the half plane <w > −A and bounded by
�<w,A (b/a)A(1 + |w|)<w−A−1/2. Since F (1− s) = · · · = F (50− s) = 0, we conclude that Φ±a,b,s
is

holomorphic in |<w| < 48 and satisfies Φ±a,b,s(w)� (1 + |w|)−100 (3.7)

as long as a � b and 0 < <s < 3. We also observe that∑
±

Φ±a,b,s(s) = 0. (3.8)

Inserting

1 = e

(
±brn
am

)∫
C
G±(w)

(
brn

am

)−w dw
2πi

into (3.4) (similarly to (3.5), but with different variables), we obtain in the same way

T (3)
q (s, u, v) =

∑
±

∫
(17/5)

Φ±a,b,s(w)q2−s−u−2v
∑

m,(n,q)=1,r

λ(r)e(±brn/(am))

n1−s+wmu−wrv+w

(
b

a

)−w dw
2πi

.

(The expression is still independent of a, b, even though the right-hand side seems to depend on
a, b.)
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3.4 Poisson summation again
We return to (3.6), split the n-sum into residue classes modulo am, express the n-sum in terms
of the Hurwitz zeta function, shift the w-contour to <w = 0, and apply the functional equation
(2.4), getting

T̃a,b,q(s, u, v) =
∑
±

∑
σ∈{±}

∫
(0)

Φ±a,b,s(w)G−σ(s− w)q1−s+w

×
∑

(m,q)=1,r,n

∑
ν (mod am)

e

(
±qbrν
am

)
λ(r)e(σnν/(am))

ns−wmu−wrv+w

(
b

a

)−w
(am)s−w−1 dw

2πi
. (3.9)

Note that the possible pole at w = s is cancelled by (3.8). Similarly,

T (3)
q (s, u, v) =

∑
±

∑
σ∈{±}

∫
(0)

Φ±a,b,s(w)G−σ(s− w)q2−s−u−2v

×
∑
r,m,n

∑
ν (mod qam)

(ν,q)=1

e

(
±brν
am

)
λ(r)e(σnν/(amq))

ns−wmu−wrv+w

(
b

a

)−w
(amq)s−w−1 dw

2πi
. (3.10)

3.5 Voronoi summation
Our next aim is to apply the functional equation for the r-sum. This requires some preparation
because bν is not necessarily coprime to am. Therefore we introduce various new variables.
We write (m, b) = β1 and b = β1β2, m = β1m

′, (m′, β2) = 1. Next, we write (ν, am′) = m1,
(m1, a) = α1, and a = α1α2, m1 = α1m

′
1, (m′1, α2) = 1, and further m′ = m′1m2, ν = α1m

′
1ν
′,

(ν ′, α2m2) = 1. Dropping the primes for notational simplicity, we recast the second line in (3.9)
as ∑

α1α2=a

∑
β1β2=b

∑
r,n

∑
(m1,α2β2q)=1

(m2,qβ2)=1

∑
ν (mod α2β1m2)

(ν,α2m2)=1

e

(
±qβ2rν

α2m2

)
λ(r)e(σnν/(α2β1m2))

ns−w(β1m1m2)u−s+1rv+w

as−1

bw

and the second line in (3.10) as∑
α1α2=a

∑
β1β2=b

∑
r,n

∑
(m1,α2β2q)=1

(m2,β2)=1

∑
ν (qα2β1m2)
(ν,α2m2q)=1

e

(
±β2rν

α2m2

)
λ(r)e(σnν/(α2β1m2q))

ns−w(β1m1m2)u−s+1rv+w

as−1

bw
.

Note that in both cases the m1-sum is ζ(α2β2q)(1 +u− s). Both terms are now in shape to apply
Voronoi summation. We express the r-sum in terms of the twisted L-function (2.5), shift the
w-contour to <w = −4 (picking up a possible residue at w = 1 − v), and apply the functional
equation (2.7). In this way we see that T̃a,b,q(s, u, v) equals∑

±

∑
σ,τ∈{±}

∫
(−4)

Φ±a,b,s(w)G−σ(s− w)q1−s+w
∑

α1α2=a

∑
β1β2=b

ζ(α2β2q)(1 + u− s)

×G−τf (1− v − w)
∑
r,n

∑
(m2,qβ2)=1

∑
ν (mod α2β1m2)

(ν,α2m2)=1

e

(
±τqβ2νr

α2m2

)
λ(r)e(σnν/(α2β1m2))

ns−w(β1m2)u−s+1r1−v−w

× as−1

(β1β2)w
(α2m2)1−2v−2w dw

2πi
+ P(1)

a,b,q(s, u, v), (3.11)
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where the polar term P(1)
a,b,q(s, u, v) vanishes unless f is Eisenstein, in which case it equals

P(1)
a,b,q(s, u, v) = Res

w=1−v

∑
±

∑
σ∈{±}

Φ±a,b,s(w)G−σ(s− w)q1−s+w

×
∑

α1α2=a

∑
β1β2=b

ζ(α2β2q)(1 + u− s)

×
∑
β1|n

∑
(m2,qβ2)=1

as−1β1rα2m2(n/β1)

(β1m2)u−s+1ns−wbw
L

(
v + w,

∗
α2m2

, f

)
, (3.12)

where rc(n) denotes the Ramanujan sum. (Recall that by (2.6) the residue is independent of the
numerator ∗ in the twist of the L-function.) Similarly,

T (3)
q (s, u, v) =

∑
±

∑
σ,τ∈{±}

∫
(−4)

Φ±a,b,s(w)G−σ(s− w)q1−w−u−2v

×
∑

α1α2=a

∑
β1β2=b

ζ(α2β2q)(1 + u− s)G−τf (1− v − w)

×
∑
r,n

∑
(m2,β2)=1

∑
ν (mod qα2β1m2)

(ν,α2m2q)=1

e

(
±τβ2νr

α2m2

)

× λ(r)e(σnν/(α2β1m2q))

ns−w(β1m2)u−s+1r1−v−w
as−1

bw
(α2m2)1−2v−2w dw

2πi
+ P(2)

a,b,q(s, u, v), (3.13)

where

P(2)
a,b,q(s, u, v) = Res

w=1−v

∑
±

∑
σ∈{±}

Φ±a,b,s(w)G−σ(s− w)q1−w−u−2v

×
∑

α1α2=a

∑
β1β2=b

ζ(α2β2q)(1 + u− s)

×
∑
β1|n

∑
(m2,β2)=1

as−1β1rα2m2q(n/β1)

(β1m2)u−s+1ns−wbw
L

(
v + w,

∗
α2m2

, f

)
.

We will compute the two polar terms in a moment, but we observe already at this point that
now the time has come to combine the two main terms. Indeed, the main term in (3.13) simply
counteracts the condition (m2, q) = 1 of the main term in (3.11) and supplies the missing terms
q | m. Combining the two, we see that

T̃a,b,q(s, u, v) + T (3)
q (s, u, v) = T ∗a,b,q(s, u, v) +

2∑
j=1

P(j)
a,b,q(s, u, v),

where

T ∗a,b,q(s, u, v) =
∑
±

∑
σ,τ∈{±}

∫
(−4)

Φ±a,b,s(w)G−σ(s− w)G−τf (1− v − w)q1−w−u−2v

×
∑

α1α2=a

∑
β1β2=b

ζ(α2β2q)(1 + u− s)α
s−1
1 αs−2v−2w

2

βu−s+1+w
1 βw2

×
∑
r,n

∑
(m2,β2)=1

∑
ν (mod α2β1m2)

(ν,α2m2)=1

e

(
±τqβ2νr

α2m2

)
λ(r)e(σnν/(α2β1m2))

ns−wmu−s+2v+2w
2 r1−v−w

dw

2πi
. (3.14)
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3.6 Computation of polar terms

In this subsection we compute P(j)
a,b,q(s, u, v) for j = 1, 2. We consider first∑

α1α2=a

∑
β1β2=b

ζ(α2β2q)(1 + u− s)
∑
n

∑
(m2,qβ2)=1

as−1β1rα2m2(n)

(β1m2)u−s+1(β1n)s−wbw
L

(
v + w,

∗
α2m2

, f

)
corresponding to the last four sums in (3.12) for w in a neighbourhood of 1− v. Substituting

rα2m2(n) =
∑

d1d2=α2m
d1|n

d1µ(d2),

we obtain

ζ(s− w)
∑

α1α2=a

∑
β1β2=b

ζ(α2β2q)(1 + u− s) a
s−1

βu1β
w
2

×
∑

(m2,qβ2)=1

∑
d1d2=α2m2

µ(d2)

ds−w−1
1

1

mu−s+1
2

L

(
v + w,

∗
α2m2

, f

)

= ζ(s− w)
∑

α1α2=a

∑
β1β2=b

ζ(α2β2q)(1 + u− s) a
s−1

βu1β
w
2

×
∑

α2|d1d2
(d1d2/α2,qβ2)=1

µ(d2)

ds−w−1
1

αu−s+1
2

(d1d2)u−s+1
L

(
v + w,

∗
d1d2

, f

)
.

