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Focal point and conjugacy criteria for the half-linear second-order di® erential
equation

(jy 0 jp 1 sgn y 0 ) 0 + c(t)jyjp 1 sgn y = 0; p > 1

are obtained using the generalized Riccati transformation. An oscillation criterion is
given in case when the function c(t) is periodic.

1. Introduction

In this paper we investigate oscillatory properties of the half-linear second-order
di¬erential equation

[ © (y0)]0 + c(t) © (y) = 0; (1.1)

where c : R ! R is a piecewise continuous function and © (s) := jsjp 1 sgn s =
jsjp 2s with p > 1. Another notation for the function © (s) is s(p 1) ¤ (see [3]).

Considerable e¬ort has been made over the years to extend oscillation theory of
the linear equation

y00 + c(t)y = 0 (1.2)

(which is the special case p = 2 of (1.1)) to half-linear equation (1.1), see [4, 6{
10,18,20]. This was motivated, among others, by the study of nonlinear boundary
value problems associated with the equation

[© (y0)]0 + f (t; y) = 0; (1.3)

see [12,13, 19] and references therein. Roughly speaking, the more we know about
the half-linear equation (1.1), the more we may state about the nonlinear boundary
value problems associated with (1.3).

The aim of this paper is to investigate conditions on the function c(t) in (1.1)
which guarantee that this equation possesses a non-trivial solution with at least
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two zeros in R, the so-called conjugacy criteria. Using a suitable transformation,
we extend our results to the more general half-linear equation

[r(t) © (y0)]0 + c(t) © (y) = 0; (1.4)

where r : R ! R is a positive function.
Concerning the linear case (p = 2), conjugacy criteria for (1.2) and the more

general equation

(r(t)y0)0 + c(t)y = 0 (1.5)

have been investigated in several papers (see [1, 2, 11, 15, 16, 20]). In [21] Tipler
proved that under the condition

R 1
1 c(t) dt > 0, linear di¬erential equation (1.2)

is conjugate in R. Recently, Pe~na [17] has shown that the same condition is also
su¯ cient for conjugacy in R of half-linear equation (1.1). Moreover, he proved a
more general criterion, namely that (1.4) is conjugate in an interval I = (a; b)
provided

Z

a

r1=(1 p)(t) dt = 1 =

Z b

r1=(1 p)(t) dt and

Z b

a

c(t) dt > 0:

This criterion reduces to the result of M�uller-Pfei¬er [16] in case p = 2 which was
proved using the variational method. In [1,2] the  rst named author has proved that
(1.5) is conjugate in (a; b) provided there exist constants "1; "2 > 0 and t0 2 (a; b)
such that

"1

Z b

t0

r 1(x) exp

»
2

Z x

t0

r 1(t)

µZ t

t0

c(s) ds "1

¶
dt

¼
dx >

º

2
; (1.61)

"2

Z t0

a

r 1(x) exp

»
2

Z x

t0

r 1(t)

µZ t

t0

p(s) ds + "2

¶
dt

¼
dx >

º

2
(1.62)

and as a consequence of this criterion, di¬erential equation (1.2) is conjugate in R
provided

lim
t! 1

1

t

Z t

0

(t s)c(s) ds > 0; lim
t ! 1

1

t

Z 0

t

(t s)c(s) ds > 0: (1.7)

Note that both (1.6) and (1.7) are actually focal point criteria. Indeed, if y(t) is
a solution of (1.5) satisfying the initial conditions y(t0) = 1; y0(t0) = 0, condition
(1.61) implies that this solution has a zero (so-called right focal point of t = t0) in
(t0; b) and (1.62) implies that this solution has a zero in (a; t0) (so-called left focal
point of t = t0). Conjugacy and focal point criteria for (1.2) of di¬erent a kind than
those given by (1.6), (1.7) are established in [11].

Our paper is organized as follows. In the next section we recall basic properties of
solutions of (1.4) and we also formulate the main results of the paper: focal point and
conjugacy criteria for (1.1) which extend a recently established results of Pe~na [17].
These criteria seem to give new results even in the linear case p = 2. In the third
section we investigate conjugacy (and hence oscillation) of (1.1) with a periodic
coe¯ cient c(t) and the last section is devoted to some comments and remarks
concerning statements of the previous sections and their possible extensions.
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2. Focal point and conjugacy criteria

The transformation of the variables

x =

Z t

0

[r(s)]1 q ds; z(x) = y(t);
1

p
+

1

q
= 1 (2.1)

transforms (1.4) into the di¬erential equation

d

dx

µ
©

³
dz

dx

´¶
+ C(x) © (z) = 0;

where C(x) = [r(t)]q 1c(t) and t = t(x) is the inverse function of x = x(t) given
by (2.1). Clearly, the new di¬erential equation obtained by transformation (2.1) is
again of the form (1.1) hence we may restrict ourselves to the di¬erential equations
(1.1).

