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In this paper, we propose new separated decision variables that are derived by directly using
the normal distribution of each measurement error and allowing substitution of the

chi-square variable of the conventional method. In the derivation of the proposed decision
variables, we considered not only the related mathematical model, but also the additional
unmodelled properties of GPS measurements. Using the sequential pseudo-moving-average
technique, we developed a method that easily obtains the combined results of multiple

epochs. To verify our proposed algorithm, we analysed its performance using real data and
compared the results with those of the conventional method. Our proposed approach
performs better than the conventional approach, and effectively reduces computational

effort by approximately 60%. Our results demonstrate that our method achieves a solution
that is as reliable as the conventional technique, while reducing the time required to only
15% of that required by the conventional technique.
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1. INTRODUCTION. For RTK GPS positioning, we must solve the integer
ambiguity problem to use precise carrier phase measurements. As we can only
measure the accumulated carrier phase that contains integer cycle ambiguity, it is
important to determine the appropriate set of ambiguities and convert the carrier
phase measurements to precise range measurements. Many researchers have tackled
this problem, and many possible solutions have been proposed.

Typical ambiguity search problems can be solved with three sequential steps :
search space construction, sequential tests, and verification processes. The first step
is the construction of an initial search space. This involves collecting probable
candidates for integer ambiguity within the appropriate boundaries, based on the
stochastic properties of available measurements, including pseudoranges. This step
is critical for the following steps, especially the initial phases of the search process.
Too large a number of initial candidates requires excessive computation time. A
well-known and very efficient method for this step is the LAMBDA (Least-squares
AMBiguity Decorrelation Adjustment) method (Teunissen, 1994) (Jonge de,
1996). We use this method for the first step in the present study. The second
step involves sequential tests of candidates. In this phase, we need an appropriate
decision variable that efficiently represents the stochastic characteristics of
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candidates. We then use this decision variable and its threshold to test whether each
decision variable of the candidate is within the threshold, and eliminate unacceptable
candidates on this basis. Conventionally, the chi-square variable has been used for
this purpose. The final step is the verification process, using methods such as the
‘‘ratio test. ’’ This test uses the ratio of minimum and next-to-minimum values of
chi-squared variables that have an F-distribution. If a series of ratios exceeds a pre-
defined threshold and satisfies the necessary condition, we consider the solution to be
true.

Of these three steps, we focus on the second step. This paper proposes new decision
variables that enable a more efficient ambiguity search. The key elements of
performance indices for an ambiguity search include time-to-fix, computational
efficiency, and reliability. In general, more time is required to obtain a more reliable
solution. A solution can be determined in just one second, but it would be difficult to
guarantee the reliability of such a result. At the same time, we wish to avoid un-
necessarily long computations. A good result involves a reasonable and acceptable
trade-off between reliability and computation time. In terms of this kind of trade-off,
the efficiency of the technique becomes the key to the problem. This concept is
described in Figure 1. A more efficient method provides an equally reliable solution
with less computation time.

In this study, we derive new decision variables based on a related mathematical
model and the additional unmodelled properties of GPS measurements. To verify
our proposed algorithm, we process real data and analyse the degree of consistency
between our practical results and theoretical predictions. We also analyse the
performance of the proposed algorithm and compare it with the conventional
method.

Figure 1. Necessary Time vs Reliability & Efficiency.
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2. ALGORITHMS
2.1. Problem formulation. In general, the problem of GPS carrier phase

integer ambiguity resolution starts from the following carrier phase measurement
model :

w j
u=d j

u+dRjxdb jxI j
u+T j

u+Bu+N j
ul+eu

w j
r=d j

r+dR jxdb jxI j
r+T j

r+Br+N j
rl+er

(1)

where w is the carrier phase measurement. The superscript j refers to the j-th GPS
satellite and the subscripts u and r refer to the user and the reference station receiver,
respectively. d is the computed distance between the receiver and GPS satellite, dR is
the residual range error caused by ephemeris error, db is the residual satellite clock
error, I is the ionospheric advance, T is the tropospheric delay, B is the GPS receiver
clock offset, N is the integer ambiguity cycle, l is the wavelength of the carrier phase,
and e is the random error of measurement. Except for the integer N, all terms are
expressed in metres.

