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We study a continuous-time branching random walk (BRW) on the lattice Z
d,

d ∈ N, with a single source of branching, that is the lattice point where the birth and
death of particles can occur. The random walk is assumed to be spatially
homogeneous, symmetric and irreducible but, in contrast to the majority of previous
investigations, the random walk transition intensities a(x, y) decrease as
|y − x|−(d+α) for |y − x| → ∞, where α ∈ (0, 2), that leads to an infinite variance of
the random walk jumps. The mechanism of the birth and death of particles at the
source is governed by a continuous-time Markov branching process. The source
intensity is characterized by a certain parameter β. We calculate the long-time
asymptotic behaviour for all integer moments for the number of particles at each
lattice point and for the total population size. With respect to the parameter β, a
non-trivial critical point βc > 0 is found for every d � 1. In particular, if β > βc the
evolutionary operator generated a behaviour of the first moment for the number of
particles has a positive eigenvalue. The existence of a positive eigenvalue yields an
exponential growth in t of the particle numbers in the case β > βc called
supercritical. Classification of the BRW treated as subcritical (β < βc) or critical
(β = βc) for the heavy-tailed random walk jumps is more complicated than for a
random walk with a finite variance of jumps. We study the asymptotic behaviour of
all integer moments of a number of particles at any point y ∈ Z

d and of the particle
population on Z

d according to the ratio d/α.

Keywords: Branching random walk; heavy tails; critical case; subcritical case;
moments; multidimensional lattices
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1. Introduction

We study a continuous-time branching random walk (BRW) on the lattice Z
d with

a single source of branching, that is the lattice point where the birth and death
of particles can occur. Our goal is to justify the classification of the number of
particles growth rate in the case of the so-called BRWs with heavy tails, previously
presented in [20].

Informally, the process can be described as follows. Suppose that initially there
is a single particle at a point x ∈ Z

d, which then performs a random walk on Z
d
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until reaching the source x0 = 0. At the origin, the particle waits an exponentially
distributed time and then jumps to another lattice point distinct from the origin or
dies or gives a random number of offspring. In case no branching has occurred, the
particle continues its walk until the next return to the source, and so on. Each of the
newborn particles evolves according to the same rule, independently of the others.
The simplest model with one source of branching was apparently first introduced in
[24] and after that reconsidered in a more general setting in a series of publications,
see, e.g. [2,3]. Similarly, in [13,28,29] there were considered BRWs with finitely
many sources x1, . . . , xN . The BRW models are of principal interest, especially in
cases when the branching environment is spatially inhomogeneous and the phase
space Z

d is unbounded, see, e.g. [24].
The formation of the theory of BRWs as a separate discipline goes back to seminal

works on branching processes with diffusion of particles, see, e.g., [21] and references
in [22]. Depending on what assumptions are made regarding the space in which the
walking takes place (bounded, as is in [21] or unbounded, as is in [12,24]), the
time in which the particle system ‘lives’ (is it continuous [7,12] or discrete [9]), the
nature of the random walk (symmetric, a mainly considered case, asymmetric [6,28]
or periodic in space [16]), the probabilistic properties of walking and branching (the
variance of jumps is finite or infinite, see, e.g., [10,19]), etc. the task setting and
research objectives are significantly changing. The methods used to study the BRWs
also vary greatly. Therefore, for example, the technique of analysis of the branching
processes with motion of particles on continuous spaces (e.g. R

d), as a rule, cannot
be used unchanged in the analysis of the BRWs on discrete spaces (e.g. Z

d). There
is a fairly wide range of studies based on purely probabilistic approaches in which
BRWs can be reduced to the Bellman–Harris branching processes (see, e.g. [6,23]).
In studies motivated by the problems of statistical physics an approach is more
often used that goes back to the description of the evolution of systems using the
Kolmogorov equations, see, e.g., [2,14]. In such studies, the main research focus
is shifted to the use of functional–analytical methods and the application of the
theory of differential equations in infinite dimensional spaces. The current study is
adjacent to the second direction.

In statistical physics for processes in random media, it is well known that inhomo-
geneity of the environment plays a key role in the formation of anomalous properties
of transport processes which is conventionally expressed in terms of the so-called
intermittency concept. For the detailed discussion of the concept of intermittency
of random fields, and in particular the concept of ‘strong centres’ of the field gener-
ation, see, e.g. [4] and references therein. In this context, the model of BRW with a
single source of branching (or, more generally, with finitely many sources) may be
viewed as taking into account principal ‘perturbation’ terms. On the other hand,
the non-compactness of the space destroys the pure-point spectrum of the operator
associated with the process [3,24], so that the conventional spectral methods are
no more readily applicable [25].

In this paper, we assume that the branching mechanism at the source is gov-
erned by a continuous-time Markov branching process. It is also assumed that the
underlying random walk is spatially homogeneous, symmetric and irreducible but,
in contrast to the majority of previous investigations, the random walk transition
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intensities a(x, y) decrease as |y − x|−(d+α) for |y − x| → ∞, where α ∈ (0, 2), that
leads to an infinite variance of the random walk jumps. For such a BRW (called
a heavy-tailed BRW) the precise asymptotic behaviour of all integer moments of
the number of particles at each lattice point and on the entire lattice is remained
unexplored in the case when the positive pure-point spectrum of the operator is
empty. Different models of heavy-tailed random walks without branching of par-
ticles were investigated by many authors, see, e.g. [5] and references therein. The
random walk transition probabilities p(t, x, y) for symmetric heavy-tailed random
walks were investigated in [1] under an appropriate regularity condition on the
tails of the jump distributions for |y − x| + t → ∞. The results for the random
walk transition probabilities p(t, x, y) without any regularity conditions, but for
fixed space coordinates were obtained in [18]. Therefore, the main goal of the cur-
rent study is to find the long-time asymptotic behaviour of all integer moments for
the number of particles at each lattice point and for the total population size, for
the case of a heavy-tailed BRW with one source of branching. A BRW with the
sources of branching at every lattice point is considered, e.g. in [10]. Some applica-
tions of the theory of heavy-tailed processes can be found, e.g. in [30]. Below, we
achieve the goal by studying the chain of the backward differential-difference equa-
tions for the moments. The difference operator involved in each moment equation
is of the form Hβ := A + βδ0(·), where A is the random walk generator, and the
delta-term reflects the presence of the branching source. The spectral properties of
the operator Hβ play an essential role in the problem. With respect to a certain
parameter β characterizing intensity of the source, a non-trivial critical point βc > 0
is found for every d � 1 (unlike a BRW with a finite variance of jumps for which
βc > 0 only for d � 3) see, e.g. [27], which is related to the existence of a positive
eigenvalue λ0 of the operator Hβ . The probabilistic meaning of the parameter λ0 is
that it determines the rate of the process exponential growth [13], and hence the
case β > βc corresponds to the supercritical regime.