We write (d1, α2) = A1, A1A2 = α2, A2 | d2, eventually getting

P(1)
a,b,q(s, u, v) = Res

w=1−v

∑
±

∑
σ∈{±}

Φ±a,b,s(w)G−σ(s− w)q1−s+wζ(s− w)

×
∑

α1A1A2=a

∑
β1β2=b

ζ(A1A2β2q)(1 + u− s)µ(A2)Aw2
βu1β

w
2 (α1A2)1−s

×
∑

(d1d2,qA2β2)=1

µ(d2)L(v + w, ∗/A1A2d1d2, f)

du−w1 du−s+1
2

. (3.15)

By (2.6), this is a linear combination of∑
α1A1A2=a

∑
β1β2=b

Φ±a,b,q(1− v)G−σ(s+ v − 1)q2−v−sζ(s+ v − 1)

× ζ(A1A2β2q)(1− s+ u)ζ(qA2β2)(u+ v)

ζ(qA2β2)(2 + u− s)α1−s
1 A1+v−s

2 A1βu1β
1−v
2

and derivatives thereof. The same computation shows that

P(2)
a,b,q(s, u, v) = Res

w=1−v

∑
±

∑
σ∈{±}

Φ±a,b,s(w)G−σ(s− w)q1−w−u−2vζ(s− w)

×
∑
q1q2=q

1

qs−w−1
1

∑
α1A1A2=a

∑
β1β2=b

ζ(A1A2β2q)(1− s+ u)µ(A2q2)Aw1
βu1β

w
2 (α1A2)1−s

×
∑

(d1,A2β2q2)=1
(d2,A2β2)=1

µ(d2)L(v + w, ∗/A1A2d1d2, f)

du−w1 du−s+1
2

, (3.16)
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which is a linear combination of∑
q1q2=q

∑
α1A1A2=a

∑
β1β2=b

Φ±a,b,q(1− v)G−σ(s+ v − 1)ζ(s+ v − 1)

× q
2−s−u−2v
1

qu+v
2

ζ(A1A2β2q)(1− s+ u)ζ(A2β2q2)(u+ v − 1)

ζ(A2β2)(2 + u− s)α1−s
1 A2−s

2 Av1β
u
1β

1−v
2

and derivatives thereof.

3.7 Application of the Kuznetsov formula
We return to (3.14) and recognize the ν-sum as a Kloosterman sum. More precisely, the ν-sum
vanishes unless β1 | n, so that the second and third lines of (3.14) equal∑

α1α2=a

∑
β1β2=b

ζ(α2β2q)(1 + u− s)α
s−1
1 αs−2v−2w

2

βu1β
w
2

∑
r,n

∑
(m2,β2)=1

λ(r)S(±τqβ2r, σn, α2m2)

ns−wmu−s+2v+2w
2 r1−v−w . (3.17)

For (β2, qα2m) = 1, we have, by the twisted multiplicativity of Kloosterman sums,

S(±τqr, σβ2n, β2α2m) = rβ2(r)S(±τqrβ2, σn, α2m).

At this point, we use the fact that b is square-free; in particular, the Ramanujan sum rβ2(r) does
not vanish. Write B1 = (β2, r), B2B1 = β2, r = r′B1, (r′, B2) = 1. Then

S(±τqrβ2, σn, α2m) =
1

rβ2(r)
S(±τqr′B1, σB1B2n,B1B2α2m)

=
φ(B1)

φ(B1)µ(B2)
S(±τqr′, σB2n,B2α2m),

so that (3.17) is equal to∑
α1α2=a

∑
β1B1B2=b

ζ(α2B1B2q)(1 + u− s)µ(B2)αs−1
1 αs−2v−2w

2

βu1B
w
2 B

1−v
1

×
∑

(r,B2)=1,n

∑
(m2,β2)=1

λ(rB1)S(±τqr, σB2n,B2α2m2)

ns−wmu−s+2v+2w
2 r1−v−w .

Here we can drop the condition (m2, B2) = 1, since otherwise the Kloosterman sum vanishes
(since (r,B2) = 1). We remove the remaining condition (m2, B1) = 1 by Möbius inversion, getting∑

α1α2=a

∑
β1B3B4B2=b

ζ(α2B2B3B4q)(1 + u− s)µ(B2)µ(B3)αs−1
1 αs−2v−2w

2

βu1B
w
2 B

1+u−s+v+2w
3 B1−v

4

×
∑

(r,B2)=1,n

∑
m2

λ(rB3B4)S(±τqr, σB2n,B2B3α2m2)

ns−wmu−s+2v+2w
2 r1−v−w .

Rearranging, we obtain the final expression∑
±

∑
σ,τ∈{±}

q(3−s−u−2v)/2
∑

α1α2=a

∑
β1B3B4B2=b

µ(B2)µ(B3)αs−1
1 αu2ζ

(α2B2B3B4q)(1− s+ u)

βu1B
(s−u−1−2v)/2
2 B1−v

3 B1−v
4

×
∑

(r,B2)=1,n

λ(rB3B4)

n(s+u−1+2v)/2r(1−s+u)/2

∑
B2B3α2|m2

S(±στqr,B2n,m2)

m2
Ψ±,σ,τa,b,s,u,v

(√
qrB2n

m2

)
,

(3.18)
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for T ∗a,b,q(s, u, v), where

Ψ(x) = Ψ±,σ,τa,b,s,u,v(x) = xu−s+2v−1

∫
(−4)

Φ±a,b,s(w)G−τf (1− v − w)G−σ(s− w)x2w dw

2πi

=

∫
(0)

Φ±a,b,s

(
1 + s− u− 2v − w

2

)
G−τf

(
1− s+ u+ w

2

)
G−σ

(
s+ u+ 2v − 1 + w

2

)
×x−w dw

2πi
.

In the region (3.1), the integrand is holomorphic in 2θ− 8 < <w < 34 (recalling (2.8) and (3.7))

and rapidly decaying on vertical lines; in particular, the assumption xjΨ(j)(x)� min(x, x−3/2)

for 0 6 j 6 3 of the Kuznetsov formula (2.14) is satisfied. By (2.14), the m2-sum equals

AMaaß
B (εqr,B2r; L

εΨ) +AEis
B (εqr,B2r; L

εΨ) +Ahol
B (εqr,B2r; L

holΨ)

with B = B2B3α2 and ε = ±στ . In the larger region

1/2 6 <s,<v 6 3, <s 6 <u 6 11, (3.19)

the integrand of Ψ is holomorphic in 2θ − 1 < <w < 32 (and meromorphic in |<w| < 32) and

rapidly decaying on vertical lines. By [BK19b, Lemma 3a] and (3.7), we conclude that, uniformly

in this region,

L ±Ψ(t)� (1 + |t|)−30, L holΨ(k)� k−30 (3.20)

as long as a � b for t ∈ R ∪ [−7i/64, 7i/64] and k ∈ 2N. Recall again that Ψ depends on s, u, v,

which are currently restricted to (3.1).

