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SUMMARY
Robotic swimmers are currently a subject of extensive research and development for several under-
water applications. Clever design and planning must rely on simple theoretical models that account
for the swimmer’s hydrodynamics in order to optimize its structure and control inputs. In this work,
we study a planar snake-like multi-link swimmer by using the “perfect fluid” model that accounts
for inertial hydrodynamic forces while neglecting viscous drag effects. The swimmer’s dynamic
equations of motion are formulated and reduced into a first-order system due to symmetries and
conservation of generalized momentum variables. Focusing on oscillatory inputs of joint angles, we
study optimal gaits for 3-link and 5-link swimmers via numerical integration. For the 3-link swim-
mer, we also provide a small-amplitude asymptotic solution which enables obtaining closed-form
approximations for optimal gaits. The theoretical results are then corroborated by experiments and
motion measurement of untethered robotic prototypes with three and five links floating in a water
pool, showing a reasonable agreement between the experiments and the theoretical model.

KEYWORDS: Robot dynamics; Marine robotics; Control of robotic systems; Robotic locomotion;
Gait optimization.

1. Introduction
Autonomous swimming robots have a promising potential for various applications such as surveil-
lance and protection in marine environment, search and rescue missions, and maintenance operations
within pipe systems of complex infrastructures.1–4 A leading biologically inspired concept of artic-
ulated mobile robots is a snake-like kinematic chain that undergoes body undulations of a travelling
wave where the joint angles undergo phase-shifted oscillatory motion.5–8 Coordination between the
links and the optimization of the gait of periodic shape changes is highly crucial for generating
effective net motion. Terrestrial snakes whose motion is governed by rigid-body contact mechan-
ics have been widely explored for several decades.9–11 On the other hand, the motion of swimming
snake robots is governed by hydrodynamic interaction between the fluid and the robots. Several
theoretical models of the hydrodynamics of swimming have been studied, with varying level of
accuracy and computational complexity. Some works use coefficients of lift and/or drag forces,
which can be tuned empirically.6, 12–16 Other works consider the interaction of the swimmer with vor-
tices shed by the undulating tail.17, 18 Some of the works above consider open-loop periodic inputs
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of joint angles,6, 13–15 whereas others focus on feedback control and mechanical actuation of joint
torques.12, 16 Nonetheless, all the modelling methods mentioned above result in a complicated non-
linear system of second-order differential equations which have to be integrated numerically. The
solutions depend strongly on the empirically tuned drag coefficients. In addition, the resulting motion
is time dependent which does not necessarily reach a steady-state periodic solution, and depends sig-
nificantly on the frequency of the oscillating inputs. This makes the analysis complicated, as well as
sensitive to many hand-tuned parameters.

A fundamentally different formulation approach which results in a remarkably simpler model is
that of “perfect fluid”,19–21 which assumes inviscid irrotational potential flow, where the swimmer–
fluid interaction is induced by reactive forces that represent added mass effect, associated with the
momentum required in order to displace the fluid surrounding the swimmer’s links.22 Using this
model, invariance of the dynamics under rigid-body transformation enables reduction into a sys-
tem of first-order differential equations, which relate the swimmer’s body motion to the velocities
of shape variables (i.e. joint angles), which are assumed to be directly prescribed. Importantly, the
reduced system is time invariant, that is, the motion’s time rate simply scales with frequency of the
periodic input. Thus, the net body motion per period depends only on the gait’s trajectory and not on
its frequency. A similar “principal kinematic” structure of the dynamic equations also holds for other
locomotion systems such as wheeled vehicles23, 24 and micro-swimmers in Stokes flow.25, 26 Such sys-
tems are widely studied in the robotics literature, using methods of differential geometry and notions
of Lie groups.27, 28 Most of previous works in this field have studied gait planning for achieving
desired net motion, which is computed by using numerical integration24 or by applying approxi-
mate area-integral rules.29, 30 Optimization of gaits for achieving maximal displacement or energetic
efficiency has also been studied, and mainly involved numerical computations.31–34 Finally, while
several theoretical models of robotic swimming models have been tested experimentally,6, 12, 14, 35 the
low-dimensional “perfect fluid model” has not yet been validated experimentally.