We study how the asymptotic behaviour, as t → ∞, of the moments of the
particle population and of the number of particles at the point y ∈ Z

d depends
on the parameters of walking, branching, and the ratio d/α. The various combi-
nations of these parameters allow classifying the BRW as subcritical, critical or
supercritical. For the case of heavy-tailed random walk jumps, this classification
is turned out to be more complex than for a random walk with a finite variance
of jumps [20]. It is noteworthy that, for a similar process with branching and
motion on R

d, in [12] it was established the ‘persistence’ criteria based on the ratio
between d/α and 1/β, where α and β are the parameters of motion and branching,
respectively.

The structure of the work is as follows. In § 2, a formal description of a BRW with
one branching source and main previous results are reminded. In § 3, we investigate
the structure of the non-negative discrete spectrum of a BRW, lemma 3.3, and
find the limits of the mean of the local number of particles, theorem 3.4. In § 4,
theorem 4.3 about asymptotics of all moments of particle number for a critical BRW
is obtained. Finally, in § 5, we study the asymptotic behaviour of all moments of
particle number for a subcritical BRW, theorem 5.3.
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2. Model and previous results

We consider a stochastic process for a system of particles when every particle can
walk on the lattice points and give offsprings or die at the origin (called the source
of branching).

The underlying random walk is determined by a matrix of transition inten-
sities A = (a(x, y))x,y∈Zd , where a(x, y) � 0 for y �= x, −∞ < a(x, x) < 0 and∑

y∈Zd a(x, y) = 0. By the axiomatics from [11], the corresponding transition prob-
ability p(h, x, y) of a particle movement from point x to point y over a short period
of time h, satisfies the equations

p(h, x, y) = a(x, y)h + o(h) for y �= x,

p(h, x, x) = 1 + a(x, x)h + o(h).

Such relations imply that the Kolmogorov’s backward equations hold

dp(t, x, y)
dt

=
∑

x′∈Zd

a(x, x′)p(t, x′, y), p(0, x, y) = δy(x), (2.1)

where δy(·) is the discrete Kronecker delta-function on Z
d.

We consider a symmetric random walk with a(x, y) = a(y, x). Then, due to the
sufficient condition of the boundedness of linear operators given in [28, lemma 1],
the expression

(Au)(x) :=
∑

x′∈Zd

a(x, x′)u(x′), u ∈ �p(Zd), (2.2)

defines the bounded linear operator A : �p(Zd) → �p(Zd) for any p ∈ [1,∞]. Note
that the operator A is self-adjoint in �2(Zd). Now we can rewrite equations (2.1) as
differential equations in Banach spaces

dp(t, x, y)
dt

= (Ap(t, ·, y))(x), p(0, x, y) = δy(x). (2.3)

We assume that a(x, y) = a(0, y − x) which can be treated as a spatial homogene-
ity of the random walk. Then the values of a(x, y) can be expressed by a function
of one argument as follows: a(x, y) = a(y − x), where a(z) := a(0, z), z ∈ Z

d. We
assume also that the random walk is irreducible which means that for every z ∈ Z

d

there exists a set of vectors z1, . . . , zk ∈ Z
d such that z =

∑k
i=1 zi and a(zi) �= 0 for

1 � i � k.
Finally, for the random walk, we assume that for all z ∈ Z

d with sufficiently large
norm the following asymptotic relation holds

a(z) ∼ H (z/|z|)
|z|d+α

, α ∈ (0, 2), (2.4)

where H(·) is a continuous positive symmetric function on the unit sphere S
d−1.

This implies that the variance of jumps of the random walk

σ2 =
∑
z �=0

|z|2 a(z)
−a(0)
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becomes infinite (see, e.g. [27] for a more detailed discussion of the related pre-
liminaries) which means that the random walk under consideration has heavy
tails.

The solution of the Cauchy problem (2.3) has a well-known Gaussian approxi-
mation, see, e.g. [11], for the case of a finite variance of jumps

p(t, x, y) ∼ γdt
−d/2, t → ∞,

with γd > 0. In [18, theorem 2], it was proved that under assumption (2.4) the
probability p(t, x, y) has the following asymptotics:

p(t, x, y) ∼ hα,dt
−d/α, t → ∞, (2.5)

where hα,d > 0. Moreover,

p(t, 0, 0) − p(t, x, 0) ∼ γ̃d,α(x)
t(d+2)/α

, t → ∞, (2.6)

where γ̃d,α(x) > 0, see [19, theorem 1].
Now, let us turn to assumptions concerning the branching component of the

process. We assume that the branching process at the origin is covered by
the continuous-time Markov branching process having the following infinitesimal
generation function

f(u) =
∞∑

n=0

bnun, 0 � u � 1,

where bn � 0 for n �= 1, b1 < 0 and
∑∞

n=0 bn = 0. Assume also β(r) := f (r)(1) < ∞
for every r ∈ N. Let us denote intensity of the source by

β = f ′(1) =
∞∑

n=1

nbn = (−b1)

⎛
⎝∑

n�=1

n
bn

(−b1)
− 1

⎞
⎠ ,

where the last sum is the mean number of offsprings. According to the imposed
assumptions, the probability of producing n �= 1 particles from a single one has the
following form

p∗(h, n) = bnh + o(h), h → 0,

where the value n = 0 means that the particle died.
Now we combine the walking and branching components of the process. At the

origin (where the source of branching is located), it is possible that during a short
period of time h the particle jumps to a point y �= 0 with the transition probability
p(h, 0, y), or produces n �= 1 particles with the probability p∗(h, n), where n = 0
means the particle death. Otherwise the particle remains at the origin during the
period of time h with the probability

pbrw(h, x, x) = 1 + a(0)h + δ0(x)b1h + o(h), h → 0.