As basic references concerning qualitative properties of (1.1) or (1.4) are usually
regarded the papers [3] and [14]. In these papers, the existence, uniqueness and
continuabilty up to in nity of a solution of (1.1) is established (see [3, p. 161]) and
Sturmian-type statements for zeros of solutions of half-linear di¬erential equations
are proved [14, theorem 1]. In particular, it was shown that for any y0; y1 2 R with
y2

0 + y2
1 > 0 there exists unique solution of (1.1) satisfying the initial conditions

y(t0) = y0, y0(t0) = y1 for any t0 2 R. Moreover, it was proved that if t1 and
t2 are two consecutive zeros of a non-trivial solution y(t) of (1.1), then any other
solution, which is not a constant multiple of y(t), has exactly one zero in (t1; t2). An
important consequence of this fact is that every solution of (1.1) is either oscillatory
or non-oscillatory.

Let y(t) be a solution of (1.4) such that y(t) 6= 0 on some interval (a; b) and let

w(t) =
r(t) © (y0(t))

© (y(t))
; (2.2)

then w(t) is a solution of the generalized Riccati equation

w0 = c(t) + (p 1)r1 q(t)jwjq ; (2.3)

where q is the conjugate number of p, i.e. the same as in (2.1). This relation between
solutions of (1.4) and (2.3) is a very useful tool for investigation of oscillatory
properties of half-linear equations (see, for example, [4]).

A crucial role in our investigation of conjugacy of (1.1) is played by the following
focal point criterion. This result seems to be new even in the linear case p = 2
(compare (1.7)).

Theorem 2.1. Suppose that the function c(t) 6² 0 in (0; 1) and there exist con-
stants ¬ 2 ( 1=p; p 2] and T > 0 such that

Z t

0

s¬

³Z s

0

c( ½ ) d ½

´
ds > 0 for t > T: (2.4)

Then the solution y(t) of (1.1) satisfying the initial conditions y(0) = 1, y0(0) 6 0
has a zero in (0; 1).
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Clearly, in theorem 2.1 the starting point t0 = 0 can be shifted to any other value
t0 2 R if the condition (2.4) would be modi ed to

Z t

t0

(s t0) ¬

³Z s

t0

c( ½ ) d ½

´
ds > 0 for t > T > t0:

A similar statement can be formulated on the interval ( 1; t0), too.

Proof. Suppose the contrary. Then the solution y(t) of (1.1) has no zero on (0; 1),
i.e. y(t) > 0. Let the function w(t) be de ned by (2.2) with r(t) ² 1. Since w(0) > 0,
we have by (2.3)

w(t) = w(0) +

Z t

0

c(s) ds + (p 1)

Z t

0

jw(s)jq ds

>
Z t

0

c(s) ds + (p 1)

Z t

0

jw(s)jq ds (2.5)

and Z t

0

s¬ w(s) ds >
Z t

0

³
s¬

Z s

0

c( ½ ) d ½

´
ds + S(t);

where

S(t) = (p 1)

Z t

0

s ¬

³Z s

0

jw( ½ )jq d ½

´
ds:

Then

S0(t) = (p 1)t ¬

Z t

0

jw( ½ )jq d ½ > 0 for t > 0 (2.6)

and according to (2.4)

S(t) 6
Z t

0

s¬ w(s) ds for t > T:

By H�older inequality we have

Z t

0

s ¬ w(s) ds 6
µZ t

0

sp¬ ds

¶1=pµZ t

0

jw(s)jq ds

¶1=q

=

µ
t1+ p¬

1 + p¬

¶1=pµZ t

0

jw(s)jq ds

¶1=q

hence
t(1+ p¬ )(q=p)

(1 + p¬ )(q=p)

Z t

0

jw(s)jq ds > Sq(t):

Here we need the relation S(t) > 0 for su¯ ciently large t. By (2.6) S(t) is non-
decreasing function of t and S(0) = 0. The relation S(t) = 0 for all t > 0 would
imply that w(t) ² 0, consequently by (2.2) y0(t) ² 0 for t > 0. But this may
happen (see the corresponding lines in [5, p. 495]) only if c(t) ² 0, which case has
been excluded. Hence we may suppose that T is already chosen so large that the
inequality S(t) > 0 holds for t > T .
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Denote  = ¬ (1 + p¬ )(q=p) and K = (p 1)(1 + p¬ )(q=p) > 0. Then by (2.6)
the last inequality yields S 0S q > Kt . Integrating this inequality from T to t, we
get

1

q 1
S1 q(T ) >

1

q 1
[S1 q(T ) S1 q(t)] > K

Z t

T

s ds;

where the integral on the right-hand side tends to 1 as t ! 1 because easy
computation shows that ¬ 6 p 2 implies  > 1. This contradiction proves that
y(t) must have a positive zero.