The goal of this work is to revisit the “perfect fluid” model for planar multi-link swimmers and
analyze it both theoretically and experimentally. The “perfect fluid” model gives a low-dimensional
principal kinematic time-invariant system which depends on very few physical parameters, in con-
trast to more complicated previous models.6, 12–14 This enables explicit closed-form analysis of the
robot’s motion under open-loop inputs of periodic gaits, in contrast to previous works that used
numerical integration only.24, 29–31 Focusing on small-amplitude harmonic inputs of joint angles,
we use perturbation expansion36, 37 in order to obtain asymptotic expressions for the net motion
of the 3-link swimmer. These expressions enable analysis and optimization of joint angles’ stroke
amplitude and relative phase, as well as links’ length ratio, for achieving maximal net displacement.
Additionally, explicit expression for the curvature of net motion as a function of angles oscillation
offset is obtained, which enables simple generation of moderate turning motions. For the 5-link
swimmer, optimization of stroke amplitude and phase difference between consecutive joints are con-
ducted numerically, and a global optimizer is obtained. Validity of the “perfect fluid” model is tested
by conducting controlled motion experiments of untethered floating prototypes of the 3- and 5-link
swimmers. The experimental and theoretical results are compared by using motion measurements
from an optical tracking system. Good qualitative and reasonable quantitative agreement is obtained,
after calibrating the added mass effect to account only for the submerged part of the robot’s links.
Additionally, experimental results that demonstrate optimal phase difference between joints are also
shown. This study thus proves the usefulness of the “perfect fluid” model as a simplified theoret-
ical tool for studying the dynamics, control and gait optimization of swimming robots. The paper
is organized as follows. The next section presents the problem statement and formulation of the
dynamic equations. Section 3 includes asymptotic analysis of the 3-link swimmer. Section 4 con-
tains numerical simulations and optimization of gaits for 3- and 5-link swimmers. Section 5 presents
experimental results, and Section 6 discusses their comparison with prediction of the theoretical
model. The closing section summarizes the results and lists possible directions for future exten-
sions of the research. In order to make our analysis accessible to a broader audience of the robotics
research community, we chose not to use advanced notions of geometric mechanics such as Lie
groups and Riemannian geometry as in previous works.27, 28, 30 Instead, the swimmer’s dynamics is
formulated using elementary terminology of linear algebra, vector calculus and ordinary differential
equations.
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Fig. 1. Swimmer models. (x, y) are the position of the body-fixed reference frame origin. β is the rotation angle
of the reference frame. ai and bi are the major and minor radii of the elliptic links: (a) 3-link swimmer model.
(b) 5-link swimmer model.

2. Problem Formulation
We now describe the theoretical model of the swimmer and formulate its dynamic equations of
motion using the “perfect fluid” hydrodynamic model. The planar swimmers shown in Fig. 1(a) and
(b), respectively, consist of N = 3 and N = 5 links connected by revolute joints. The swimmers’
motion is restricted to translation in (x, y) plane and rotations about z-axis. Each link is an ellipse
with principal radii of ai , bi and density ρ, which has mass mi and moment of inertia Ii . In order to
avoid collisions between adjacent links, the distance between the center of the i th link and the adja-
cent joint is li > ai . The relative angles between links are denoted by θi . The swimmer is submerged
in an unbounded domain of ideal fluid with density ρ. That is, the swimmer is neutrally buoyant
and gravity effects are not considered. It is assumed that the joint angles are directly controlled, and
undergo harmonic oscillations of the form

θi (t) = A sin(ωt + ϕi ). (1)

In order to formulate the dynamic equations that govern the swimmer’s motion, generalized coor-
dinates are chosen as q = (qb, qs), where the body coordinates qb = (x, y, β) describe the position
and orientation of a body-fixed frame Fb attached to link number “0”, while the shape coordinates
qs = (θ1, . . . , θN−1) are the swimmer’s joint angles, see Fig. 1. Using Lagrange’s formulation, the
equations of motion are given in matrix form as:

H(q)q̈ + B(q̇, q) = Fh + Q (2)

where H is the swimmer’s inertia matrix, B contains velocity-dependent terms, Fh is a vector of
hydrodynamic forces applied by the fluid, and Q(t) = [0, 0, 0, τ1(t), . . . , τN−1(t)]T contains gener-
alized forces induced by the joints’ torques. The inertia matrix H is related to the swimmer’s kinetic
energy T through the relation T = 1

2 q̇TH(q)q̇. This matrix can also be written explicitly as

H =
N∑

i=1

JT
i (q)Mi Ji (q), where Mi =

⎡
⎣mi 0 0

0 mi 0
0 0 Ii

⎤
⎦. (3)

The Jacobian matrices Ji in Eq. (3) satisfy the kinematic relations vi = Ji q̇, where vi =
[ẋ ′

i , ẏ′
i , ωi ]T is the linear and angular velocity of the i th link expressed in a frame Fi attached to

its principal axes. Using the “perfect fluid” model,19, 20 it is assumed that the fluid is governed by
irrotational potential flow where viscous drag effects are neglected.22 For simplicity, we follow26 and
neglect also the hydrodynamic interaction between the links. This implies that the hydrodynamic
force acting on the i th link is decoupled from all other links and satisfies

Fi = M′
i ai , where M′

i = πρ

⎡
⎣b2

i 0 0
0 a2

i 0
0 0 1

8 (a2
i − b2

i )

⎤
⎦, (4)
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and ai is the linear and angular acceleration of the i th link expressed in the frame Fi . The matrix M′
i

in Eq. (4) is the added mass tensor of an ellipse-shaped body,19, 22 which is related to the momentum
of the fluid that is displaced by the accelerating link. Relation (4) enables elimination of the hydro-
dynamic forces Fh from Eq. (2) and replacing them by an addition to the system’s kinetic energy and
matrix of inertia, as:

T = 1
2 q̇T H̃(q)q̇ = 1

2

(
vb

q̇s

)T [
Mbb Mbs

MT
bs Mss

] (
vb

q̇s

)

where H̃(q) =
N∑

i=1
JT

i (q)[Mi + M′
i ]Ji (q)

(5)

and vb = [ẋ ′, ẏ′, ωb] is the linear and angular velocity of the body frame Fb expressed in the frame
Fb. This body-fixed velocity is related to the swimmer’s absolute body velocity via the kinematic
equation

q̇b = R(β)vb, where R(β)=
⎡
⎣cos β − sin β 0

sin β cos β 0
0 0 1

⎤
⎦ (6)

The matrices Mbb, Mbs and Mss in Eq. (5), which depend only on the shape variables qs , are sub-
blocks of H̃(q) expressed in the frame Fb by substituting β = 0. Note that the use of body-frame
velocities vb in Eq. (5) is possible due to the assumption of unbounded fluid domain that induces
invariance of the dynamics with respect to rigid-body transformations (also known as gauge sym-
metry28). A well-known observation26, 27 is that this invariance induces conservation of generalized
momentum variables, formulated as:

d

dt
(Mbb(qs)vb + Mbs(qs)q̇s) = 0 (7)

Starting from rest (vb = q̇s = 0) gives the relation between body velocity and shape changes as:

vb = −Mbb(qs)
−1Mbs(qs)q̇s = A(qs)q̇s (8)

Thus, the equation of motion (2) is reduced into a first-order system, augmented by the kinematic
relation (6). Time invariance of equation (8) (also known as the system’s connections27, 28) implies
that under a periodic input of shape changes, the net motion over a period depends only on the
trajectory qs(t) (i.e. gait) and not on the time rate of the motion.