3.8 The cuspidal contribution
We start with the analysis of the Maaß spectrum. Inserting definitions (2.15) and (2.9) and using
the notation and conventions of § 2.4, we obtain

AMaaß
B (εqr,B2r; L

εΨ) =
∑
B0|B

∑
ψ∈B∗(B0)

∑
M |(B/B0)

ρψ,M,B(εqr)ρψ,M,B(B2n)L εΨ(tψ)

=
∑
B0|B

∑
ψ∈B∗(B0)

ε
(1−ε)/2
ψ

∑
M |(B/B0)

∏
p|B0

(1− p−2)

L(1,Ad2ψ)Bν(B)

×
∑

d1,d2|M

ξψ(M,d1)ξψ(M,d2)
d1d2

M
λψ

(
qr

d1

)
λψ

(
B2n

d2

)
L εΨ(tψ).

Summing over n and r as in (3.18), we obtain

∑
B0|B

∑
ψ∈B∗(B0)

ε
(1−ε)/2
ψ

∑
M |(B/B0)

∏
p|B0

(1− p−2)

L(1,Ad2ψ)Bν(B)

∑
d1,d2|M

ξψ(M,d1)ξψ(M,d2)
d1d2

M

×
∑

(r,B2)=1

λ(rB3B4)λψ(qr/d1)

r(1−s+u)/2

∑
n

λψ(B2n/d2)

n(s+u−1+2v)/2
L εΨ(tψ).

Since (q,B) = 1, we have (d1, q) = 1, and so by (2.1), the r-sum equals
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δ(d1,B2)=1

d
(1−s+u)/2
1

∑
(r,B2)=1

λ(rd1B3B4)λψ(qr)

r(1−s+u)/2

=
δ(d1,B2)=1

d
(1−s+u)/2
1

∑
δ1|d1B3B4

(δ1,B0)=1

µ(δ1)λ(d1B3B4/δ1)

δ
(1−s+u)/2
1

∑
δ2|q

µ(δ2)λψ(q/δ)

δ
(1−s+u)/2
2

L(B2)(f × ψ, (1− s+ u)/2)

ζ(B2)(1− s+ u)
.

Similarly, the n-sum equals(
(B2, d2)

d2

)(s+u−1+2v)/2∑
n

λψ(B2n/(d2, B2))

n(s+u−1+2v)/2

=

(
(B2, d2)

d2

)(s+u−1+2v)/2 ∑
B∗|B2/(d2,B2)

(B∗,B0)=1

µ(B∗)λψ(B2/((d2, B2)B∗))

(B∗)(s+u−1+2v)/2
L(ψ, (s+ u− 1 + 2v)/2).

Putting everything together, the Maaß contribution to (3.18) equals∑
A|ab

∑
ψ∈B∗(A)

ΘMaaß
a,b,q (s, u, v, ψ)

L
(
s+u−1+2v

2 , ψ
)
L
(

1−s+u
2 , f × ψ

)
L(1,Ad2ψ)

,

where

ΘMaaß
a,b,q (s, u, v, ψ)

:=
∑
±

∑
σ,τ∈{±}

ε
(1∓στ)/2
ψ q(3−s−u−2v)/2

∑
α1α2=a

∑
β1B3B4B2=b

A|B2B3α2

µ(B2)µ(B3)αs−1
1 αu2

βu1B
(s−u−1−2v)/2
2 B1−v

3 B1−v
4

×
∑

M |(B2B3α2/A)

∑
d1,d2|M

(d1,B2)=1

ξψ(M,d1)ξψ(M,d2)d1d2((B2, d2)/d2)(s+u−1+2v)/2

Md
(1−s+u)/2
1 LB2(f × ψ, (1− s+ u)/2)ζα2B3B4q(1− s+ u)

×
∑

δ1|d1B3B4

(δ1,A)=1

µ(δ1)λ(d1B3B4/δ1)

δ
(1−s+u)/2
1

∑
δ2|q

µ(δ2)λψ(q/δ)

δ
(1−s+u)/2
2

×
∑

B∗|(B2/(d2,B2))
(B∗,A)=1

µ(B∗)λψ(B2/((d2, B2)B∗))

(B∗)(s+u−1+2v)/2
L ±στΨ±,σ,τa,b,s,u,v(tψ) (3.21)

for ψ ∈ B∗(A) of spectral parameter tψ and parity εψ. Clearly this expression is holomorphic
in the region (3.19). We proceed to confirm the bound (1.11) for <s = <u = <v = 1/2. This
requires a little more than a trivial bound of (3.21). The critical variable is B2. In order to get
enough saving, we need to exploit some cancellation. To this end, we write M = M1M2, where
(M1, B2) = 1 and M2 | B2. (Recall that ab is square-free.) Since (d1, B2) = 1, we have d1 | M1,
and we write d2 = d′2d

′′
2 with d′2 |M1, d′′2 |M2. In this way, the M2-sum becomes∑

d′′2 |M2|(B2/(A,B2))

ξψ(M2, 1)ξψ(M2, d
′′
2)d′′2((B2, d

′′
2)/d′′2)(s+u−1+2v)/2

M2

×
∑

B∗|(B2/(d′′2 ,B2))
(B∗,A)=1

µ(B∗)λψ(B2/((d
′′
2, B2)B∗))

(B∗)(s+u−1+2v)/2
. (3.22)
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If B2 | A, this is equal to λψ(B2)� B
−1/2
2 by (2.3). If B2 - A, this is equal to∏

p|B2

((
λψ(p)− 1

p(s+u−1+2v)/2

)(
1 +

ξψ(p, 1)2

p

)
+ ξψ(p, 1)ξψ(p, p)

)
.

By (2.10), the leading term λψ(p) cancels (to first-order approximation), and each p-factor in the
preceding display is bounded by p−1/2 + p3θ−1 � p−1/2 for <s = <u = <v = 1/2. Hence in all

cases the M2-sum is � B
−1/2+ε
2 . Combining with (3.20) and (2.11), we obtain

ΘMaaß
a,b,q (s, u, v, ψ)� (abq)εq1/2

(1 + |tψ|)30

∑
α1α2=a

∑
β1B3B4B2=b

A|B2B3α2

∑
d1,d2|M |(B2B3α2/A)

(M,B2)=1

d
1/2
1 d

1/2−θ
2 (1 + |λψ(q)|)

α
1/2
2 B

3/2−θ
3 M1−2θB

1/2
2

for <s = <u = <v = 1/2. This is increasing in d1, d2, and the result is increasing in M , so that
one easily confirms (1.11).

The same formula holds for the holomorphic contribution to (3.18), except that the transform
L ±στΨ±,σ,τa,b,s,u,v(tψ) has to be replaced with L holΨ±,σ,τa,b,s,u,v(kψ) and εψ = 0 if ±στ = −1. The
corresponding bound (1.12) is even simpler to obtain because θ = 0 in the holomorphic case.

3.9 The Eisenstein contribution
By (2.12), we have

AEis
B2B3α2

(εqr,B2r; L
εΨ)

=

∫
R

1

B|ζ(B2B3α2)(1 + 2it)|2
∑

v|B2B3α2

1

v

∑
b1,b2|v

∑
γ1,γ2|B2B3α2/v

×µ(b1γ1)µ(b2γ2)b1b2

(
b1γ2

b2γ1

)it
η

(
qr

b1γ1
, t

)
η

(
B2n

b2γ2
,−t
)

L εΨ(t)
dt

2π
. (3.23)

We saw in the previous subsection that the B2-variable was the most critical variable, and we
finally used the strong bound (2.3) to get a sufficient saving. We do not have a direct analogue
of this bound in the Eisenstein case when we make the choice of basis arising from (2.12), but
luckily we can obtain additional cancellation by summing non-trivially over the cusps v. This
again requires some subtle manipulations.