There are many error sources in this measurement model. To eliminate these
errors, we usually double-difference the carrier phase measurements for two
different satellites that can be tracked simultaneously by both the user and the
reference station. After being double-differenced, the measurement model can be
written as:

ir j
rDuw=irj

rDudxirj
rDuI+irj

rDuT+lirj
rDuN+irj

rDue (2)

where irj represents single-differencing between the i-th and j-th GPS satellites and

rDu represents single-differencing between the reference station and the user receiver.
If the distance between the user and the reference station (also referred to as the
‘‘baseline’’) is sufficiently small that we can ignore the spatial decorrelation of
atmospheric errors, the double-differenced errors caused by the ionosphere and
troposphere can be assumed to be zero. Applying this assumption of the short
baseline to the double-differenced distance term, i.e., irj

rDud, this term can be
converted to the product of the baseline vector b and the single-differenced line-
of-sight vector irjeu. Finally, the equation of concern is simplified as follows:

irj
rDuw=i=jeu �bxlirj

rDuN+irj
rDue: (3)

The most important property of the double-differencing process is that the double-
differenced integer ambiguity remains an integer. Our main purpose in processing
this equation is to determine the most likely integer solution of the ambiguity vector.
The solution can be obtained on the basis of the stochastic error model ; however,
the general integer ambiguity search process does not find and choose the right
solution. Instead, it progressively identifies and discards wrong solutions and selects
the remaining solution as correct. This is accomplished by calculating the decision
variables of the integer candidates within the acceptable boundaries and comparing
these to the decision criteria calculated from the probabilistic properties of the error
model.

Now we accumulate the double-differenced equations of all measurements from
n+1 satellites and rewrite them as follows:

z=Hb+lN+v (4)
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where

z=

1r3
rDuw

1r2
rDuw

..

.

1rn+1
rDuw

2
6664

3
7775, H=

1r2eTu
1r3eTu

..

.

1rn+1eTu

2
66664

3
77775, N=

1r2
rDuN

1r3
rDuN

..

.

1rn+1
rDuN

2
6664

3
7775, v=

1r2
rDue

1r3
rDue

..

.

1rn+1
rDue

2
6664

3
7775 (5)

In these equations, we assume that the first GPS satellite is the master satellite in
terms of double-differencing the measurements.

2.2. Sequential ambiguity using decision variables. The conventional method uses
the chi-square test to determine whether a candidate integer set is within the probable
boundary of the true integer set. For this purpose, the decision variable cx2 that has
the properties of the chi-squared distribution is defined as follows:

cx2=(zxHbxlN)TQx1(zxHbxlN ) (6)

where Q is the covariance matrix of v. If N is the true ambiguity vector, then
cx2 theoretically has the chi-squared distribution of n-3 degrees of freedom for all
possible error vectors v. On the basis of this property, we can determine that a
candidate integer set is wrong if its cx2 exceeds the threshold that is calculated
numerically for the appropriate confidence level. This can be written as follows:

cx2fx2nx3for true ambiguity vector N (7)

where x2nx3 is the numerically calculated threshold using the chi-squared cumulative
distribution function of n-3 degrees of freedom. If we do not consider the relation-
ships between the double-differenced measurements, we must then calculate the
decision variables for all possible ambiguity combinations. If we assume that the
number of candidates equals m for each measurement, then the number of possible
combinations becomes mn. To solve this inefficiency problem, Hatch showed that
only three of the integer ambiguity elements are independent (Hatch, 1990). We
therefore calculate the decision variables only for m3 candidates.

Mathematically, the chi-squared random variable with n-3 degrees of freedom is
equivalent to the sum of n-3 squared Gaussian random variables. Based on this idea,
we can separate the conventional decision variable cx2 into several normal random
variables csi (i=1, ... nx3) (Kee, 2003). This can be derived by mathematical equations.
As we use separated variables, tests must be performed independently for each
measurement.

To derive the new decision variables, we separate equation (4) into two parts : the
independent and dependent sets, as follows (Park, 1997) :

zI
zD

� �
= HI

HD

� �
b+l

NI

ND

� �
+v (8)

where the subscripts I and D represent the independent set and the dependent set,
respectively. Because only three equations are independent, zI is the 3x1 vector and zD
is the (n-3)x1 vector.