3. Asymptotic Analysis of 3-link Swimmer
In this section we derive the leading-order expression and next-order correction for the displacement
of a 3-link swimmer over one period of harmonic inputs. First, we define some non-dimensional
constants describing the swimmer’s geometry. The ratio between the links’ principal radii is denoted
by a uniform α = bi/ai and the links’ length ratio by η = 2l0/ l, where l is the full length of the
swimmer l = 2(l0 + l1 + l2). For simplicity, we assume that there is no spacing between the links,
that is, ai = li . The joint angles are given by θi = εsi (t), where ε is the stroke amplitude and si (t) is
the unscaled gait trajectory given by:

s1(t) = − cos(t − ϕ/2), s2(t) = cos(t + ϕ/2) (9)

with t ∈ [0, 2π]. Equation (8) now becomes:

vb = A(ε, t)εṡ, (10)

where s = [s1, s2]T . This equation can be expanded as

vb =
(

A(0, t)+ε
∂A(ε, t)

∂ε

∣∣∣∣
0

+ε2 1

2!
∂2A(ε, t)

∂ε2

∣∣∣∣
0

+· · ·
)

εṡ (11)
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Table I. Expressions from Eq. (15) for α = 0.5.

f1(η) =πlη(η−1)5
(
78η3+511η2+114η+29

)
4
(
3η2−2η+1

)2
P1(η)

f2(η) = −πlη(η − 1)5 P2(η)

64
(
3η2 − 2η + 1

)4
P1(η)3

f3(η) = πlη(η − 1)5 P3(η)

128
(
3η2 − 2η + 1

)4
P1(η)3

P1(η) = (−333η4+196η3+170η2+116η−221
)

P2(η) = 3119734251η15−3070539495η14−11677468041η13+25870509185η12−19032800901η11+
5503302973η10−4437032321η9+9942070757η8−10156151831η7+4574010219η6+
973272381η5−2844406429η4+1987499057η3−771302273η2+189030989η−17941001

P3(η) = 2764445895η15 − 8663576859η14 + 9431287407η13 − 4965255883η12 + 6399003543η11−
12206561479η10 + 12080221351η9 − 6386459751η8 + 1644304573η7 − 399495473η6+
1027495461η5 − 1126099745η4 + 434875109η3 + 17293779η2 − 60307771η + 20773779

where all derivatives in Eq. (11) are evaluated at ε = 0. This gives the expansion of body-fixed
velocities as:

vb(t) = εv(1)
b + ε2v(2)

b + · · · (12)

while the body position x(t), y(t) cannot be directly integrated from the body-fixed velocities ẋ ′, ẏ′,
the orientation angle β can be integrated from the expansion of ωb(t) in Eq. (12) as β(t) = εβ(1) +
ε2β(2) + · · · . Next, we expand the rotation matrix R in Eq. (6) as:

R(β) = I + β

⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦ + β2

⎡
⎣−1 0 0

0 −1 0
0 0 0

⎤
⎦ + · · ·

= I + εR(1) + ε2R(2) + · · · (13)

where I is the 3 × 3 identity matrix. Substituting the expansions for R in Eq. (13) and vb in Eq. (8)
into Eq. (6) and rearranging into power series in ε, we obtain an expansion for x(t) and y(t).
Due to symmetries of the gait in Eq. (9), it can be shown that the net displacement in y-direction
vanishes.25, 37 The motion in x-direction can be obtained from integration over the period time:

X =
∫ T

0
ẋ(t)dt, (14)

which gives the following expansion:

X = ε2 X (2) + ε4 X (4) + O(ε6) (15)
where,

X (2) = f1(η) sin ϕ > 0

X (4) = f2(η) sin ϕ + f3(η) sin 2ϕ

The functions f1(η), f2(η) and f3(η) depend on the links’ aspect ratio α in a very cumbersome way.
For concreteness, we choose α = 0.5 which is close to that of the experimental prototypes and gives
much simpler expressions. The functions f1(η), f2(η) and f3(η) for α = 0.5 are given in Table I.