Since (B2, B3α2) = 1, we write v = v1v2 with v1 | B3α2, v2 | B3α2, bj = b′jb
′′
j , where b′j | v1,

b′′j | v2, and γj = γ′jγ
′′
j , where γ′j | B2/v1, γ′′j | B3α2/v2. The key observation is that (qr,B2) = 1 in

our application, so that b′1 = γ′1 = 1. In this way, we can recast the previous v, b1, b2, γ1, γ2-sum
as ∑

b′2|v1|B2

b′′1 ,b
′′
2 |v2|B3α2

∑
γ′2|(B2/v1)

∑
γ′′1 ,γ

′′
2 |(B3α2/v2)

× µ(b′′1γ
′′
1 )µ(b′2b

′′
2γ
′
2γ
′′
2 )b′′1b

′
2b
′′
2

v1v2

(
b′′1γ
′
2γ
′′
2

b′2b
′′
2γ
′′
1

)it
η

(
qr

b′′1γ
′′
1

, t

)
η

(
B2n

b′2b
′′
2γ
′
2γ
′′
2

,−t
)
.

We consider only the B2-part,∑
b′2|v1|B2

∑
γ′2|(B2/v1)

1

v1
µ(b′2γ

′
2)b′2

(
γ′2
b′2

)it
η

(
B2n

b′2b
′′
2γ
′
2γ
′′
2

,−t
)
, (3.24)

1025

https://doi.org/10.1112/S0010437X20007101 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007101


V. Blomer et al.

for fixed b′′2, γ
′′
2 , where we parametrize v1 = b′2b

∗, B2/v1 = γ′2γ
∗, getting∑

b′2b
∗γ′2γ

∗=B2

1

b∗
µ(b′2γ

′
2)

(
γ′2
b′2

)it
η

(
b∗γ∗

n

b′′2γ
′′
2

,−t
)
.

We must have b′′2γ
′′
2 | n, so we write n = b′′2γ

′′
2n
∗. Applying the Hecke relation (2.1) for η(n, t), we

obtain ∑
b′2b
∗γ′2γ

∗=B2

δ|(n∗,b∗γ∗)

µ(δ)
1

b∗
µ(b′2γ

′
2)

(
γ′2
b′2

)it
η

(
b∗γ∗

δ
,−t
)
η

(
n∗

δ
,−t
)
.

We parametrize δ = δ1δ2, b∗ = δ1b0, γ∗ = δ2γ0, so that the previous line is equal to∑
b′2δ1b0γ

′
2δ2γ0=B2

δ1δ2|n∗

µ(δ1δ2)
1

δ1b
µ(b′2γ

′
2)

(
γ′2
b′2

)it
η(b0,−t)η(γ0,−t)η

(
n∗

δ1δ2
,−t
)
.

The key point is now that, by Möbius inversion, the b′2, γ
′
2, γ0-sum disappears, so that (3.24) is

equal to ∑
δ1b0δ2=B2
δ1δ2|n∗

µ(δ1δ2)
1

δ1b
η(b0,−t)η

(
n∗

δ1δ2
,−t
)
,

and hence (3.23) is equal to∫
R

∑
b1,b2|v|B3α2

∑
γ1,γ2|B3α2/v

b2γ2|n

µ(b1γ1)µ(b2γ2)b1b2

vB2B3α2|ζ(B2B3α2)(1 + 2it)|2

(
b1γ2

b2γ1

)it
η

(
qr

b1γ1
, t

)

×
∑

δ1b0δ2=B2
δ1δ2|n

µ(δ1δ2)η(b0,−t)
δ1b0

η

(
n

b2γ2δ1δ2
,−t
)

L εΨ(t)
dt

2π
.

After this manoeuvre, we are now in shape to sum over r and n as in (3.18). This gives∫
R

∑
b1,b2|v|B3α2

∑
γ1,γ2|(B3α2/v)

µ(b1γ1)µ(b2γ2)b1b2

vB2B3α2|ζ(B2B3α2)(1 + 2it)|2

(
b1γ2

b2γ1

)it ∑
δ1b0δ2=B2

µ(δ1δ2)η(b0,−t)
δ1b0

×
∑

(r,B2)=1

λ(rb1γ1B3B4)η(qr, t)

(b1γ1r)(1−s+u)/2

∑
n

η(n,−t)
(b2γ2δ1δ2n)(s+u−1+2v)/2

L ±στΨ(t)
dt

2π
.

The n-sum can be easily evaluated in terms of the Riemann zeta function. The r-sum requires
multiple applications of (2.1). Checking local factors, we confirm that, for (B, q) = (B2, Bq) = 1,
B square-free, and q prime, we have∑

(B2,r)=1

λ(rB)η(qr, t)

rz
=
η(q, t)− λ(q)q−z

1− q−2z

∏
p|B

λ(p)− η(p, t)p−z

1− p−2z

∑
(B2,r)=1

λ(r)η(r, t)

rz
.

Putting everything together, the Eisenstein contribution to (3.18) is equal to∫
R

ΘEis
a,b,q(s, u, v, t)

ζ
(
s+u−1+2v

2 + it
)
L
(
s+u−1+2v

2 − it
)
ζ
(

1−s+u
2 + it, f

)
L
(

1−s+u
2 − it, f

)
ζ(1 + 2it)ζ(1− 2it)

dt

2π
,

(3.25)
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where

ΘEis
a,b,q(s, u, v, t) :=

∑
±

∑
σ,τ∈{±}

∑
α1α2=a

∑
β1B3B4B2=b

q(3−s−u−2v)/2µ(B2)µ(B3)αs−1
1 αu2

βu1B
(s−u−1−2v)/2
2 B1−v

3 B1−v
4

×
∑

b1,b2|v|B3α2

∑
γ1,γ2|(B3α2/v)

µ(b1γ1)µ(b2γ2)b1b2

vB2B3α2|ζ(B2B3α2)(1 + 2it)|2

(
b1γ2

b2γ1

)it η(q, t)− λ(q)q−(1−s+u)/2

1− q−(1−s+u)

×
∑

δ1b0δ2=B2

µ(δ1δ2)η(b0,−t)
δ1b0(b1γ1)(1−s+u)/2(b2γ2δ1δ2)(s+u−1+2v)/2

∏
p|b1γ1B3B4

λ(p)− η(p, t)p−(1−s+u)/2

1− p−(1−s+u)

× ζB2B3α2(1 + 2it)ζB2B3α2(1− 2it)

ζα2B3B4q(1− s+ u)LB2

(
1−s+u

2 + it, f
)
LB2

(
1−s+u

2 − it, f
)L ±στΨ±,σ,τa,b,s,u,v(t).

(3.26)

The term (3.25) is clearly holomorphic in the range (3.1) and it can easily be extended as long
as <(u − s) > 1 and <(s + u + 2v) > 3. To pass these two hyperplanes, we observe that the
presence of the Riemann zeta function in the numerator contributes residues, and so we apply
the argument of [BK19b, Lemma 16] to show that the meromorphic continuation of (3.25) in the
region <(u− s) < 1 and <(s+ u+ 2v) < 3 is given by the same expression plus the polar term

P(3)
a,b,q(s, u, v) :=

∑
Res

t=±i(1+s−u)/2
t=±i(3−s−u−2v)/2

(±i)
ΘEis
a,b,q(s, u, v, t)ζ

(
s+u−1+2v

2 + it
)

ζ(1 + 2it)ζ(1− 2it)

× ζ
(
s+ u− 1 + 2v

2
− it

)
L

(
1− s+ u

2
+ it, f

)
L

(
1− s+ u

2
− it, f

)
. (3.27)

A trivial estimation confirms (1.13) for the term on the right-hand side of (3.25) with <s = <u =
<v = 1/2, t ∈ R, a � b (which differs from the meromorphic continuation of (3.25) to this region
by (3.27)).

