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Abstract

Laser-based compact MeV X-ray sources are useful for a variety of applications such as radi-
ography and active interrogation of nuclear materials. MeV X rays are typically generated by
impinging the intense laser onto ∼mm-thick high-Z foil. Here, we have characterized such a
MeV X-ray source from 120 TW (80 J, 650 fs) laser interaction with a 1 mm-thick tantalum
foil. Our measurements show X-ray temperature of 2.5 MeV, flux of 3 × 1012 photons/sr/shot,
beam divergence of ∼0.1 sr, conversion efficiency of ∼1%, that is, ∼1 J of MeV X rays out of
80 J incident laser, and source size of 80 m. Our measurement also shows that MeV X-ray
yield and temperature is largely insensitive to nanosecond laser contrasts up to 10−5. Also,
preliminary measurements of similar MeV X-ray source using a double-foil scheme, where
the laser-driven hot electrons from a thin foil undergoing relativistic transparency impinging
onto a second high-Z converter foil separated by 50–400 m, show MeV X-ray yield more than
an order of magnitude lower compared with the single-foil results.

Introduction

Compact MeV X-ray sources are useful for several applications such as radiography and active
interrogation of nuclear materials (Courtois et al., 2011). Intense lasers can generate
multi-MeV hot electrons when interacting with a ∼mm-thick high-Z foils such as tungsten
or tantalum. In these targets, the laser couples its energy to the hot electrons mainly on the
target surface via several physical processes (Malka and Miquel, 1996; Wilks and Kruer,
1997; Santala et al., 2000). Subsequently, the hot electrons generate MeV bremsstrahlung X
rays as they traverse through the rest of the high-Z foil. Several experiments have characterized
such intense laser-driven bremsstrahlung X-ray sources (Perry et al., 1999; Edwards et al.,
2002; Clarke et al., 2006; Hayashi et al., 2006; Galy et al., 2007; Courtois et al., 2011;
Courtois et al., 2013; La Fontaine, 2014; Liang et al., 2016; Chen et al., 2017; Yang et al., 2017).

Here, we have characterized such a MeV bremsstrahlung X-ray source from 120 TW (80 J,
650 fs) Trident laser at the Los Alamos National Laboratory interacting with a 1 mm-thick
tantalum foil. Our measurements show X-ray temperature of 2.5 MeV, flux of 3 × 1012 pho-
tons/sr/shot, beam divergence of ∼0.1 sr, conversion efficiency of ∼1%, that is, ∼1 J of MeV
X rays out of 80 J incident laser, and source size of 80 µm. Our measurement also shows
that MeV X-ray yield and temperature is largely insensitive to nanosecond laser contrast up
to 10−5.

In contrast, numerical simulations have shown that a double-foil scheme, where laser-
driven hot electrons from a thin foil that undergoes relativistic transparency (Kaw and
Dawson, 1970; Palaniyappan et al., 2012, 2015) impinging onto a separate high-Z converter
foil, could generate more efficient Kα X rays than the single-foil scheme (Sefkow et al.,
2011). The same reasoning can also be extended to MeV X-ray generation. Our preliminary
measurements of MeV X-ray source using the double-foil scheme, where the laser-driven
hot electrons from a thin foil (110 nm aluminum foil) undergoing relativistic transparency
(Kaw and Dawson, 1970; Palaniyappan et al., 2012, 2015; Cobble et al., 2016) impinging
onto a second high-Z converter foil separated by 50–400 µm, show MeV X-ray yield more
than an order of magnitude lower compared with the single-foil results discussed above.
We believe that a better understanding of the hot electron transport in vacuum from the
thin foil to the converter foil could help optimize the double-foil scheme. Also, reducing
the gap between the two foils down to 20 µm or lower as indicated in Sefkow et al. (2011)
could also help mitigate the hot electron transport issues. Although understanding and opti-
mizing the double-foil scheme could potentially yield a better MeV bremsstrahlung X-ray
source, it is beyond the scope of the present work.
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Experimental setup

The experiments reported here were conducted at the Trident
laser facility at the Los Alamos National Laboratory, USA
(Batha et al., 2008). The Trident laser (80 J, 650 fs FWHM,
1053 nm wavelength, s-polarization) is focused onto the target
using an f/3 off-axis parabola to a spot size of 10 µm diameter
(first Airy minimum containing 65% laser energy) with a peak
laser intensity of 2 × 1020 W/cm2 (a0≈ 13). Plasma mirrors were
not used in the experiment.

The laser is incident on a 1 mm-thick tantalum foil that is
rotated 10° off the laser axis (see Fig. 1a). A 0.2 T magnet,
5.5 cm long, located right behind the tantalum foil deflected the
charged particles away from reaching the X-ray detector. The
X-ray transmission through a tungsten wedge, thickness ranging
from 0 to 5.08 cm over a length of 17.8 cm, was measured
using a calibrated image plate detector (Fernandez et al., 2017).
An additional 0.5 mm-thick tantalum foil covered the entire
image plate to block X rays below 92 keV (<1% transmission at
92 keV).