In what follows, the main object of interest will be the long-time asymptotic
behaviour of the local particle number at an arbitrary point μt(y), y ∈ Z

d, and
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the total population size μt =
∑

y∈Zd μt(y). We will investigate the asymptotic
behaviour of the moments mn(t, x, y) = Exμn

t (y) and mn(t, x) = Exμn
t , where Ex

is the expectation under condition that there was only one particle in the system
at the initial moment of time, and it located at the point x ∈ Z

d.
Introduce the linear operator

Hβ = A + βΔ0 (2.7)

on �p(Zd), p ∈ [1,∞], where the operator A is defined by (2.2), and the operator
Δ0 is defined by (Δ0u)(x) := δ0(x)u(x), where u ∈ �p(Zd). Then the equations for
the first moments are as follows, see, e.g. [25, theorem 1.3.1],

dm1(t, x)
dt

= (Hβm1(t, ·))(x), m1(0, x) ≡ 1, (2.8)

dm1(t, x, y)
dt

= (Hβm1(t, ·, y))(x), m1(0, x, y) = δy(x). (2.9)

We would like to point out that equations (2.8) and (2.9) were obtained in [25]
for the case of a finite variance of jumps, however their derivation and the final
forms remain unchanged for the case of heavy tails as the differential and integral
equations below.

Using the notation {mi(t)}n−1
i=1 for the sets of functions

{mi(t, x, y)}n−1
i=1 and {mi(t, x)}n−1

i=1 ,

we can write the following differential equations for the higher-order moments,
n � 2

dmn(t)
dt

= (Hβmn(t))(x) + (Δ0gn(m1(t), . . . , mn−1(t)))(x),

where

gn(m1,m2, . . . ,mn−1) =
n∑

r=2

β(r)

r!

∑
i1,...,ir>0

i1+···+ir=n

n!
i1! · · · ir!mi1 · · ·mir

. (2.10)

By analogue with the scheme of deriving the integral equations from the differential
equations from [25], it is possible to derive the integral equations for the first
moments

m1(t, x, y) = p(t, x, y) + β

∫ t

0

p(t − s, x, 0)m1(s, 0, y)ds, (2.11)

m1(t, x, y) = p(t, x, y) + β

∫ t

0

m1(s, x, 0)p(t − s, 0, y)ds, (2.12)

m1(t, x) = 1 + β

∫ t

0

m1(s, x, 0)ds, (2.13)
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and the integral equations for the higher-order moments, n � 2, in forms

mn(t, x, y) = m1(t, x, y)

+
∫ t

0

m1(t − s, x, 0)gn(m1(s, 0, y), . . . ,mn−1(s, 0, y))ds, (2.14)

mn(t, x) = m1(t, x) +
∫ t

0

m1(t − s, x, 0)gn(m1(s, 0), . . . ,mn−1(s, 0))ds. (2.15)

To investigate the solutions of such equations, the Laplace transform

Gλ(x, y) =
∫ ∞

0

e−λtp(t, x, y)dt, λ � 0, (2.16)

of transition probability can be used. The function Gλ(x, y), which is conventionally
called the Green function of the transition probabilities, can be expressed, see [25],
also as

Gλ(x, y) =
1

(2π)d

∫
[−π,π]d

ei〈θ,y−x〉

λ − φ(θ)
dθ,

where

φ(θ) =
∑
z∈Zd

a(z)ei〈θ,z〉, θ ∈ [−π, π]d,

is the Fourier transform of the transition intensity a(z).

3. Spectral analysis of the evolution operator

Due to equations (2.8) and (2.9), the spectrum of the operator Hβ defined by (2.7)
determines the asymptotic behaviour of the first moment of particle number.

By [25, lemma 3.1.3], the proof of which does not depend on the conditions
for variance of jumps, the number λ is an eigenvalue of the operator Hβ with an
eigenvector f ∈ �2(Zd) if and only if the following conditions are satisfied

f(0) �= 0, β �= 0,∫
[−π,π]d

|λ − φ(θ)|−2dθ < ∞, (3.1)

βI0(λ) = 1, (3.2)

where

Ix(λ) =
1

(2π)d

∫
[−π,π]d

e−i〈θ,x〉

λ − φ(θ)
dθ, x ∈ Z

d, (3.3)

(note that Ix(λ) ≡ Gλ(x, 0), when λ � 0).
Moreover, the eigenvector f corresponding to the eigenvalue λ is defined by the

equality

f(x) = βf(0)Ix(λ), x ∈ Z
d,

and therefore each eigenvalue of the operator Hβ is simple.
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In the next lemma, we answer the question which combinations of the parameters
d, α and β imply that the value λ = 0 is an eigenvalue of the operator Hβ .

Lemma 3.1. Let λ = 0. If d/α ∈ (1/2, 2], d ∈ N, then condition (3.1) is not valid,
if d/α ∈ (2,∞), d ∈ N, it is valid.

Proof. By theorem 5 from [15] about the asymptotics as θ → 0 of the function∑
z∈Zd\{0}

az(1 − cos〈z, θ〉), θ ∈ R
d,

where az‖z‖d+α → 1 for ‖z‖ → ∞, α ∈ (0, 2], and 〈·, ·〉 is the standard inner product
and ‖ · ‖ is the max-norm on R

d, we have

c|θ|α � |φ(θ)| � C|θ|α

in a sufficiently small neighbourhood of zero, where c, C > 0 are some constants.
Then condition (3.1) for λ = 0 is equivalent to the condition∫

[−π,π]d
|φ(θ)|−2dθ < ∞

which (passing to the generalized polar coordinates) is equivalent to∫ ρ

0

rd−1−2αdr < ∞

for some small ρ > 0. Taking into account that the last condition is valid only for
d/α ∈ (2,∞) and hence is not valid for d/α ∈ (1/2, 2], we finalize the proof of the
lemma. �

To determine the values of λ � 0 at which equation (3.2) is solvable, we
investigate the properties of the function I0(λ).

Lemma 3.2. For λ > 0, the function I0(λ) in (3.3) is defined, continuous, strictly
decreases and positive, wherein

lim
λ→∞

I0(λ) = 0 for d/α ∈ (1/2,∞),

lim
λ→0

I0(λ) = +∞ for d/α ∈ (1/2, 1],

lim
λ→0

I0(λ) = G0(0, 0) < ∞ for d/α ∈ (1,∞),

where α ∈ (0, 2), d ∈ N.

Proof. The proof is based on the study of convergence domain of the integral∫
[−π,π]d

|λ − φ(θ)|−1dθ

according to a scheme similar to that of lemma 3.1, and on continuity and
monotonicity in λ of function (λ − φ(θ))−1. �
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As follows from lemma 3.1, by virtue of the continuity and strict decreasing of
the function I0(λ), the spectrum of the operator Hβ may contain no more than one
positive eigenvalue of unit multiplicity. Furthermore, the set of possible values of
the intensity of the source β can be divided by a certain threshold value βc in such
a way that for β < βc there will be no positive eigenvalues, and for β > βc, there is
a unique positive eigenvalue of unit multiplicity. In this sense, the value βc of the
intensity of the source can be called the critical value.