It remains to meromorphically continue and bound the joint polar term

Pa,b,q(s, u, v) :=

3∑
j=1

P(j)
a,b,q(s, u, v), (3.28)

where we recall (3.15) and (3.16) for j = 1, 2. In these cases, it is easily seen that P(j)
a,b,q(s, u, v)

continues meromorphically to a neighbourhood of (3.19), and for 1/2 − ε < <s = <u = <v <
1/2 + ε, a � b, we have the bound

|P(1)
a,b,q(s, u, v)|+ |P(2)

a,b,q(s, u, v)| � q(ab)−1/2(abq)ε

away from poles. The treatment of P(3)
a,b,q(s, u, v) requires slightly more effort, because we need to

analyze ΘEis
a,b,q(s, u, v, t) for |=t| 6 1/2. The meromorphic continuation of L ±στΨ±,σ,τa,b,s,u,v(t) with

at most finitely many poles (and hence of ΘEis
a,b,q(s, u, v, t)) to that region follows from [BK19b,

Lemma 3b]. Again, a trivial upper bound yields

ΘEis
a,b,q(s, u, v, t)� (abq)ε

q

(ab)1/2−θ

for fixed s, u, v, t with 1/2 − ε < <s = <u = <v < 1/2 + ε, |=t| < 1/2 + ε, a � b away from
possible poles, so that also

P(3)
a,b,q(s, u, v)� (abq)ε

q

(ab)1/2−θ
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in the region 1/2− ε < <s = <u = <v < 1/2 + ε, away from possible poles. We have established
(1.14) as an equality of meromorphic functions, but since all terms except possibly Pa,b,q(s, u, v)
are holomorphic for <s = <u = <v = 1/2, Pa,b,q(s, u, v) must also be holomorphic for <s = <u =
<v = 1/2, and the general bound (1.15) then follows by Cauchy’s integral theorem in the same
way as at the end of [BK19b, § 10].

Remark 1. We briefly discuss an alternate approach to dealing with the Eisenstein contribution
suggested by the referee. Instead of inserting the expression (2.12) for the Fourier coefficients
of the Eisenstein series into (3.23), we could use an identity akin to the expression (2.9) for
the Fourier coefficients of cuspidal newforms. Such an identity follows from the work of Young
[You19, § 8.5]. With this identity in hand, the treatment of the Eisenstein contribution can be
done via the same process as for the cuspidal contribution, as in § 3.8. A key difference is that
when we arrive at an expression of the form (3.22), we cannot have B2 | A, because there are no
Eisenstein newforms of level N with trivial central character such that p ‖ N for some prime p.

Thus instead of the bound λψ(B2)� B
−1/2
2 when B2 | A by (2.3), we have the stronger bound

λψ(B2) = 0, which gives us the requisite savings.

4. Proof of Theorem 2

4.1 Initial manipulations
Let P = TQ. By ‘negligible’, we mean a quantity that is O(P−100). By a dyadic decomposition, we
may replace the conditions q 6 Q, |tψ| 6 T with 1

2Q 6 q 6 Q, 1
2T 6 tψ 6 T or tψ ∈ [0, 1]∪[−iθ, iθ]

where in the last case we formally put T = 1.
Let E3 denote the standard minimal Eisenstein series for SL3(Z) with Fourier coefficients

A(n,m) =
∑

d|(n,m)

µ(d)τ3(n/d)τ3(m/d).

Then, for ψ ∈ B∗(q) with |tψ| 6 T , we have

L(s, ψ)3 = L(s, ψ × E3) =
∑
n

∑
(m,q)=1

A(n,m)λψ(n)

nsm2s
= Pq(s)

∑
n,m

A(n,m)λψ(n)

nsm2s

for <s > 1, where

Pq(s) =
∏
p|q

(
1−

λψ(p)

ps

)−3(
1−

λψ(p)

ps
+

1

p2s

)3

is holomorphic and uniformly bounded in <s > 1/2. By a standard approximate functional
equation, we have

|L(1/2, ψ)3| 6 2

∣∣∣∣∑
n,m

A(n,m)λψ(n)

n1/2m
Vψ

(
nm2

q3/2

)∣∣∣∣,
where

Vψ(y) =
1

2πi

∫
(2)
P (1

2 + u)

×
Γ(1

2(1
2 + u+ εψ + itψ))3Γ(1

2(1
2 + u+ εψ − itψ))3

Γ(1
2(1

2 + εψ + itψ))3Γ(1
2(1

2 + εψ − itψ))3
π−3ueu

2
y−u

du

u
.
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Shifting the contour to the far right, we see that Vψ(y) is negligible if y > T 3P ε. Remembering
this, we shift the contour to <u = ε. There we may truncate the integral at |=u| 6 P ε at the
cost of a negligible error. Applying a smooth dyadic decomposition, we have shown that

L(1/2, ψ)3 �ε P
ε

∫ P ε

−P ε

∑
2ν=N6Q3/2T 3P ε

∣∣∣∣∑
n,m

A(n,m)λψ(n)

(nm2)1/2+iv
V

(
nm2

N

)∣∣∣∣ dv,
where V has support in [1, 2], is independent of ψ, and satisfies V (j)(y) �j 1 for all j ∈ N0.
Multiplying two such expressions together and using the Cauchy–Schwarz inequality, we obtain

L(1/2, ψ)6

�ε P
ε max
|v|6P ε

max
N6Q3/2T 3P ε

∑
n1,n2,m1,m2

A(n1,m1)A(n2,m2)λψ(n1)λψ(n2)

(n1m2
1)1/2+iv(n2m2

2)1/2−iv V

(
n1m

2
1

N

)
V

(
n2m2

2

N

)
.

For ψ ∈ B∗(q), we have

λψ(n)λψ(m)

L(1,Ad2ψ)
= q

∏
p|q

(
1− 1

p

)−1

ρψ,1,q(n)ρψ,1,q(m)

by (2.9). For the purpose of Theorem 2, it therefore suffices to bound

Sv(Q,T,N) :=
∑
q

W

(
q

Q

)
Q

∑
ψ∈B∗(q)

hT (tψ)

×
∑

n1,n2,m1,m2

A(n1,m1)A(n2,m2)ρψ,1,q(n1)ρψ,1,q(n2)

(n1m2
1)1/2+iv(n2m2

2)1/2−iv V

(
n1m

2
1

N

)
V

(
n2m2

2

N

)
,

(4.1)

where N 6 Q3/2T 3P ε, |v| 6 P ε, and

hT (t) = e−(t/T )2
bε−1c∏
n=1

(
1

T 2

(
t2 +

(2n− 1)2

4

))
.

Note that this function satisfies the assumptions of Lemmas 1 and 2.

4.2 The Eisenstein contribution associated with the trivial character
The ψ-sum in (4.1) can be evaluated by the Kuznetsov formula (2.16). To this end, we need
to add, using positivity, the contribution from the oldforms and the continuous spectrum. As
mentioned in the introduction, this manoeuvre is costly, and we single out the contribution of
the continuous spectrum associated with the trivial character:

S∗v (Q,T,N) :=
∑
q

W

(
q

Q

)
Q
∑
M |q

∫
R
hT (t)

×
∑

n1,n2,m1,m2

A(n1,m1)A(n2,m2)ρtriv,M,q(n1, t)ρtriv,M,q(n2, t)

(n1m2
1)1/2+iv(n2m2

2)1/2−iv V

(
n1m

2
1

N

)
V

(
n2m2

2

N

)
dt

2π
,

which we rewrite in more compact form as∫
(2)

∫
(2)

∫
(1)

∫
R
V̂ (z1)V̂ (z2)Ŵ (s)Q1+sN z1+z2

× Dt(s, 1/2 + iv + z1, 1/2− iv + z2; 0, 0)

|ζ(1 + 2it)|2
hT (t)

dt

2π

ds dz1 dz2

(2πi)3
, (4.2)

where
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Dt(s, z1, z2; w1, w2)

= |ζ(1 + 2it)|2
∑

q,n1,n2,m1,m2

∑
M |q

A(n1,m1)A(n2,m2)ρtriv,M,q(n1, t)ρtriv,M,q(n2, t)

qs(n1m2
1)z1(n2m2

2)z2m2w1
1 m2w2

2

.