For the double-foil scheme, shown in Figure 1(b), the intense
laser, incident normally on a 110 nm-thick aluminum foil that
undergoes relativistic transparency, drives a multi-MeV electron

beam. These hot electrons impinge onto a 1 mm-thick tantalum
foil that is 50–200 µm away from the aluminum foil. The electron
beam generates bremsstrahlung MeV X rays as they traverse
through the high-Z converter foil. These X rays are measured
the same way as discussed above.

We also used a separate magnetic spectrometer, 0.8 T mag-
netic field over 10 cm long, to measure the electron spectrum
from the aluminum foil (Fig. 1c). The tungsten pinhole (1 mm
diameter) was placed 15 cm away from the converter foil. The
image plate detector (BAS-TR) was placed inside the magnet
opening at 33.7° angle with respect to the incident electron trajec-
tory to capture the deflected electrons. The lower (higher) energy
cut-off of the magnetic spectrometer was 0.2 MeV (28.2 MeV).

Results and Discussion

Figure 2(a) shows the X-ray spectrum retrieved from the mea-
sured X-ray transmission data when the Trident laser is incident
on a 1 mm-thick tantalum foil. The X-ray spectrum peaks at
2.1 MeV with a temperature of 2.5 MeV. The X-ray spectral
peak at 210 keV appears from the tantalum filter. Additionally,
the X-ray spectrum shows a tantalum K-edge at 67 keV

Fig. 1. Schematic representation of experimental setup (f/3 laser focus onto 110 nm Al foil). (a) The 0.12 PW Trident laser is focused with f/3 off-axis-parabola (peak
intensity – 2 × 1020 W/cm2) onto a 1 mm-thick tantalum foil (foil normal rotated 10° off to laser propagation axis). The tantalum foil acts both as electron source
and X-ray converter. A 0.2 T magnet deflects the charged particles away. The X-ray transmission through the tungsten wedge (5.08 cm × 5.08 cm × 17.8 cm) is mea-
sured using a calibrated BAS-SR Fuji image plate (20 cm × 40 cm). The image plate was covered with a 0.5 mm-thick tantalum sheet (20 cm × 40 cm) to block X rays
below 92 keV (<1% transmission at 92 keV) reaching the image plate detector. The X-ray spectrum is retrieved from the transmission data via
Expectation-Maximization algorithm. (b) Double-foil scheme: same setup as before except the laser impinges onto a 110 nm-thick aluminum foil. The electron
beam from the aluminum foil subsequently impinges onto a 1 mm-thick tantalum X-ray converter foil. The spacing between the foils was varied from 50 to
400 µm. (b) Schematic representation of the magnetic electron spectrometer used to measure the electron spectrum from 110 nm Al foil. A 1 mm diameter tung-
sten pinhole was placed 15 cm away from the converter foil to sample the electron beam.

Fig. 2. Results from single target setup. (a) Measured X-ray
spectrum from single 1 mm-thick tantalum foil. (b) Closer
view of the same X-ray spectrum showing spectral peaks
at 67 and 210 keV.
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(Fig. 2b). However, the 67 and 210 keV X-ray peaks have negligi-
ble X-ray energy content compared with the broader 2.1 MeV
peak. The integrated X-ray spectrum yields 2.5 × 1012 photons/
sr per shot. The yield varied typically by less than a factor of
two from shot-to-shot. For the X-ray beam FWHM divergence
of 0.1 sr (10° half-opening angle), we get 0.8 J of MeV X rays,
which is ∼1% conversion efficiency.

Additionally, we also tested the sensitivity of the X-ray gener-
ation from the single-foil target to the ns pre-pulse/pedestal. We
added 1 ns long pre-pulses that were at the 10−5 (Fig. 3a), 10−6

(Fig. 3b), and 10−7 (Fig. 3c) level compared with the peak of
the high-contrast high-power Trident laser pulse. The measured
X-ray spectrum shows that the added pre-pulses do not have a sig-
nificant effect on the X-ray spectra and the yield from the

Fig. 3. Effect of laser contrast on X-ray spectrum from single 1 mm-thick tantalum foil. A 1 ns-long pedestal at various laser intensity levels were added to the
high-contrast Trident laser. Measured X-ray spectra when added (a) 10−5 pedestal, (b) 10−6 pedestal, and (c) 10−7 pedestal.

Fig. 4. Results from double target setup. (a) Measured
electron spectrum from 100 nm-thick aluminum foil
using a magnetic spectrometer. (b) Measured X-ray spec-
trum from double target (100 nm-thick aluminum foil
∼200 µm away from 1 mm-thick tantalum converter
foil). (c) Zoomed in view of the same X-ray spectrum
showing spectral peaks at 67 and 210 keV. (d)
Simulated X-ray spectrum using measured electron
spectrum as input to Monte-Carlo algorithm MCNP.
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1 mm-thick tantalum foil. For this setup, we added an extra
4 mm-thick tungsten filter to block X rays below 240 keV (<1%
transmission below 240 keV). Hence, the 67 and 210 keV X-ray
peaks are missing in Figure 3a–c. One-dimensional HELIOS rad-
hydro (MacFarlane et al., 2006) simulation showed that these pre-
pulses produce a pre-plasma density gradient of only a few
microns at the front surface of the target due to lower sound
speed of the heavier ions. Also here we use s-polarized laser
where the laser E-field has no component along the pre-plasma
gradient that could reduce the vacuum heating in the pre-plasma
(Brunel, 1987).