Let us introduce a classification of the BRW with one source of branching which
depends on the growth behaviour of the population size. As will be explained in
§ 3, for certain dimension d and certain value of the parameter α of the underlying
random walk, there exist a critical value βc of the intensity of the source such that
the exponential growth of the mean population size is possible only for β > βc. This
is a consequence of the fact that an isolated positive eigenvalue in the spectrum of
the operator Hβ exists only for β > βc by definition of βc. In view of this, we will
call a BRW supercritical if β > βc, critical if β = βc, and subcritical if β < βc.

For the case of finite variance of jumps the asymptotics of all the moments
mn(t, x, y), mn(t, x) was found in the book [25]. The asymptotics of all the moments
mn(t, x, y), mn(t, x) with no restrictions on the variance of jumps for a supercritical
BRW with arbitrary finite number of branching sources was found in [13].

Now we summarize the results about the presence of non-negative eigenvalues in
the spectrum of the operator Hβ .

Lemma 3.3. For the BRW on Z
d, d ∈ N, satisfying (2.4), the following statements

about βc and non-negative eigenvalues of Hβ are valid

(i) if d/α ∈ (1/2, 1], then βc = 0; for β � βc the operator Hβ has no non-negative
eigenvalues; for β > βc the operator Hβ has an eigenvalue λ > 0 of unit
multiplicity that is a solution of equation (3.2);

(ii) if d/α ∈ (1, 2], then βc = G−1
0 (0, 0) > 0; for β � βc the operator Hβ has no

non-negative eigenvalues; for β > βc the operator Hβ has an eigenvalue λ > 0
of unit multiplicity that is a solution of equation (3.2);

(iii) if d/α ∈ (2,∞), then βc = G−1
0 (0, 0) > 0; for β < βc the operator Hβ has no

non-negative eigenvalues; for β � βc the operator Hβ has an eigenvalue λ of
unit multiplicity that is a solution of equation (3.2), wherein λ = 0 for β = βc

and λ > 0 for β > βc.

Proof. To determine when conditions (3.1) and (3.2) from [25, lemma 3.1.3] about
eigenvalues of the operator Hβ are satisfied, we use lemmas 3.1 and 3.2. Then
condition (3.1) is valid only for d/α ∈ (2,∞) wherein condition (3.1) is valid for λ >
0 if β > βc and for λ = 0 if β = βc. The equality βc = G−1

0 (0, 0), when G−1
0 (0, 0) <

∞, is a consequence of equation (3.2). �

Now we can evaluate the limiting behaviour as t → ∞ of the average number of
particles m1(t, x, y) at the every point y ∈ Z

d when the process starts from x. For
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every λ ∈ C and x, y ∈ Z
d, when Gλ(x, 0), Gλ(0, y) are defined and finite, denote

c(λ, x, y) :=
Gλ(x, 0)Gλ(0, y)
‖Gλ(x, 0)‖2

�2(Zd)

.

Theorem 3.4. Let m1(t, x, y) be the solution of the Cauchy problem (2.9). Then for
the BRW on Z

d, d ∈ N, satisfying (2.4), and every y ∈ Z
d, the following statements

are valid

(i) if β > βc and d/α ∈ (1/2,∞) then

lim
t→∞m1(t, x, y)e−λtc−1(λ, x, y) = 1, (3.4)

where λ is the solution of equation (3.2);

(ii) if β = βc and d/α ∈ (2,∞) then

lim
t→∞m1(t, x, y)c−1(0, x, y) = 1, (3.5)

and m1(t, x, y) is monotonically non-increasing;

(iii) if β � βc and d/α ∈ (1/2, 2] or if β < βc and d/α ∈ (2,∞) then

lim
t→∞m1(t, x, y) = 0. (3.6)

Moreover, the function m1(t, x, y) converges to zero as t → ∞ uniformly in
x ∈ Z

d, and it is monotonically non-increasing.

Proof. By lemma 3.3 the operator Hβ has a simple non-negative eigenvalue λ. Then
applying lemmas 3.3.2, 3.3.3 and 3.3.4 from [25] (about asymptotics of a solution of
the Cauchy problem (2.9) with a bounded self-adjoint operator) we readily obtain
limits (3.4)–(3.6).

By analogue with [25, lemma 3.3.5], if the spectrum Hβ has no positive
eigenvalues, then the function m1(t, x, y) is monotonically non-increasing in t. �

4. Critical BRW

Let us find the asymptotics as t → ∞ of the mean number of particles m1(t, x, y)
at the point y ∈ Z

d when the process started from x ∈ Z
d for the cases of recurrent

random walks.

Theorem 4.1. Let β = βc. Then for every y ∈ Z
d, d ∈ N, the solution m1(t, x, y),

x ∈ Z
d, of the Cauchy problem (2.9) under d/α ∈ (1/2, 1] satisfies the relation

m1(t, x, y) ∼ hα,dt
−1/α, t → ∞,

where hα,d is defined in (2.5).

Proof. By statement (i) from lemma 3.3, we have βc = 0. Then the Cauchy prob-
lem (2.9) is equivalent to the Cauchy problem for transition probabilities (2.3).
Therefore, the solution m1(t, x, y) has the same asymptotics (2.5). �
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Now we find the asymptotics as t → ∞ of the function m1(t, x, y) for the cases
of transient random walks.

Theorem 4.2. Let β = βc. Then for every y ∈ Z
d, d ∈ N, the solution m1(t, x, y),

x ∈ Z
d, of the Cauchy problem (2.9) under d/α ∈ (1,∞) satisfies the relation

m1(t, x, y) ∼ C1(x, y)u1(t), t → ∞,

where the functions C1(x, y) and u1(t) are as follows:

C1(x, y) = G0(x, 0)G0(0, y)γ−1
d,αΓ−1(d/α − 1), u1(t) = td/α−2 for d/α ∈ (1, 2),

C1(x, y) = G0(x, 0)G0(0, y)γ−1
d,α, u1(t) = (ln t)−1 for d/α = 2,

C1(x, y) = G0(x, 0)G0(0, y)γ−1
d,α, u1(t) = 1 for d/α ∈ (2,∞),

and γd,α are positive constants.