Recalling the definition (cf. (2.13))

|ζ(1 + 2it)|2ρtriv,M,q(n1, t)ρtriv,M,q(n2, t)

=
|ζ(q)(1 + 2it)|2(n1/n2)it

qν(q)ñq(M)2

∑
δ1,δ2|M

δ1δ2µ(M/δ1)µ(M/δ2)

M

∑
c1δ1f1=n1

(c1,q/M)=1

∑
c2δ2f2=n2

(c2,q/M)=1

(
c2

c1

)2it

,

we see that (for t ∈ R) the series Dt(s, z1, z2; w1, w2) is absolutely convergent in <s > 0, <z1,
<z2 > 1, <(z1 + w1),<(z2 + w2) > 1/2, and admits an Euler product of the shape∏

p

(
1 +

1

ps+1
+
∑
j=1,2

∑
±

3

pzj±it

+O

(
1

p2 min(<z1,<z2,<(z1+w1),<(z2+w2))
+

1

p<s+min(<z1,1)+min(<z2,1)

))
,

where the bounds in the error term hold uniformly in

<z1, <z2, <(z1 + w1), <(z2 + w2), <s + min(<z1, 1) + min(<z2, 1) > 0.

In particular, we have

Dt(s, z1, z2; w1, w2) = ζ(s+ 1)ζ(z1 + it)3ζ(z1− it)3ζ(z2 + it)3ζ(z2− it)3Et(s, z1, z2; w1, w2), (4.3)

where Et(s, z1, z2; w1, w2) is holomorphic and uniformly bounded in

<z1, <z2, <(z1 + w1), <(z2 + w2) > 1/2 + ε, <s + min(<z1, 1) + min(<z2, 1) > 1 + ε, (4.4)

as long as =t = 0. Hence in (4.2), we may shift the contours to <s = −1+ε (picking up a residue
at s = 0), and in the remaining integral we shift the z1, z2-contours to <z1 = <z2 = 1/2 + ε,
getting

S∗v (Q,T,N) = Ŵ (0)Q

∫
(2)

∫
(2)

∫
R

∏
±

ζ(1/2 + iv + z1 ± it)3ζ(1/2− iv + z2 ± it)3

ζ(1± 2it)

×Et(0, 1/2 + iv + z1, 1/2− iv + z2; 0, 0)V̂ (z1)V̂ (z2)N z1+z2hT (t)
dz1 dz2

(2πi)2

dt

2π
+O(TNP ε).

(4.5)

4.3 Applying the Kuznetsov formula twice
By the Kuznetsov formula (and positivity), we obtain

Sv(Q,T,N) + S∗v (Q,T,N)

6 Q
∑
q

W

(
q

Q

) ∑
n1,n2,m1,m2

A(n1,m1)A(n2,m2)

(n1m2
1)1/2+iv(n2m2

2)1/2−iv V

(
n1m

2
1

N

)
V

(
n2m2

2

N

)
×
(
δn1,n2

∫ ∞
−∞

hT (t)
t tanh(πt) dt

2π2
+
∑
c

S(n1, n2, qc)

qc
K hT

(√
n1n2

qc

))
.
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The diagonal term is easy to deal with and is trivially bounded by

Oε(P
εQ2T 2). (4.6)

By Mellin inversion, we can recast the off-diagonal term as∫
(−12)

Qs+1Ŵ (s)
∑

n1,n2,m1,m2

A(n1,m1)A(n2,m2)

(n1m2
1)1/2+iv(n2m2

2)1/2−iv(n1n2)s/2
V

(
n1m

2
1

N

)
V

(
n2m2

2

N

)
×
∑
c,q

cs
S(n1, n2, qc)

qc
KshT

(√
n1n2

qc

)
ds

2πi

with KshT (x) = xsK hT (x) as in § 2.6. Applying the Kuznetsov formula immediately in the
other direction (which we may do by Lemma 1, but this time the summation is over q instead
of c), we obtain by (2.14) that the previous expression is equal to∫

(−12)
Qs+1Ŵ (s)

∑
n1,n2,m1,m2

A(n1,m1)A(n2,m2)

(n1m2
1)1/2+iv(n2m2

2)1/2−iv(n1n2)s/2
V

(
n1m

2
1

N

)
V

(
n2m2

2

N

)
×
∑
c

cs(AMaaß
c (n1, n2; L +KshT ) +AEis

c (n1, n2; L +KshT ) +Ahol
c (n1, n2; L holKshT ))

ds

2πi
.

(4.7)

Lemma 2(b) implies that L +KshT (t) has analytic continuation to <s < 1, and we proceed to
derive a uniform bound. If |t| > 10|=s| (so that t± 1

2 |=s| � t), we have

L +KshT (t)�
∫
R

e−|τ |/T (1 + |τ |)
(1 + |t|+ |τ |)2−2<s dτ +

e−|t|/T (1 + |t|)
(1 + |t|)1−<s

∫ 1+|t|

0

1

(1 + |τ |)1−<s dτ

� T 2

(1 + |t|)2−2<s + e−|t|/T ((1 + |t|)<s + (1 + |t|)2<s)� T 2+max(0,−<s)

(1 + |t|)2−2<s .

If |t| 6 10|=s|, we have trivially L +KshT (t) � T 2, so that altogether we obtain the uniform
bound

L +KshT (t)�<s (1 + |=s|)2−2<sT
2+max(0,−<s)

(1 + |t|)2−2<s . (4.8)

The problematic expression in (4.7) is the part of AEis
c (n1, n2; L +KshT ) that is associated

with the trivial character. We spell this out explicitly as

S∗∗v (Q,T,N) =

∫
(20)

∫
(20)

∫
(−12)

∫
R
V̂ (z1)V̂ (z2)Ŵ (s)Q1+sN z1+z2

× Dt(−s, 1/2 + iv + s/2 + z1, 1/2− iv + s/2 + z2;−s/2,−s/2)

|ζ(1 + 2it)|2

×L +KshT (t)
dt

2π

ds dz1 dz2

(2πi)3
.

Shifting the s-contour to the far left and simultaneously the z1, z2-contours to <z1 = 1
2(1−

<s) + ε, we see from (4.8) that the t-integral is negligible for |t| >
√
NT/QP ε. In particular, we

may truncate at |t| 6 (T +
√
NT/Q)P ε.

Next we shift the s-contour to <s = ε, past the pole at s = 0. By Lemma 2(a), the residue
matches exactly the main term in (4.5) except for the truncation of the t-integral, but by the
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rapid decay of L +K0hT = hT for |t| > T , we may reinsert the tail at the cost of a negligible
error.

To estimate the remaining integral, we shift the z1, z2-contours to left, past the triple poles
at z1 = 1/2− iv− s/2± it, z2 = 1/2− iv− s/2± it to <z1,<z2 = ε. Thus we need to bound the
contributions from the remaining integral and the two residues. The remaining multiple integral
contains a t-integral that can be bounded by

�ε

∫
|t|6(T+

√
NT/Q)P ε

∣∣∣∣ζ(1

2
+ ε+ it+ iτ

)∣∣∣∣12 T 2

(1 + |t|)2−ε dt�ε T
2(1 + |τ |)2P ε,

where τ = ±v + =zj + 1
2=sj and we used Heath-Brown’s twelfth moment bound [Hea78]. Thus

the total contribution of the remaining integral is Oε(QT
2P ε). It remains to deal with the two

residues. Here the rapid decay of Ŵ and V̂1,2 and their derivatives at z = 1/2±iv−s/2±it makes
the t-integral rapidly convergent regardless of the real part of s, so we may shift the contour to
<s = 1− ε (so that <zj = ε), getting a contribution of Oε(Q

2T 2P ε).
Combining (4.6) and the error term in (4.5) with the previous two error terms, we have

accomplished so far the bound

Sv(Q,T,N)�ε P
ε(Q2T 2 +NT )

+

∣∣∣∣ ∫
(−12)

Qs+1Ŵ (s)
∑

n1,n2,m1,m2

A(n1,m1)A(n2,m2)

(n1m2
1)1/2+iv(n2m2

2)1/2−iv(n1n2)s/2
V

(
n1m

2
1

N

)
V

(
n2m2

2

N

)
×
∑
c

cs(AMaaß
c (n1, n2; L +KshT ) +AEis,∗

c (n1, n2; L +KshT ) +Ahol
c (n1, n2; L holKshT ))

ds

2πi

∣∣∣∣,
(4.9)

where AEis,∗
c denotes the contribution of level-c Eisenstein series without the trivial character.