Figure 4a shows the electron spectrum (dashed red line) from
the 110 nm aluminum foil measured using the magnetic spec-
trometer. The electron spectrum peaks around 12 MeV. The
instrument had a lower (higher) energy cut-off of 0.2 (28.2)
MeV. It is possible that the low-energy electrons below 3 MeV
do not escape the target (Cobble et al., 2016). The measured elec-
tron spectrum matches well with a Maxwell–Jüttner distribution f
(E) = (E2β/θK2(1/θ))exp(-E/θ) with θ = kT/mc2 = 12, where β = v/c,
and kT is the electron temperature. Figure 4b shows the typical
X-ray spectrum retrieved from the measured X-ray transmission
data from the double-foil targets with ∼200 µm spacing between
them via Expectation-Maximization ation algorithm (Lange and
Carson, 1984; Zhang et al., 2007). Varying the distance between
foils from 50 to 400 µm did not seem to affect the X-ray spectra
and yield in any consistent manner. The X-ray spectrum
peaks at 210 keV and 2.9 MeV with a temperature of 2.1 MeV.
Additionally, the X-ray spectrum shows a tantalum kα peak at
67 keV (Fig. 4c). However, the 67 and 210 keV X-ray peaks have
negligible X-ray energy content compared with the broader
2.9 MeV peak. It is most likely that the 210 keV X-ray peak is
an apparent peak due to significant X-ray filtering from the
0.5 mm-thick tantalum foil.

Figure 4d shows the simulation results when an electron beam
with the measured electron spectrum in Figure 4a traverses
through a 1 mm-thick tantalum converter foil using the code
Monte Carlo N-Particle (MCNP) (Forster and Godfrey, 1985).
The simulation results show a two temperature (1 and 4 MeV)
X-ray spectrum that has no obvious spectral peaks. The fact
that the X-ray spectrum from the MCNPX simulation (Fig. 4d)
is much hotter than the measured X-ray distribution (Fig. 4b)
seems to provide evidence that there may be issues in the trans-
port of the hot electrons from the thin foil to the converter foil.

We believe that better understanding of the hot electron transport
from the thin foil to the converter foil could help optimize the
double-foil scheme. Also, reducing the gap between the two
foils down to 20 µm or lower as indicated in Sefkow et al.
(2011) could help mitigate the hot electron transport issues.
The integrated X-ray spectrum from the double-foil scheme yields
3.6 × 1010 photons/sr per shot. However, the yield varied by more
than one order of magnitude from shot-to-shot.

Figure 5a shows the R2DTO object, a 10 cm × 10 cm × 6 mm
tungsten object with radial slots, used for quantifying the MeV
X-ray source size from the X-ray radiograph of the object using
the Bayesian-Inference-Engine (BIE) analysis. Figure 5b shows
R2DTO radiograph using the X rays from the double-foil source
with 1:1 magnification. Figure 5c shows the same radiograph
using the X rays from the single-foil source with 6.2 × magnifica-
tion. The images show that the edges of the radial slots are blurred
when using the double-foil X-ray source. The BIE analysis of these
images shows that the MeV X-ray source size was 35–195 and 270–
600 µm in the single-foil and double-foil schemes, respectively. The
details of the BIE analysis is discussed elsewhere (Tobias et al.,
2017). The larger source size in the double-foil scheme could
come form the hot electron transport issues that could increase
the size of the electron beam reaching the converter foil.

Conclusions

In conclusion, we have characterized MeV bremsstrahlung X-ray
source from 120 TW (80 J, 650 fs) Trident laser interaction with a
1 mm-thick tantalum foil. Our measurements show X-ray tem-
perature of 2.5 MeV, flux of 3 × 1012 photons/sr/shot, beam diver-
gence of ∼0.1 sr, conversion efficiency of ∼1%, that is, ∼1 J of
MeV X rays out of 80 J incident laser, and source size of
80 µm. Our measurement also shows that MeV X-ray yield and
temperature is largely insensitive to nanosecond laser contrast
up to 10−5. Also, preliminary measurements of similar MeV
X-ray source using a double-foil scheme, where the laser-driven
hot electrons from a thin foil undergoing relativistic transparency
impinging onto a second high-Z converter foil separated by 50–
400 µm, show MeV X-ray yield more than an order of magnitude
lower compared with the single-foil results. Despite the interest,
further optimization and complete understanding of the double-
foil scheme using comprehensive Particle-In-Cell (PIC) simula-
tions is beyond the scope of the work presented here.

Fig. 5. MeV X-ray radiograph. (a) 10 cm × 10 cm × 6 mm tungsten object called “R2DTO” with radial slots used for measuring the MeV X-ray source size, (b) radio-
graph of R2DTO taken using MeV X rays from the double-foil scheme with 1:1 magnification, (c) radiograph of the same object using MeV X rays from the single-foil
scheme with 6.2 × magnification.
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