Proof. We find the asymptotics of m1(t, x, y) as t → ∞ by evaluating the asymp-
totics of its Laplace transform m̂1(λ, x, y) as λ → 0, using the Tauberian theorems
(see [8, Ch. XIII]). For β � βc by [25, lemma 5.1.3], the Laplace transform of the
solution m1(t, x, y) of the Cauchy problem (2.9) for Reλ > 0 is well defined and can
be represented in the following form

m̂1(λ, x, y) =
βGλ(0, y)Gλ(x, 0)

1 − βGλ(0, 0)
+ Gλ(x, y),

where Gλ(x, y) is defined in (2.16).
At first, we consider the case x = y = 0, then we get

m̂1(λ, 0, 0) =
Gλ(0, 0)

1 − βcGλ(0, 0)
=

G0(0, 0)Gλ(0, 0)
Gλ(0, 0) − Gλ(0, 0)

.

Applying the asymptotics of Gλ(0, 0) from [29, theorem 1] we obtain that
m̂1(λ, 0, 0) is asymptotically equivalent to G2

0(0, 0)γ−1
d,αf(λ) as λ → 0, where

f(λ) = λ−d/α+1, γd,α = Γ(2 − d/α)hα,d for d/α ∈ (1, 2),

f(λ) = (λ ln(1/λ))−1, γd,α = −hα,d for d/α = 2,

f(λ) = λ−1, γd,α =
∫ ∞

0

(∫ ∞

t

p(s, 0, 0)ds

)
dt for d/α ∈ (2,∞),

and the constants hα,d are in (2.5).
Under the condition β = βc the function m1(t, 0, 0) is monotone by theorem 3.4.

Therefore, we can apply the Tauberian theorems (see [8, Ch. XIII]) and find that,
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as t → ∞, the following relations are valid

m1(t, 0, 0) ∼ G2
0(0, 0)γ−1

d,α(ln t)−1 for d/α ∈ (1, 2),

m1(t, 0, 0) ∼ G2
0(0, 0)γ−1

d,αΓ−1(d/α − 1)td/α−2 for d/α = 2,

m1(t, 0, 0) ∼ G2
0(0, 0)γ−1

d,α for d/α ∈ (2,∞).

To find the asymptotics of m1(t, x, 0), we express it by the integral
equation (2.11), and after that we use statement (e) from lemma 2 for convolu-
tions in [26]. Then it remains only to find the asymptotics of m1(t, x, y), and now
we represent it by the integral equation (2.12), apply the same lemma for con-
volutions and the fact that β = βc = 1/G0(0, 0) from lemma 3.3. Theorem 4.2 is
proved. �

Now, we investigate the asymptotic behaviour as t → ∞ of the mean of
population size m1(t, x) when the process started from point x ∈ Z

d.

Theorem 4.3. Let β = βc. Then the solution m1(t, x), x ∈ Z
d, d ∈ N, of the

Cauchy problem (2.8) under d/α ∈ (1/2,∞) satisfies the relation

m1(t, x) ∼ C1(x)v1(t), t → ∞,

where the functions C1(x) and v1(t) are as follows

C1(x) = 1, v1(t) = 1 for d/α ∈ (1/2, 1],

C1(x) = G0(x, 0)γ−1
d,αΓ−1(d/α), v1(t) = td/α−1 for d/α ∈ (1, 2),

C1(x) = G0(x, 0)γ−1
d,α, v1(t) = t ln−1 t for d/α = 2,

C1(x) = G0(x, 0)γ−1
d,α, v1(t) = t for d/α ∈ (2,∞),

and γd,α are positive constants.

Proof. For the case d/α ∈ (1/2, 1], we have β = βc = 0 by (i) in lemma 3.3. Then
equation (2.13) implies that m1(t, x) ≡ 1.

For the case d/α ∈ (1,∞), we find the asymptotics of m1(t, x) as t → ∞ by
evaluating the asymptotics of its Laplace transform m̂1(λ, x) as λ → 0 using the
Tauberian theorems (see [8, Ch. XIII]). For β � βc by [25, lemma 5.1.4], the Laplace
transform of the solution m1(t, x) of the Cauchy problem (2.8) for Reλ > 0 is defined
and can be expressed in the form

m̂1(λ, x) =
1 − β(Gλ(0, 0) − Gλ(x, 0))

λ(1 − βGλ(0, 0))
. (4.1)

Herewith, we have β = βc = G−1
0 (0, 0) by (ii), (iii) in lemma 3.3. Then by asymp-

totic relations for Gλ(0, 0) from [29, theorem 1], we get that the asymptotics of
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m̂1(λ, x) as λ → 0 is G0(x, 0)γ−1
d,αf(λ), where

f(λ) = λ−d/α for d/α ∈ (1/2, 1),

f(λ) = λ−2 ln−1(1/λ) for d/α = 2,

f(λ) = λ−2 for d/α ∈ (2,∞).

As is seen from the integral equation (2.13), the function m1(t, x) is monotone.
Then applying the Tauberian theorem (see [8, Ch. XIII]) to m̂1(λ, x) we find the
asymptotics of m1(t, x) indicated in the statement of the theorem. �

Let us complete the study of the asymptotic behaviour as t → ∞ of the moments
of particle number for the critical BRW.

Theorem 4.4. Let β = βc. Then for the BRW on Z
d, d ∈ N, under condition (2.4),

and every x, y ∈ Z
d, n ∈ N, the following asymptotic relations hold

mn(t, x, y) ∼ Cn(x, y)un(t), mn(t, x) ∼ Cn(x)vn(t), t → ∞,

where Cn(x, y), Cn(x) are positive constants, and the functions un(t), vn(t) are as
follows:

un(t) = t−1/α, vn(t) = t(1−1/α)(n−1) for d/α ∈ (1/2, 1),

un(t) = t−1, vn(t) = (ln t)n−1 for d/α = 1,

un(t) = td/α−2, vn(t) = t(d/α−1)(2n−1) for d/α ∈ (1, 3/2),

un(t) = t−1/2(ln t)n−1, vn(t) = tn−1/2 for d/α = 3/2,

un(t) = t(d/α−2)(2n−1)+n−1, vn(t) = t(d/α−1)(2n−1) for d/α ∈ (3/2, 2),

un(t) = tn−1(ln t)1−2n, vn(t) = t2n−1(ln t)−2n+1 for d/α = 2,

un(t) = tn−1, vn(t) = t2n−1 for d/α ∈ (2,∞).

Proof. We will find the asymptotics of the moments by induction using formulas
(2.14), (2.15) and (2.10).

First we prove the assertions of the theorem for the local moments mn(t, x, y),
n � 1. Denote the convolution

Wn(t) :=
∫ t

0

m1(t − s, x, 0)gn(m1(s, 0, y), . . . ,mn−1(s, 0, y))ds.