If we know the true values for the vector NI, an estimate of the vector ND can be
calculated as follows:

b̂b=Hx1
I (zIxlNI)r (9)
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N̂ND=
1

l
[zDxHDb̂b]=

1

l
[zDxHDH

x1
I (zIxlNI)]: (10)

If we assume that the error vector v has a normal distribution, then all estimates
derived from these measurement equations also have a normal distribution. This
property can be applied to the distribution of each element of N̂ND and we can calcu-
late the variances of each element. For the i-th measurement of the dependent set,
we can rewrite equation (10) as follows:

N̂ND, i=
1

l
[zD, ixreTD, ib̂b]=

1

l
[zD, ixreTD, iH

x1
I (zIxlNI)]: (11)

As NI is the true integer ambiguity, the mean of N̂ND, i must be the true ND,i for all
the possible error vectors v. Therefore, the variable that we should consider to make
a decision is not N̂ND, i itself, but its residual dN̂ND, i=(N̂ND, ixND, i), which can be
expressed as follows:

dN̂ND, i=
1

l
[zD, ixreTD, iH

x1
I (zIxlNI)]x

1

l
[�zzD, ixreTD, ib]

=
1

l
[(zD, ix�zzD, i)xreTD, iH

x1
I (zIxzzI)]:

(12)

As stated above, dN̂ND, i has a normal distribution with a zero mean and variance
s2
dN̂ND, i

. The equation for the variance can be derived from equation (12) as follows:

s2
dN̂ND, i

=E{dN̂ND, idN̂N
T
D, i}

=
1

l2
[E{(zD, ix�zzD, i)

2}x2E{reTD, iH
x1
I (zD, ix�zzD, i)}

+E{reTD, iH
x1
I (zIxzzI)(zIxzzI)

THxT
I reD, i}]

=
1

l2
qi+3, i+3x2reTD, iH

x1
I

q1, i+3

q2, i+3

q3, i+3

2
64

3
75+reTD, iH

x1
I QIH

xT
I reD, i

2
64

3
75

(13)

whereQI is the covariance matrix of zI, which in turn is the 3r3 sub-matrix ofQ. qi, j,
is the element of the covariance matrix Q. On the basis of this variance, we define the
new decision variable csi

(i=1, . . . , nx3) as follows:

csi
=jN̂ND, ixhN̂ND, iij (14)

where hN̂ND, ii represents rounding to the nearest integer. Because the residuals for true
ambiguities under normal conditions are always less than a half cycle, the decision
variable csi

for true ambiguities is equal to the absolute value of dN̂ND, i. The following
conditions must therefore be satisfied for all true ambiguities :

csi
fksdN̂ND, i

for the true ambiguity vector N (15)

where k is the confidence level for the test. For example, if we set k to 3 then the
probability of the true ambiguity satisfying equation (15) is 99.97%; the probability
of failure of the test is therefore 0.03%.
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2.3. Efficiency of the proposed method. This new decision scheme has two
advantages: improvement in the computational efficiency and simplification of
obtaining combined results from multiple epochs.

The computational effort required to obtain cx2 is generally greater than that
required for each csi

. The number of flops for cx2 is approximately n-3 times larger
than that for each csi

. This is an obvious result because cx2 contains the information
for all measurements whereas csi

contains the information for just one measurement.
This can be expressed as follows:

Fcs i
�

Fcx2

nx3
(16)

where Fcx2
and Fcsi

are the numbers of flops for cx2 and csi
, respectively. For the case

of a single ambiguity candidate, the computational effort required for both methods
is similar, but usually there are many candidates for the initial search process. The
savings in computational effort occur mainly during this initial phase. If the total
number of candidates is mt then the total number of flops for cx2 is expressed simply
as mtFcx2

, but it is different for csi
’s case, as follows:

Xnx3

i=1

mt, iFcsi
=(mt, 1Fcs1

+mt, 2Fcs2
+ � � �+mt, nx3Fcsnx3

)

� (mt, 1+mt, 2+ � � �+mt, nx3)Fcsi

(17)

where mt,i represents the number of candidates for the i-th test and mt,1 equals mt.
Generally, the number of candidates decreases as the number of tests increases.
Because the tests using csi

are done on a measurement-by-measurement basis, the
following relation is satisfied and the computational efficiency can be improved:

mt, 1+mt, 2+ � � �+mt, nx3ð ÞFcsi
<mt nx3ð ÞFcsi

� mtFcx2 : (18)

From equation (18), it is evident that the total number of flops for tests that use csi
is

always smaller than that for cx2 .
The many conventional methods for conducting an integer ambiguity search

obtain a solution from the measurement of several epochs and mainly depend on the
property of the change in receiver-satellite geometry. For this reason, measurements
sampled at a rate of 1 Hz or higher are meaningless in terms of the epoch-by-epoch
approach. As the measurement noise is independent in consecutive samples, it is
useful to average the noise to reduce the noise level and improve reliability and
efficiency. However, we cannot use the resulting measurements that are solely
averaged with respect to time because the receiver-satellite geometry is continuously
changing. At this point, we seek a value that indicates the measurements of each
epoch and that can be averaged to a theoretically meaningful value. We consider csi

for this purpose. Based on the results derived above,
csi

sdN̂ND, i

becomes the normal dis-

tribution with a zero mean and unit variance. On the basis of basic mathematical
relationships, the average of the independent normal random variables once again
becomes the normal random variable. Using this property, we can derive the more
reliable and efficient decision variable as follows:

csi
� N(0, sdN̂ND, i

) ) csi
=

csi

sdN̂ND, i

� N(0, 12) (19)