For a phase difference of ϕ > 1[rad], X (4) is negative, and thus for large amplitude ε, the swim-
ming direction is reversed. Moreover, there exists an optimal amplitude ε∗ that maximizes X , which is
approximated from Eq. (15) as ε∗ = √|X (4)|/2X (2). Next, we consider the influence of the phase dif-
ference ϕ on the displacement X for a given amplitude ε. From Eq. (15), it is obvious that X vanishes
for ϕ = {0, π}. This is because in these cases the shape change is time reversible.25, 26 Moreover, there
exists an intermediate value of optimal phase ϕ∗ that achieves maximal displacement. Considering
only the leading-order term X (2) in Eq. (15) gives optimal phase of ϕ∗ = π/2, but the next-order
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(a) (b) (c)

Fig. 2. Numerical simulation and asymptotic approximations for the 3-link swimmer. (a) X vs. ε for ϕ = π/2,
η = 1/3, (b) X vs. ϕ for ε = π/4, η = 1/3, (c) X vs. η for ε = π/4, ϕ = π/2.

term adds a correction to this optimal value. From Eq. (15), the optimal phase difference can be
obtained as:

ϕ∗ = cos−1

[(
−D1 ±

√
D2

1 + 16D2
2

)
/4D2

]
(16)

where,

D1 = ε2 f1(η) + ε4 f2(η) and D2 = ε4 f3(η)

Additionally, we consider optimization with respect to the length ratio η for a fixed total length
l of the swimmer. It can clearly be seen from Eq. (15) and Table I that for η = 0 and η = 1 the
displacement X vanishes, since one or two links of the swimmer have zero length. Using only the
leading-order expression X (2) in Eq. (15), the optimum of the polynomial f1(η) is numerically cal-
culated as η∗ = 0.3546, indicating that the three links should be of nearly equal lengths. This result
reveals a significant distinction from Purcell’s 3-link microswimmer in a viscous fluid, whose optimal
link ratio is η ≈ 0.25, so that l1 = l2 ≈ 1.5l0.

Another possible manoeuvre of the swimmer is moderate turning obtained by performing small-
amplitude oscillations about a constant angle γ so that the joint angles are θ1(t) = −γ − ε cos(t −
ϕ/2), θ2(t) = γ + ε cos(t + ϕ/2). The leading-order terms for the displacement X and the net
rotation �β under this actuation with η = 1/3 and α = 0.5 are

X (2) = πl sin(ϕ)
(−125184C5−355448C4−32802C3+743779C2+848034C+309286

)
9

(
C2+2

) (
262C2+768C+593

)2 (17)

�β(2) = 128π sin(ϕ)S
(−652C4−1437C3+455C2+3339C+2534

)
(
C2+2

) (
262C2+768C+593

)2 (18)

where C = cos(γ ) and S = sin(γ ). The net displacement in the y-direction is only of order O(ε4).
Equations (17) and (18) show that in addition to the displacement in the x-direction, the swimmer
has net rotation �β over a period. This allows the swimmer to perform an arclike motion. The curva-
ture of the resulting trajectory of the swimmer κ = �β

X for a small offset angle γ is κ = 3.52γ / l.
Animations of the simulated motion of the swimmer under this actuation can be found in the
multimedia extension.

4. Numerical Simulations and Gaits
We now present the results of numerical simulations of the motion of a 3-link swimmer and compare
to the asymptotic approximation. Additionally, we numerically obtain the optimal combination of
gait amplitude and phase difference for both 3-link and 5-link swimmers. In Fig. 2, the solid lines rep-
resent the numerical calculation, the dashed lines represent the results using only the leading-order
approximation and the dash-dotted lines are the results with the next-order correction. Numerical
integration of the dynamic equation of motion (8) has been performed using adaptive Runge–Kutta
procedure ode45 in Matlab. Figure 2(a) shows the X displacement over a period for varying ampli-
tudes and a phase difference of ϕ = π/2. It can be seen that for large amplitudes the swimming
direction is reversed. Obviously, the reversal cannot be seen in the leading-order results which
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Fig. 3. Contour plot of net displacement X of the 3-link swimmer as a function of amplitude ε and phase ϕ. The
points of maximal displacement at |X | = 0.102l are marked by “×”. The “+” markers denote maximal distance
|X | = 0.23l which is attained only for unphysical values of joint angle amplitudes.