By theorems 4.1 and 4.2, we have the asymptotics of m1(t, x, 0). Then by
definition (2.10), we find the asymptotics of gn(m1(s, 0, y), . . . ,mn−1(s, 0, y)), when
n = 2. Now we can find the asymptotics of convolution Wn(t), n = 2, by lemma 2
for convolutions from [26]. To find the asymptotics of mn(t, x, y), n = 2, it remains
only to express one by formula (2.14) and compare the growth rate of m1(t, x, y)
and Wn(t), n = 2. Following this scheme for n > 2, we obtain statements of the
theorem for mn(t, x, y), n > 2.
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Using a similar reasoning scheme and applying theorem 4.3, we find asymptotics
of the moments mn(t, x), n � 2. �

Thus, by proving theorem 4.4, we thereby proved the main assertion from [20]
for the critical case β = βc, which was only announced in [20]. Moreover, in this
section we have got an explicit form of C1(x, y) and C1(x).

5. Subcritical BRW

Let us find the asymptotic behaviour as t → ∞ of the mean of particle population
size m1(t, x) when the process started from point x ∈ Z

d.

Theorem 5.1. Let β < βc. Then the solution m1(t, x), x ∈ Z
d, d ∈ N, of the

Cauchy problem (2.8) under d/α ∈ (1/2,∞) satisfies the relation

m1(t, x) ∼ C1(x)v1(t), t → ∞,

where the functions C1(x) and v1(t) are as follows:

C1(x) = −(βγ1,αΓ(1/α))−1, v1(t) = t1/α−1 for d/α ∈ (1/2, 1),

C1(x) = −(βγ1,1)−1, v1(t) = ln−1 t for d/α = 1,

C1(x) =
1 − β(G0(0, 0) − G0(x, 0))

1 − βG0(0, 0)
, v1(t) ≡ 1 for d/α ∈ (1,∞),

and γ1,α are positive constants.

Proof. To find the asymptotics of the function m1(t, x), we will use the Tauberian
theorems (see [8, Ch. XIII]). By [25, lemma 5.1.4], which remains valid in the
case of heavy tails (2.4), the Laplace transform of the solution m1(t, x) of the
Cauchy problem (2.8) has the representation by the Green’s function (4.1) for λ
with Reλ > l where l is some non-negative number.

The asymptotics of Gλ(0, 0) as λ → 0 was found in [29, theorem 1]. By inspection
of its proof, we can observe that the first term of the asymptotics of Gλ(x, y) with
arbitrary x, y ∈ Z

d has the same form, because by (2.5) the asymptotic representa-
tion of the transition probability p(t, x, y) is hα,d/td/α, and it does not depend on
the lattice points x, y. Then the next relations, as λ → 0, follow

m̂1(λ, x) ∼ −(βγ1,α)−1λ−1/α for d/α ∈ (1/2, 1),

m̂1(λ, x) ∼ (βγ1,1)−1(λ ln λ)−1 for d/α = 1,

where the constants γd,α > 0 were defined in [29, theorem 1].
Due to the monotonicity of m1(t, x) by (2.13), we can apply the Tauberian

theorem for densities (see [8, Ch. XIII, theorem 4]) and get the following asymptotic
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relations as t → ∞
m1(t, x) ∼ −(βγ1,αΓ(1/α))−1t(1−α)/α for d/α ∈ (1/2, 1),

m1(t, x) ∼ −(βγ1,1)−1(ln t)−1 for d/α = 1.

Let us consider the remaining case d/α ∈ (1,∞), in which for every x, y ∈ Z
d the

value of G0(x, y) is finite. Here by (4.1) we have

m̂1(λ, x) ∼ 1 − β(G0(0, 0) − G0(x, 0))
λ(1 − βG0(0, 0))

, λ → 0,

and therefore, by the Tauberian theorem for densities (see [8, Ch. XIII, theorem 4]),
the asymptotics of the mean size of particle population is

m1(t, x) ∼ 1 − β(G0(0, 0) − G0(x, 0))
1 − βG0(0, 0)

, t → ∞.

Theorem 5.1 is proved. �

Now we can find the asymptotics as t → ∞ of mean of particle number m1(t, x, y)
at every point y ∈ Z

d when process started from x ∈ Z
d.

Theorem 5.2. Let β < βc. Then for the BRW on Z
d, d ∈ N, satisfying condi-

tion (2.4), with representations for the first moments

m1(t, 0, 0) ∼ C1(0, 0)u1(t), m1(t, x) ∼ C1(x)v1(t), t → ∞,

for every x, y ∈ Z
d the following asymptotic relation hold

m1(t, x, y) ∼ C1(x, y)u1(t), t → ∞, (5.1)

where

C1(x, y) = C1(0, 0)g(x)g(y), u1(t) = t1/α−2 for d/α ∈ (1/2, 1),

C1(x, y) = C1(0, 0)g(x)g(y), u1(t) = t−1 ln−2 t for d/α = 1,

C1(x, y) = (C1(x) + βG0(y, 0)C1(0))hα,d u1(t) = t−d/α for d/α ∈ (1,∞),

+ β2C1(0, 0)G0(x, 0)G0(y, 0),

and

g(x) := 1 − β

∫ ∞

0

(p(t, 0, 0) − p(t, x, 0))ds, (5.2)

and hα,d is defined in (2.5).

Proof. First, we find the asymptotics of m1(t, x, 0). Substituting y = 0 into the
integral equation (2.11), we obtain

m1(t, x, 0) = p(t, x, 0) + β

∫ t

0

p(t − s, x, 0)m1(s, 0, 0)ds, (5.3)

where the asymptotics of p(t, x, 0) is known by relation (2.5) and the asymptotics
of m1(t, 0, 0) is known by [17, theorem 3].
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Note, that for d/α ∈ (1/2, 1] due to lemma 2 for convolutions from [26], the
asymptotics of the integral

∫ t

0
p(t − s, x, 0)m1(s, 0, 0)ds has the same principal term

up to a constant as the asymptotics of p(t, x, 0). Then the sum of the coefficients
on the right-hand side of equation (5.3) satisfies the limit equalities

lim
t→∞

(
1 + β

∫ t

0

m1(s, 0, 0)ds

)
= lim

t→∞m1(t, 0) = 0,

due to representation of the m1(t, 0) by the integral equation (2.13) and the limit
of m1(t, 0) by theorem 5.1. But for d/α ∈ (1,∞), not all coefficients at principal
terms of the asymptotics of the right-hand side of (5.3) tend to zero. For this
reason, further we consider the case d/α ∈ (1/2, 1], when the BRW is recurrent,
and the case d/α ∈ (1,∞), when the BRW is transient, separately.