Using the just established focal point criterion, we can prove the following con-
jugacy criterion for (1.1).

Theorem 2.2. Suppose that c(t) 6² 0 both in ( 1; 0) and (0; 1) and there exist
constants ¬ 1; ¬ 2 2 ( 1=p; p 2] and T1; T2 2 R, T1 < 0 < T2, such that

Z 0

t

jsj¬ 1

Z 0

s

c( ½ ) d ½ > 0; t 6 T1;

Z t

0

s¬ 2

Z s

0

c( ½ ) d ½ > 0; t > T2:

9
>>>=

>>>;
(2.7)

Then di® erential equation (1.1) is conjugate in R, more precisely, there exists a
solution of (1.1) having at least one positive and one negative zero.

Proof. The statement follows immediately from theorem 2.1 since by this theorem
the solution y(t) given by y(0) = 1, y0(0) = 0 has a positive zero. Using the same
argument as in theorem 2.1 and the second condition in (2.7) we can show the
existence of a negative zero.

3. Equations with periodic coe± cient

Theorem 3.1. If the coe± cient c(t) in (1.1) is a periodic function with the period
!, c(t) 6² 0, and Z !

0

c(t) dt > 0;

then (1.1) is oscillatory both at t = 1 and at t = 1.

Proof. To prove oscillation of (1.1) it is su¯ cient to  nd a solution of this equation
with at least two zeros. Indeed, periodicity of the function c implies that if y(t) is
a solution of (1.1), then y(t § !) is a solution as well and hence any solution with
two zeros has actually in nitely many of them, tending both to 1 and 1.

Theorem 3.1 is clearly true if c(t) is a positive constant function. So we have to
consider the cases when c(t) is not constant. Also it is su¯ cient to deal with the
cases when

R !

0
c(t) dt = 0 because otherwise we can de ne

c0 =
1

!

Z !

0

c(t) dt > 0 and ~c(t) = c(t) c0:

Clearly, we have c(t) > ~c(t). If we prove (1.1) to be oscillatory with ~c(t), then by
the Sturm theory the di¬erential equation (1.1) with c(t) is also oscillatory.
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Now let

C(t) =

Z t

0

c(s) ds:

This is a continuous periodic function with period !. Let ® and ¯ be de ned by

C( ¯ ) = max
06t6!

C(t); C( ® ) = min
¯ 6t6 ¯ + !

C(t):

Then 0 6 ¯ < ® < ¯ + ! and
Z t

®

c(s) ds > 0;

Z ¯

t

c(s) ds > 0 for t 2 R:

Now, by theorem 2.2 and the remark given below theorem 2.1, the solution of (1.1)
given by the initial condition y( ¯ ) = 1, y0( ¯ ) = 0 has a zero in (1; ¯ ). Indeed,
C(t) 6² 0 and Z ¯

t

js ¯ j ¬
³Z ¯

t

c( ½ ) d ½

´
ds 6 0 for t 6 ¯ ;

with any ¬ 2 ( 1=p; p 2]. Now we have to show that this solution must have a
zero also on ( ¯ ; 1). We proceed by indirect way, suppose that y(t) > 0 for t > ¯ .
Consider the function w(t) given by (2.2) (again with r(t) ² 1) on [̄ ; 1) and its
di¬erential equation (2.3). Then by integration we have

w(t + !) w(t) = (p 1)

Z t + !

t

jw(s)jq ds (t >  ) (3.1)

hence
w(t + !) > w(t):

Consider now the sequence w( ® ), w( ® + !), w( ® + 2!), : : : . By theorem 2.1 and
by our indirect assumption on the solution y(t), this sequence consists of negative
terms:

w( ® ) < w( ® + !) < w( ® + 2!) < ¢ ¢ ¢ < 0:

Indeed, if w( ® + k!) > 0 for some k 2 N, then by theorem 2.1 the solution y(t)
would have a zero in ( ® + k!; 1). Hence limk ! 1 w( ® + k!) 6 0, consequently by
(3.1)

w( ® ) + (p 1)

Z 1

®

jw(s)jq ds 6 0;

i.e. the integral
R 1

®
jw(s)jq ds is convergent.