are quadratic in ε and monotonic. Nevertheless, including the next-order term X (4) does show this
behaviour and has an optimal amplitude. The optimal amplitude using the numerical calculation is
ε∗ = 1.65[rad] with a normalized displacement of X = 0.079l and through the asymptotic approx-
imation ε∗ = 1.55[rad] with a displacement of X = 0.074l. For larger amplitudes of ε > π , it is
shown in Fig. 2(a) that there exists another optimum with negative displacement that has even larger
absolute value. However, in these large amplitudes the swimmer’s links will collide and thus, this
result is regarded as infeasible. Figure 2(b) shows the displacement as a function of the phase differ-
ence ϕ with an amplitude of ε = π/4. For a phase difference of ϕ = {0, π} the displacement is zero
as expected from Eq. (15). The optimal phase that maximizes the displacement X is ϕ∗ = 1.36[rad]
for the numerical calculation with a displacement of X = 0.034l, while the asymptotic approxima-
tion gives an optimal phase of ϕ∗ = 1.33 with displacement of X = 0.034l. Figure 2(c) shows the
displacement for a given gait (ε = π/4 and ϕ = π/2) with varying links’ length ratio η. Both the
numeric simulation and the fourth-order approximation give a similar optimal ratio η∗ = 0.34 for the
given gait, with a displacement of X = 0.033l. The leading order as well gives a close approximation
of the optimal ratio η∗ = 0.35, but slightly misses the displacement, with X = 0.038l. Figure 3 shows
a contour plot of the displacement X as a function of the amplitude ε and phase difference ϕ for the
3-link swimmer through numerical integration. The optimal combination of amplitude and phase,
marked by “×” on the plot, is at ε∗ = 1.74, ϕ∗ = 1.01 with a displacement of X = 0.102l. (This opti-
mum cannot be captured by the asymptotic solution in Eq. (15) without considering the O(ε6) term.)
The additional global optima, marked by a “+” on the right edge of Fig. 3, are in the range of large
amplitudes which are not feasible due to inter-collision between links.

For the 5-link swimmer model, we performed simulations under harmonic inputs θk(t) =
A sin(ωt + kϕ) with identical links of ai = 1, bi = 0.5 and li = 1.1. Figure 4 shows the contour plot
of the displacement X of the 5-link swimmer as a function of the amplitude A and phase differ-
ence ϕ. The optimal combination of amplitude and phase, marked by “×”, is A∗ = 1.22[rad] and
ϕ∗ = 0.87[rad] with a displacement of X = 0.156l. Another maximum, with a greater displacement,
is marked by a “+”. As before, this is not considered since the amplitude is greater than π and col-
lision between the links will occur before the swimmer reaches this point. Motion animations of the
simulated swimmers appear in the multimedia extension.

5. Experimental Results
We now present experimental results that have been obtained with untethered floating 3-link and
5-link swimming robots. Prototypes of these robots and their dimensions are shown in Fig. 5(a),
and (b). Their links were made of ellipse-shaped flotation foams of thickness 1 cm for the 3-link
swimmer and 2 cm for the 5-link swimmer. The links were connected by joints which are actuated by
servo motors (Hitec Multiplex HS-5685M H ) that were mounted on top of the floating links. A single
battery (2-cell 7.4 V Turnigy 2 s 500 mAh Lipo) for powering the motors and RF receiver (orangeRx
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Fig. 4. Contour plot of net displacement d of the 5-link swimmer as a function of amplitude A and phase ϕ.

Fig. 5. Robotic prototypes. (a) 3-link robotic swimmer (ai = 15, bi = 7, li = 17.5). (b) 5-link robotic swimmer
(ai = 10, bi = 7, li = 12.5, all dimensions in cm).

Fig. 6. Experimental setup. Water pool with Optitrack cameras.