For d/α ∈ (1/2, 1], by the integral equation (2.11) and symmetry of the random
walk, we have

m1(t, x, 0) − m1(t, 0, 0) = f(t, 0, x) + β

∫ t

0

f(t − s, 0, x)m1(s, 0, 0)ds, (5.4)

where

f(t, z1, z2) := p(t, z1, z2) − p(t, z1, 0)

for any z1, z2 ∈ Z
d. To find the asymptotics of f(t, 0, x), we use the symmetry of the

underlying random walk and apply the statement about asymptotics of p(t, 0, 0) −
p(t, x, 0) from (2.6). The asymptotics of m1(t, 0, 0) is known by [17, theorem 3].
To find the asymptotics of the integral in (5.4), it remains to use lemma 2 for
convolutions from [26]. Then we obtain the equality∫ t

0

f(t − s, 0, x)m1(s, 0, 0)ds = (1 + α1(t))m1(t, 0, 0)
∫ ∞

0

f(s, 0, x)ds,

for some α1(t) → 0, t → ∞. Finally, from equation (5.4), the asymptotic relation
follows:

m1(t, x, 0) ∼ g(x)m1(t, 0, 0), t → ∞, (5.5)

where g(x) is defined in (5.2).
By the integral equation (2.12) and symmetry of random walk, we can write also

m1(t, x, y) − m1(t, x, 0) = f(t, x, y) + β

∫ t

0

f(t − s, 0, y)m1(s, x, 0)ds. (5.6)

Properties of underlying random walks provide the equality f(t, x, y) =
−(p(t, 0, 0) − p(t, x − y, 0)) + (p(t, 0, 0) − p(t, x, 0)), and then by the asymptotic
relation (2.6) we have

f(t, x, y) ∼ (γ̂d,α(x) − γ̂d,α(x−y))t−(d+2)/α, t → ∞. (5.7)

We now use relations (5.5) and (5.7) to find the asymptotics of the integral in (5.6)
by lemma 2 for convolutions from [26]. Then by relation (5.6), it follows that

m1(t, x, y) ∼ g(x)g(y)m1(t, 0, 0), t → ∞,

where asymptotics of m1(t, 0, 0) is found in [17, theorem 3].
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For the case d/α ∈ (1,∞), by the integral equation (2.11) we express m1(t, x, 0).
We use the asymptotics of p(t, x, y) in (2.5) and the asymptotics of m1(t, 0, 0) in
[17, theorem 3] to find the asymptotics of the integral by lemma 2 for convolutions
from [26]. Then in view of theorem 5.1, the following equality holds

m1(t, x, 0) =
(

1 + (1 + ad,α(t, x, 0))β
∫ ∞

0

m(s, 0, 0)ds

)
p(t, x, 0)

+
(

(1 + bd,α(t, 0, 0))β
∫ ∞

0

p(s, x, 0)ds

)
m1(t, 0, 0),

where ad,α(t, x, 0) → 0, bd,α(t, 0, 0) → 0 as t → ∞ for each x ∈ Z
d. Then by (2.13)

m1(t, x, 0) ∼ m1(t, 0)p(t, x, 0) + βG0(x, 0)m1(t, 0, 0), t → ∞.

In the same way, from the integral equation (2.12) we derive

m1(t, x, y) = p(t, x, y) +
(

(1 + ad,α(t, 0, y))β
∫ ∞

0

m1(s, x, 0)ds

)
p(t, 0, y)

+
(

(1 + bd,α(t, x, 0))β
∫ ∞

0

p(s, 0, y)ds

)
m1(t, x, 0),

where ad,α(t, 0, y) → 0, bd,α(t, x, 0) → 0 as t → ∞ for each x, y ∈ Z
d. Then, due to

the independence of the first term of the asymptotics p(t, x, y) from the coordinates
x, y ∈ Z

d and by equality (2.13), the asymptotic equality holds

m1(t, x, y) ∼ m1(t, x)hα,d t−d/α + βG0(y, 0)m1(t, x, 0), t → ∞.

From here we derive the asymptotic representation (5.1) for m1(t, x, y). Theorem 5.2
is proved. �

Analysis of the first-order moments m1(t, x) and m1(t, x, y) was fulfilled in the-
orems 5.1 and 5.2. In the next theorem we extend the related results, for the
subcritical BRW, to the case of higher-order moments mn(t, x) and mn(t, x, y),
n � 2.

Theorem 5.3. Let β < βc. Then for the BRW on Z
d, d ∈ N, satisfying condi-

tion (2.4) for every n � 1 and every x, y ∈ Z
d the asymptotic relations hold

mn(t, x, y) ∼ Cn(x, y)u1(t), t → ∞, (5.8)

mn(t, x) ∼ Cn(x)v1(t), t → ∞. (5.9)

Here C1(x, y), u1(t) and C1(x), v1(t) are obtained in theorem 5.2, while for n � 2
we have

Cn(x, y) = C1(x, y) + C1(x, 0)
∫ ∞

0

gn(m1(s, 0, y), . . . ,mn−1(s, 0, y))ds,

https://doi.org/10.1017/prm.2020.46 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.46


988 A. Rytova and E. Yarovaya

where for the function gn(m1(t), . . . ,mn−1(t)) defined in (2.10), with the notation
mi(t) ≡ mi(t, 0, y), i ∈ N, the following asymptotic relation holds

gn(m1(t),m2(t), . . . , mn−1(t)) ∼ β(2)

2

n−1∑
i=1

n!
i!(n − i)!

mi(t)mn−i(t), t → ∞.

(5.10)

Besides, for n � 2 we also have

Cn(x) = C1(x), for d/α ∈ (1/2, 1],

Cn(x) = C1(x) + χn(x)
∫ ∞

0

m1(s, x, 0)ds, for d/α ∈ (1,∞),

where

χn(x) =
β(2)

2

n−1∑
i=1

n!
i!(n − i)!

Ci(x)Cn−i(x). (5.11)

Proof. We use the notation mi(t), i ∈ N, to formulate statements that are
valid simultaneously for mi(t, x, y) and mi(t, x). The proof is by induction
on n � 2 and consists in alternate derivation of asymptotics of the functions
gn(m1(t), . . . , mn−1(t)) and of the moments mn(t) by the integral equations for
moments (2.14) and (2.15).