4.4 The endgame
We consider the Maaß contribution in (4.9) given by∫

(−12)
Qs+1Ŵ (s)

∑
c

cs
∑
c0M |c

∑
ψ∈B∗(c0)

∑
n1,n2,m1,m2

A(n1,m1)A(n2,m2)ρψ,M,N (n)ρψ,M,N (m)

(n1m2
1)1/2+iv(n2m2

2)1/2−iv(n1n2)s/2

×V
(
n1m

2
1

N

)
V

(
n2m2

2

N

)
L +KshT(tψ)

ds

2πi
.

Shifting the s-contour to the far left, we see that we can truncate both the c-sum and the ψ-sum
at c(1+ |tψ|2) 6 P εNT/Q at the cost of a negligible error (recall (4.8) and the rapid decay of V̂ ).
Having done this, we shift the s-contour back to <s = 0. By Mellin inversion, we obtain∫

(0)
Qs+1Ŵ (s)

∑
c

∑
c0|c

∑
ψ∈B∗(c0)

c(1+|tψ |2)6P εNT/Q

cs

cν(c)

∏
p|c0

(1− p−2)

∫
(ε)

∫
(ε)
N z1+z2 V̂ (z1)V̂ (z2)

×
DMaaß
ψ,c (1/2 + iv + s/2 + z1, 1/2− iv + s/2 + z2,−s/2,−s/2)

L(1,Ad2ψ)

×L +KshT(tψ)
dz1 dz2

(2πi)2

ds

2πi
, (4.10)
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where (recalling the notation in (2.9))

DMaaß
ψ,c (z1, z2, w1, w2)

=
L(1,Ad2ψ)cν(c)∏

p|c0(1− p−2)

∑
M |(c/c0)

∑
n1,n2,m1,m2

A(n1,m1)A(n2,m2)ρψ,M,c(n)ρψ,M,c(m)

(n1m2
1)z1(n2m2

2)z2m2w1
1 m2w2

2

for ψ ∈ B∗(c0) with c0 | c. Using (2.9) and (2.11) (with θ 6 1/2), we see as in (4.3) that

DMaaß
ψ,c (z1, z2, w1, w2) = L(z1, ψ)3L(z2, ψ)3EMaaß

ψ,c (z1, z2, w1, w2), (4.11)

where
EMaaß
ψ,c (z1, z2, w1, w2)�ε c

ε

uniformly in <z1,<z2,<(z1 + w1),<(z2 + w2) > 1/2 + ε. The convexity bound for L(z, ψ) is

L(z, ψ)�ε (c0(1 + |tψ|+ |=z|)2)1/4+ε, <z > 1/2.

We can afford to use the convexity bound on four of the six L-functions in (4.11). We may then
truncate the s, z1, z2-contours at height P ε, and after a trivial estimation, we bound (4.10) by

�ε P
εQ

NT

Q
max
|ξ|6P ε

∑
c

∑
ψ∈B∗(c)

c(1+|tψ |2)6P εNT/Q

1

c

∣∣∣∣L(1

2
+ ε+ iξ, ψ

)∣∣∣∣2 T 2

(1 + |tψ|2)
. (4.12)

It is an easy exercise with the Kuznetsov formula or the spectral large sieve to obtain a Lindelöf
on average bound for the second moment, which can safely be left to the reader: the length of
the approximate functional equation in each factor is Oε(P

εc1/2(1 + |tψ|)), so the Kloosterman
term in the Kuznetsov formula is essentially invisible. Thus by Weyl’s law, the total contribution
of the previous expression is

�ε P
εN2T 2Q−1 �ε P

εQ2T 8

for N 6 Q3/2T 3P ε, and this majorizes all preceding error terms.
The contribution of Ahol

c (n1, n2; L holKshT ) can be bounded in same way using the analogous
bound for L holKshT in Lemma 2(b).

Finally, for the contribution AEis,∗
c (n1, n2; L +KshT ), we observe that after removing the

trivial character, the analogously defined function

DEis
(χ,t),c(z1, z2, w1, w2)

= |L(1 + 2it, χ2)|2cν(c)
∑
c2χ|M |c

∑
n1,n2,m1,m2

A(n1,m1)A(n2,m2)ρχ,M,c(n)ρχ,M,c(m)

(n1m2
1)z1(n2m2

2)z2m2w1
1 m2w2

2

is pole-free in <z1,<z2,<(z1 + w1),<(z2 + w2) > 1/2 + ε since χ is primitive of conductor > 1,
and it can be approximated by L(z1 +it, χ)3L(z1−it, χ)3L(z2 +it, χ)3L(z2−it, χ)3 in this region
up to a holomorphic factor bounded by Oε(c

ε). Here we can even afford to apply the convexity
bound for all 12 Dirichlet L-functions. The quantity corresponding to (4.12) is then

P εQ

(
NT

Q

)3/2∑
c

∫
c(1+|t|)26P εNT/Q

#{χ : c2
χ | c}T 2

c(1 + |t|2)
dt�ε P

εQ

(
NT

Q

)3/2

�ε P
εQ7/4T 6.

This completes the proof of Theorem 2.
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5. Applications

It is now an easy task to prove Corollary 3 and Theorem 4. For both applications, we need the

following auxiliary result.

Lemma 3. Let T > 1, N, q ∈ N, (N, q) = 1. Then

∑
ψ∈B∗(N)

λψ(q)2

L(1,Ad2ψ)
e−(tψ/T )2 �ε (NTq)ε(T 2N + q1/2).

This is a simple application of the Kuznetsov formula and Weil’s bounds for Kloosterman

sums; see, for example, [BM15, Lemma 12] or its ancestor [Mot97, Lemma 2.4].

5.1 Proof of Corollary 3

From [BK19b, § 12.1], we quote

∑
ψ∈B∗(q)

L(1/2, ψ)5e−t
2
ψ �ε q

ε max
|τ |6(log q)2

∑
`6q1/2+ε

1

`1/2

∣∣∣∣ ∑
f∈B∗(q)

L(1/2, f)4

L(1,Ad2f)
λf (`)hτ (tf )

∣∣∣∣+q−10, (5.1)

where

hτ (tf ) =
L∞(1/2 + ε+ iτ, f)

L∞(1/2, f)

Gf (ε+ iτ)

Gf (0)
e−t

2
f (1 + |tf |)ε

with

Gf (s) =
1000∏
j=0

∏
ε1,ε2∈{±1}

(
1

2
+ ε1s+ iε2tf + j

)
.