R615X) were mounted on top of the middle link. Harmonic inputs for the joint angles as in Eq. (1)
were fed from MATLAB interface to CRIO-Labview system, and then transmitted to the onboard
RF receiver and servo motors, in order to track coordinated reference trajectories. The robots were
located in a rectangular pool (length 401 cm, width 151 cm, height 18 cm), which has been filled with
water up to a level of 6 cm (Fig. 6). Three spherical reflective markers have been attached to each
link, and the robots’ motion was tracked by Optitrack system consisting of an array of eight infrared
cameras. The spatial location of each link has been measured with sampling rate of 100 Hz, and then
processed in Motive tracking software. The resulting position vectors were smoothened by a moving
average filter with 25-points window in order to extract the trajectories of robot’s position and joint
angles.

Motion experiments were conducted for both 3-link and 5-link swimmers under several input
parameters, and the measured results have been compared to numerical simulations under the same
joint kinematics as extracted from the measurements. A video file that appears in the multimedia
extension of this paper presents the experimental setup, motion animations of numerical simulations,
as well as movies of representative swimming experiments. Figure 7 shows motion snapshots of
the 3-link and 5-link robotic swimmers, which are taken from the movie. For the 3-link swimmer,
Fig. 8(a)–8(c), shows time plots of the body position x(t),y(t),β(t), respectively, during a single
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Fig. 7. Motion snapshots of robotic prototypes of 3- and 5-link swimmers. T = 2π/ω is the period time of the
inputs.

(a) (b) (c)

Fig. 8. Experimental results for 3-link swimmer: (a) x(t), (b) y(t), (c) β(t).

period, under inputs as in Eq. (9) with ε = 0.78[rad] and ϕ = 0.25[rad]. The solid lines denote the
experimental measurements, while the dotted lines denote numerical simulations. It can be seen that
the motions of lateral translation y(t) and rotation β(t) display reasonable agreement with numerical
simulations, whereas the forward motion x(t) is significantly overestimated by the simulations. One
obvious explanation to this difference is the fact that the model accounts for a fully submerged robot
while in reality, only a small portion of the ellipses is submerged and all masses of the motors,
batteries and receiver contribute to the robot’s inertia but not to the added mass effect which generates
propulsion. This observation can be easily incorporated into the theoretical model by introducing a
mass reduction coefficient δ, which is the ratio between the submerged part of the link’s mass to
its total mass. For our swimmer’s mass and buoyancy parameters, this coefficient is estimated as
δ = 0.05, and the dashed line in Fig. 8(a) denotes the simulated motion while considering this mass
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(a) (b)

Fig. 9. Experimental results: (a) 3-link swimmer - X vs ϕ , (b) 5-link swimmer – d vs. ϕ.

(a) (b) (c)

Fig. 10. Experimental results for 5-link swimmer: (a) x(t), (b) y(t), (c) β(t).

reduction, that is, multiplying the added mass terms in Eq. (5) by δ. It can be seen that this gives
a noticeable improvement in the quantitative agreement between experimental measurements and
numerical simulations of x(t).

Next, we conducted a series of experiments with inputs of the form (9), where the amplitude
was kept constant at ε = 0.78[rad] while the phase difference ϕ between the two joint angles
have been varied in 5-degree increments. Figure 9a plots the forward displacement X in a period
as a function of the phase difference ϕ. The circular markers denote experimental measurements
which were averaged over three periods, where the error bars denote standard deviations. The
solid line denotes numerical simulations under the same inputs without mass reduction, while
the dashed line denotes simulation results under mass reduction of δ = 0.05. It can be seen that
the experimental results corroborate the theoretical predictions of an optimal phase difference at
ϕ ≈ 1.3[rad] that achieves maximal displacement. Moreover, adding the mass reduction factor δ into
the theoretical model improves the quantitative agreement with experimental measurements. Similar
experiments have been conducted for the 5-link swimmer. Figure 10 shows time plots of the body
position x(t),y(t),β(t), respectively, under inputs θk(t) = 0.48 sin(0.5π t + kϕ)[rad] for k = 1 . . . 4
and phase difference ϕ = −π/4[rad]. Figure 9b plots the net swimming distance d = √

�x2 + �y2

as a function of the phase difference ϕ between consecutive joint angles.
One can see a good qualitative agreement between experimental results and simulations of the the-

oretical model, which both capture similar behaviour of x(t),y(t),β(t) during a cycle, and also show
an optimal phase difference of ϕ ≈ 0.83[rad] that achieves maximal displacement. Nevertheless,
the quantitative agreement between theory and experiment for this swimmer is weaker than that
of the 3-link swimmer. Incorporating the effect of added mass reduction does not result in signif-
icant improvements (shown in Fig. 10(a) only). This suggests that for the 5-link swimmer, other
unmodelled effects are more dominant, as discussed next.