For n = 2 by definition (2.10), we have g2(m1(t)) = β(2)m2
1(t). Then rela-

tion (5.10) under n = 2 follows.
This makes it possible to find the asymptotics of m2(t, x, y) and m2(t, x) using

the integral equations for moments (2.14) and (2.15). To find asymptotics of convo-
lutions in these equations, we write down the asymptotics of u1(t), u2

1(t) and v2
1(t)

from theorems 5.2 and 5.1, that is

u1(t) = t1/α−2, u2
1(t) = t2/α−4, v2

1(t) = t2/α−2 for d/α ∈ (1/2, 1),

u1(t) = t−1 ln−2 t, u2
1(t) = t−2 ln−4 t, v2

1(t) = ln−2 t for d/α = 1,

u1(t) = t−d/α, u2
1(t) = t−2d/α, v2

1(t) = 1 for d/α ∈ (1,∞),

and apply lemma 2 for convolutions from [26], namely, statements (k), (n) to
m2(t, x, y), and (d), (e) to m2(t, x) for cases d/α = 1 and d/α ∈ (1/2, 1) ∪ (1,∞)
respectively. Then the following equalities hold∫ t

0

m1(t − s, x, 0)g2(m1(s, 0, y))ds

= (1 + ad,α(t))m1(t, x, 0)
∫ ∞

0

g2(m1(s, 0, y))ds, (5.12)

∫ t

0

m1(t − s, x, 0)g2(m1(s, 0))ds

= (1 + bd,α(t))g2(m1(t, 0))
∫ ∞

0

m1(s, x, 0)ds, (5.13)
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where ad,α(t) → 0, bd,α(t) → 0, as t → 0. Hence, by the integral equations (2.14)
and (2.15), we obtain the following asymptotic equalities

m2(t, x, y) ∼ m1(t, x, y) + m1(t, x, 0)
∫ ∞

0

g2(m1(s, 0, y))ds, t → ∞,

m2(t, x) ∼ m1(t, x) + g2(m1(t, 0))
∫ ∞

0

m1(s, x, 0)ds, t → ∞.

Now we rewrite the asymptotics of the functions above in terms of C1(x, y), u1(t),
C1(x), v1(t) from theorems 5.1 and 5.2, namely

g2(m1(t, x, y)) ∼ β(2)C2
1 (x, y)u2

1(t), t → ∞,

m2(t, x, y) ∼
(

C1(x, y) + C1(x, 0)
∫ ∞

0

g2(m1(s, 0, y))ds

)
u1(t), t → ∞,

g2(m1(t, x)) ∼ β(2)C2
1 (x)v2

1(t), t → ∞.

Then for function m2(t, x), we have under d/α ∈ (1/2, 1] the asymptotics

m2(t, x) ∼ C1(x)v1(t), t → ∞,

and, under d/α ∈ (1,∞), the asymptotics

m2(t, x) ∼
(

C1(x) + β(2)C2
1 (0)

∫ ∞

0

m1(s, x, 0)ds

)
v1(t), t → ∞.

Continuing the same reasoning, by alternate applying the formula in definition
(2.10) and the integral equations (2.14), (2.15), we will obtain the asymptotic
representations for gn(m1(t), . . . , mn−1(t)), n � 2, as polynomials of u1(t), when
mn(t) is mn(t, x, y), and as polynomials of v1(t), when mn(t) is mn(t, x). Also we
will obtain asymptotic representations of mn(t, x, y) and mn(t, x) as the product of
some constant on u1(t) and v1(t) respectively.

Assume that for some n � 2 the asymptotic relations (5.10), (5.8) and (5.9) hold.
Then, in particular, we have

mn−1(t, x, y) ∼ Cn−1(x, y)u1(t), mn−1(t, x) ∼ Cn−1(x)v1(t), t → ∞.

Let us prove that these relations are also valid for n + 1.
Rewrite formula (5.10) in the form

gn(m1(t, x, y), . . . ,mn−1(t, x, y)) ∼ β(2)

2

n−1∑
i=1

n!
i!(n − i)!

Ci(x, y)Cn−i(x, y)u2
1(t),

gn(m1(t, x), . . . , mn−1(t, x)) ∼ β(2)

2

n−1∑
i=1

n!
i!(n − i)!

Ci(x)Cn−i(x)v2
1(t).

Due to the power-logarithmic behaviour of the functions u1(t) and v1(t), and by
analogue with the scheme of obtaining (5.12) and (5.13), we derive by lemma 2 for
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convolutions from [26], as t → ∞, the following asymptotic representations∫ t

0

m1(t − s, x, 0)gn(m1(t, 0, y), . . . ,mn−1(t, 0, y))ds

= (1 + ad,α,n(t))m1(t, x, 0)
∫ ∞

0

g2(m1(s, 0, y), . . . ,mn−1(s, 0, y))ds,

∫ t

0

m1(t − s, x, 0)gn(m1(s, 0), . . . ,mn−1(s, 0))ds

= (1 + bd,α,n(t))gn(m1(t, 0), . . . ,mn−1(t, 0))
∫ ∞

0

m1(s, x, 0)ds,

where ad,α,n(t) → 0, bd,α,n(t) → 0 as t → ∞. By analogue with the scheme of
obtaining the asymptotic relations for m2(t, x, y) and m2(t, x) above and equa-
tions (2.14) and (2.15), as t → ∞, for d/α ∈ (1/2,∞), it is possible to obtain the
following relations

mn(t, x, y) ∼
(

C1(x, y) + C1(x, 0)
∫ ∞

0

gn(m1(s, 0, y), . . . ,mn−1(s, 0, y))ds

)
u1(t),

as well as

mn(t, x) ∼ C1(x)v1(t) for d/α ∈ (1/2, 1],

mn(t, x) ∼
(

C1(x) + χ0(x)
∫ ∞

0

m1(s, x, 0)ds

)
v1(t) for d/α ∈ (1,∞),

where χ0(x) is defined in (5.11).
Then the representation

gn+1(m1(t), . . . , mn(t)) =
β(2)

2

n∑
i=1

(n + 1)!
i!(n + 1 − i)!

mi(t)mn+1−i(t)

+
n+1∑
r=3

β(r)

r!

∑
i1,...,ir>0,

i1+···+ir=n+1

(n + 1)!
i1! · · · ir!mi1(t) · · ·mir

(t),

justifies the validity of relation (5.10) and simultaneously the validity of rela-
tions (5.8) and (5.9), which completes the proof of the theorem. �

By proving theorem 5.3, we have provided also complete proofs for the subcrit-
ical case β < βc of the theorem from [20] and obtained an explicit form of the
appropriate constants.

Therefore, in §§ 4 and 5 the classification of the number of particles growth rate
for the critical and subcritical BRWs with heavy tails, previously announced in [20],
has been obtained.
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