This implies by (2.3) that

w(t) = w( ® ) +

Z t

®

c(s) ds + (p 1)

Z t

®

jw(s)jq ds

and the function w(t) is bounded. Again by (2.3) we  nd that w0(t) is also bounded,
say, jw0(t)j < L. Then


jw(t2)jq + 1 jw(t1)jq + 1

q + 1

=


Z t2

t1

w0(s)jw(s)jq sgn w(s) ds

6 L

Z t2

t1

jw(s)jq ds;

® < t1 < t2, hence limt ! 1 jw(t)jq + 1 exists. Clearly, we have limt ! 1 w(t) = 0.
On the other hand, w( ¯ ) = 0, and by (3.1) we have limk ! 1 w( ¯ + k!) > 0 and

this contradicts the fact that limt! 1 w(t) = 0.

https://doi.org/10.1017/S0308210500000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500000287


Conjugacy of half-linear equations 523

4. Remarks

(i) Conjugacy criterion (2.7) is formulated for equation (1.1), however, using trans-
formation (2.1), one may formulate the result also for the more general di¬erential
equation (1.4). By this reformulation theorem 2.2 reads as follows.

Theorem 4.1. Let t0 2 (a; b) and suppose that c(t) 6² 0 in both intervals (a; t0)
and (t0; b). Further suppose that there exist constants T1; T2 2 (a; b), T1 < t0 < T2

and ¬ 1; ¬ 2 2 ( 1=p; p 2] such that
Z t0

a

r1 q(t) dt = 1 =

Z b

t0

r1 q(t) dt (4.1)

and
Z t0

t

µZ t0

s

r1 q( ½ ) d ½

¶¬ 1

r1 q(s)

³Z t0

s

c( ½ ) d ½

´
ds > 0; t 2 (a; T1);

Z t

t0

µZ s

t0

r1 q( ½ ) d ½

¶¬ 2

r1 q(s)

³Z s

t0

c( ½ ) d ½

´
ds > 0; t 2 (T2; b):

9
>>>=

>>>;
(4.2)

Then the solution y(t) of (1.4) given by the initial condition y(t0) = 1, y0(t0) = 0
has at least two zeros in (a; b): one in (a; t0), another one in (t0; b).

(ii) Observe that condition (4.1) implies that y0(t) = 1 is the unique (up to multi-
plication by a non-zero real constant) solution of the one-term equation

(r(t) © (y0))0 = 0; (4.3)

which is non-zero in the whole interval (a; b). Indeed, the solution space of (4.3)
is the two-dimensional linear space with the basis y1 = 1, y2 =

R t

t0
r1 q(s) ds,

t0 2 (a; b). If (4.1) holds, then obviously y1 is the only solution (again up to mul-
tiplication) without zero in (a; b). On the other hand, if one of the integrals in
(4.1) is convergent, say

R
a

r1 q(t) dt < 1, then another non-zero solution of (4.3)
is y =

R t

a
r1 q(s) ds.

Motivated by theorem 4.1, equation (1.4) is said to be 1-special in (a; b) if there
exists exactly one solution of this equation (up to multiplication) without zero
point in (a; b). Using this terminology, when (1.4) viewed as a perturbation of
(4.3), theorem 4.1 may be interpreted as follows. If (4.3) is 1-special in (a; b) and
the function c is `slightly positive in (a; b)’ (in the sense (4.2)), then equation (1.4) is
conjugate in this interval, i.e. a `slightly positive perturbation’ of 1-general equation
(4.3) makes the perturbed equation (1.4) be conjugate in (a; b).

The importance of 1-special linear equations for the investigation of conjugacy of
(1.5) was emphasized in [2]. In particular, it was shown that if (1.5) is 1-special in
(a; b), y0 is the its only solution without zero in this interval, and ~c is a continuous
function such that

Z b

a

~c(t)y2
0(t) dt > 0; ~c(t) 6² 0 in (a; b);

then the perturbed equation

(r(t)y0)0 + (c(t) + ~c(t))y = 0
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is conjugate in (a; b). It is the subject of the present investigation whether a similar
`perturbation principle’ holds also for general two-term half-linear equations (1.4).

(iii) Principal results of the paper are proved using the Riccati technique. In the
linear case p = 2, another useful tool for investigation of oscillation and conjugacy
(non-oscillation and disconjugacy) is the variational principle based on the relation
between positivity of the quadratic functional

Z b

a

[r(t)y02 c(t)y2] dt

and disconjugacy of (1.5) on [a; b]. A similar relation between positivity of the
`p-degree functional’ Z b

a

[r(t)ju0jp c(t)jujp] dt

and disconjugacy of (1.4) was established in a recent paper [8]. It seems that this
idea may be used for investigation of half-linear equations in the same way as in
the linear case. Also this problem is a subject of the present investigation.
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