This is an application of a carefully designed approximate functional equation. Now the formula

two displays below [BK19b, (11.4)], together with [BK19b, Lemma 1], shows that for q prime,

φ(q)

q2

∑
f∈B∗(q)

L(1/2, f)4

L(1,Ad2f)
λf (`)hτ (tf ) =

∑
ab=`

M+
q,a(1/2, 1/2, hτ )

(
a

b

)1/2

+O(`θ+εq−1)

with hτ = (hτ , 0) in the notation of [BK19b, (1.3), (1.7)]. Here the error term also includes the

oldforms of level 1. On the other hand, [BK19b, (11.4)] states that

∑
ab=`

M+
q,a(1/2, 1/2, hτ )

(
a

b

)1/2

�ε (`q)ε
∑
ab=`

(
a

b

)1/2(1

a
+

1

q
+
∑
±

∣∣M±a,q(1/2, 1/2; T ±1/2,1/2hτ )
∣∣)

uniformly in |τ | 6 (log q)2, and the analysis of [BK19b, § 11] shows

M±a,q(1/2, 1/2; T ±1/2,1/2hτ )�ε (aq)ε
(

1

q1/2
+

1

aq1/2

∑
a0|a

∑
f∈B∗(a0)

|L(1/2, f)|4

L(1,Ad2f)

|Λf (q, 1/2)|
(1 + |tf |)15

)

(again uniformly in |τ | 6 (log q)2) where Λf (q, 1/2) := λf (q) − q−1/2 for q prime. Combining
these estimates, we obtain
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φ(q)

q2

∑
f∈B∗(q)

L(1/2, f)4

L(1,Ad2f)
λf (`)hτ (tf )

�ε (`q)ε
(

1

`1/2
+
`1/2

q1/2
+

1

(`q)1/2

∑
a0|`

∑
f∈B∗(a0)

|L(1/2, f)|4

L(1,Ad2ψ)

(1 + |λf (q)|)
(1 + |tf |)15

)
.

Substituting back into (5.1), this yields∑
ψ∈B∗(q)

L(1/2, ψ)5e−t
2
ψ �ε q

1+ε
∑

`6q1/2+ε

(
1

`
+

1

q1/2
+

1

`q1/2

∑
a|`

∑
f∈B∗(a)

|L(1/2, f)|4

L(1,Ad2ψ)

(1 + |λf (q)|)
(1 + |tf |)15

)

�ε q
1+ε + q1/2+ε

∑
a6q1/2+ε

1

a

∑
f∈B∗(a)

|L(1/2, f)|4

L(1,Ad2ψ)

(1 + |λf (q)|)
(1 + |tf |)15

�ε q
1+ε + q1/2+ε max

A6q1/2+ε

1

A

∑
a�A

∑
f∈B∗(a)

|L(1/2, f)|4

L(1,Ad2ψ)

(1 + |λf (q)|)
(1 + |tf |)15

.

So far this is essentially a restatement of the analysis in [BK19b], but now we insert an additional
application of Hölder’s inequality. In this way, we obtain∑

ψ∈B∗(q)

L(1/2, ψ)5e−t
2
ψ

�ε q
1+ε + q1/2+ε max

A6q1/2+ε

1

A

(∑
a�A

∑
f∈B∗(a)

|L(1/2, f)|6

L(1,Ad2ψ)(1 + |tf |)15

)2/3

×
(∑
a�A

∑
f∈B∗(a)

(1 + |λf (q)|)3

L(1,Ad2ψ)(1 + |tf |)15

)1/3

.

By Theorem 2 and Lemma 3, we obtain∑
ψ∈B∗(q)

L(1/2, ψ)5e−t
2
ψ �ε q

ε

(
q + q1/2 max

A6q1/2+ε

1

A
A4/3(A2 + q1/2)1/3qθ/3

)
�ε q

1+θ/3+ε.

5.2 Proof of Theorem 4
By a dyadic decomposition, we can replace the summation condition m 6M by m �M . Let us
also assume without loss of generality that ‖a‖∞ 6 1. In order to apply Theorem 1, we would like
to bound L(1/2, χ) by a small integral over the imaginary axis. This can be done by a standard
argument based on the functional equation and the residue theorem (which seems to have been
first applied by Heath-Brown [Hea78, Lemma 3]) as follows. Fix 0 < ε < 1/10 and suppose that
χ is a primitive character modulo q. We have

L(1/2, χ)4 =

∫
(ε)
L(1/2 + s, χ)4 e

2s2

s

ds

2πi
+

∫
(ε)
L(1/2− s, χ)4 e

2s2

s

ds

2πi

=

∫
(ε)
L(1/2 + s, χ)4f(s)

ds

2πi
,

where

f(s) =

(
1 +

Γ(1
2(1

2 + s+ a))4

Γ(1
2(1

2 − s+ a))4

(
q

π

)4s)e2s2

s
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with a = 0 if χ is even and a = 1 if χ is odd. Applying the same argument again, we have

L(1/2 + s, χ)4 =

∫
(−ε)

L(1/2 + s+ u, χ)4gs(u)
ds

2πi
,

where

gs(u) = −
(

1 +
Γ(1

2(1
2 + s+ u+ a))4

Γ(1
2(1

2 + s− u+ a))4

(
q

π

)4u)e2u2

u
.

Inserting and changing variables, we obtain

L(1/2, χ)4 =

∫
(0)
L(1/2 + v, χ)4h(v)

dv

2πi
,

where

h(v) =

∫
(ε)
gs(v − s)f(s)

ds

2πi
� e−|v|

2
q4ε.

Now choosing F as in (1.7), we get

|L(1/2, χ)|4 �ε q
ε

∫
(0)
L(1/2 + z, χ)2L(1/2− z, χ)2F (z)

dz

2πi
.

Opening the square, we have

∑
χ (mod q)

∣∣∣∣ ∑
m�M

a(m)χ(m)

∣∣∣∣2|L(1/2, χ)|4 �ε M
2 + qε

∑
d

∑
m1,m2�M/d
(m1,m2)=1

|Tm1,m2,q(1/2, 1/2, 1/2)|

with the notation as in (1.6) in the special case where f is the standard Eisenstein series with
θ = 0. By Theorem 1 and (1.8) we have

∑
χ (mod q)

∣∣∣∣ ∑
m�M

a(m)χ(m)

∣∣∣∣2|L(1/2, χ)|4

�ε M
2 + (Mq)1+ε + qε

∑
d

∑
m1,m2�M/d
(m1,m2)=1

∑
∗∈{Maaß,hol,Eis}

|M∗m1,m2,q(1/2, 1/2, 1/2)|.

We only deal with the Maaß case; the other two cases are similar but easier. By (1.10) and
(1.11), we have∑

d

∑
m1,m2�M/d
(m1,m2)=1

|MMaaß
m1,m2,q(1/2, 1/2, 1/2)|

�ε (qM)ε
∑
d

∑
m1,m2�M/d
(m1,m2)=1

∑
N |m1m2

∑
ψ∈B∗(N)

q1/2

N1/2

(1 + |λψ(q)|)
(1 + |tψ|)30

L(1/2, ψ)3

L(1,Ad2ψ)
.

We drop the condition (m1,m2) = 1 and write m1m2 = m = NK, obtaining by the standard
divisor bound that the previous display is bounded by
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�ε (qM)ε
∑
d

∑
NK�M2/d2

q1/2

N1/2

∑
ψ∈B∗(N)

(1 + |λψ(q)|)
(1 + |tψ|)30

L(1/2, ψ)3

L(1,Ad2ψ)

�ε (qM)ε
∑
d

∑
N�M2/d2

q1/2M2

d2N3/2

∑
ψ∈B∗(N)

(1 + |λψ(q)|)
(1 + |tψ|)30

L(1/2, ψ)3

L(1,Ad2ψ)

�ε (q1/2M2)1+ε max
N�M2

1

N 3/2

∑
N�N

∑
ψ∈B∗(N)

(1 + |λψ(q)|)
(1 + |tψ|)30

L(1/2, ψ)3

L(1,Ad2ψ)
.

By the Cauchy–Schwarz inequality, Theorem 2, and Lemma 3, this is

�ε (q1/2M2)1+ε max
N�M2

1

N 3/2
(N + q1/4N 1/2)N �ε (q1/2M2)1+ε(M + q1/4).

For M 6 q1/4, we obtain altogether

∑
χ (mod q)

∣∣∣∣ ∑
m�M

a(m)χ(m)

∣∣∣∣2|L(1/2, χ)|4 �ε (Mq)1+ε,

as desired.
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Sci. École Norm. Supér. 40 (2007), 697–740.

BK19a V. Blomer and R. Khan, Uniform subconvexity and symmetry breaking reciprocity, J. Funct.
Anal. 276 (2019), 2315–2358.

BK19b V. Blomer and R. Khan, Twisted moments of L-functions and spectral reciprocity, Duke
Math. J. 168 (2019), 1109–1177.
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