6. Discussion
We now discuss the results and make some observations regarding the comparison between the exper-
iments and the numerical simulations based on the theoretical model. It is important to note that the
theoretical model of “perfect fluid” is highly simplistic and thus limited. It does not account for many

https://doi.org/10.1017/S0263574718001510 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001510


Planar multi-link swimmers 1299

realistic effects that are obviously present in the experimental prototypes, listed as follows. First, the
model does not account for drag forces generated due to the fluid’s viscosity.12–14 It also ignores
the effects of hydrodynamic interaction between the links19, 20 and of vortex shedding that enhances
propulsion.17, 18 These effects have been previously modelled by other works as mentioned above.
Nevertheless, these more accurate models are significantly more complicated and result in a major
increase in computational resources and run-time complexity, while symmetries and time invari-
ance of the low-dimensional “perfect fluid” model are typically lost. Second, the model assumes an
unbounded fluid domain, while reflected waves from the pool’s walls can have a significant effect
on the robot’s motion. This effect has been strongly observed for the 5-link swimmer, whose larger
total length (120 cm) becomes comparable to the dimensions of the pool. Third, as mentioned above,
the experimental swimmer prototype floats while only small portion of the links is submerged in the
fluid, whereas the theoretical model assumes that the entire swimmer is submerged and thus ignores
the effects of surface tension at the water–air–swimmer interface. Additionally, this work focuses on
optimizing harmonic inputs only, whereas an important extension can be considering optimization
of time-periodic input trajectories of any shape, as done in previous works for dynamic locomo-
tion systems31, 32 as well as quasistatic motion of multi-link micro-swimmers.33, 34, 38, 39 Finally, the
theoretical model considers only planar horizontal (gravity-free) motion, while the real swimmer
can undergo off-plane motion. In some experiments, the swimmer has displayed noticeable off-
plane rocking motion similar to a gravity-dominated pendulum. These oscillations were particularly
emphasized in cases of large joint angles and “U-shaped” configurations of the swimmer. This effect,
combined with mechanical limitation on joint angles due to inter-link collisions, did not enable
conducting experiments with large stroke amplitudes of the joint angles for corroborating the theo-
retical predictions of optimal amplitude. This task is left as a future challenge that requires improved
mechanical design of the swimmer.

7. Conclusions
In this paper, we have studied the inertia-dominated motion of multi-link swimmers under harmonic
inputs of joint angles. We utilized the “perfect fluid” model that accounts for added mass effect and
assumes ideal inviscid fluid, which enables reduction to a time-invariant first-order dynamical system.
We conducted asymptotic analysis for the 3-link swimmer, which gives closed-form approximate
expressions for the swimmer’s displacement, which enable obtaining optimal amplitude and phase
shift for the joint angles, as well as optimal ratio of links’ length. Next, we conducted motion experi-
ments with 3-link and 5-link floating swimmers, and compared measurements from motion tracking
system to numerical simulations under the theoretical model while accounting for the reduction in
added mass due to the swimmer’s buoyancy. Very good agreement has been achieved for the 3-link
swimmer, while the results of the 5-link swimmer agree only qualitatively. We discussed possible
reasons for the discrepancies, mainly due to wall interactions and other unmodelled effects. Future
work will include optimization of general gait trajectories, either for maximizing displacement or for
energy efficiency, as well as incorporating additional effects such as viscous drag, vortex shedding
and hydrodynamic interaction into the theoretical models. It is also planned to experimentally inves-
tigate the dependence of motion on the actuation frequency, in order to test the model’s assumption
of time-invariant dynamics.
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