152 CHANGDON KEE AND OTHERS VOL. 60

https://doi.org/10.1017/S0373463307003992 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463307003992


Csi
(1)=~ccsi

(1)

Csi
(k)=

kx1

k
Csi

(kx1)+
1

k
~ccsi

(k)
(20)

Csi
(k)fk

1ffiffiffi
k

p for the true ambiguity vector N: (21)

Equation (21) is satisfied when the measurement noise has an ideal normal distri-
bution. However, in reality, there is no such thing as ideal Gaussian noise because of
existing unmodelled errors such as the multipath error and the residual errors of
atmospheric delay terms. For this reason, Csi

(k) converge to a value close to zero
rather than exactly zero for a range of k when the threshold k 1ffiffi

k
p rapidly converges

to zero. This resembles the filter sleep of the usual averaging filter. Their possible
solutions are therefore also alike in terms of using the concept of the moving-average
filter. However, the moving-average filter stores all Csi

(k) within the averaging
window, and this causes the inefficiency. The result of this trade-off is a pseudo-
moving-average filter that is formulated with the fixed averaging constant M.

The related expression of this method is as follows:

Csi
k (1)=

1

M
~ccsi

(1)

Csi
k (k)=

Mx1

M
Csi
k (kx1)+

1

M
~ccsi

(k)

(22)

Csi
k (k)fk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Mx1
1x 1x

1

M

� �2k" #vuut for the true ambiguity vector N: (23)

In terms of long-term processing, the pseudo-moving-average filter shows similar
function and performance to the moving-average filter. For large k, the threshold
converges to constant k 1ffiffiffiffiffiffiffiffiffiffiffi

2Mx1
p , which is equivalent to that of the moving average, of

which the window size is 2Mx1. Equation (22) is the final form of the proposed
decision variable. With this new decision variable, we can easily obtain the combined
results of multiple epochs.

3. EXPERIMENTAL RESULTS. We tested the validity of the proposed
algorithm using real data. Using two Trimble 4000 ssi receivers, we simultaneously
logged L1 single frequency data from the reference station and user during approxi-
mately 1,000 seconds of unit sampling time. With these data, we performed search
processes approximately 800 times as part of a statistical analysis. Because of the
short baseline length of 151 metres, we applied the short baseline assumption.
Upon double-differencing these measurements, biases caused by ionospheric
advance, tropospheric delay, and orbital errors can be ignored, but biases resulting
from multipath error cannot be ignored. The details of the processed data are
summarized in Table 1.

We first examined the computational effectiveness of the proposed method
according to two different procedures: measuring the total number of flops for the
first epoch, which occupies the most of the computational effort ; and measuring the
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number of flops for each individual candidate. The results show that the number of
flops of the proposed method for individual candidates is smaller than those of the
conventional method. In the case of the total number of flops for the first epoch, the
result is even more remarkable. The number of flops of the conventional method is
almost three times greater than that of the proposed method. Figure 2 shows these
results for each confidence level. Because the numbers of candidates that remain after
sequential tests are different for each confidence level, the computational efforts also
show slightly varying results.

Performance of the ambiguity resolution is mainly represented by the time required
to fix the solution. In this result, the definition of time-to-fix is different from the usual
definition. As we did not consider the validation process as a ‘‘ratio test, ’’ we define
the time-to-fix as the time until the number of remaining candidates having passed the
sequential decision process becomes one. With this definition, we can measure the
efficiency of the algorithm by measuring the absolute value of the time-to-fix. All 800
trials of search processes for each confidence level converge to the true ambiguity
vector. The time-to-fix generally increases with higher confidence level. If we focus on
the reliability of the method, the slope of the time-to-fix vs confidence level k trend is
a good indicator of the efficiency of the algorithm. For an averaging constantM of 4,
the time-to-fix vs k trend is as shown in Figure 3.

Table 1. Summary of GPS data processing.

Reference Station User

Location Seoul National University Seoul National University

Latitude 37x26k58.903aN 37x27k03.603aN
Longitude 126x57k09.887aE 126x57k06.006aE
Height 281.925 m 217.704 m

Date 14 June 2004

Receiver Trimble 4000 ssi

# of Satellites 8

# of Measured Epochs 1,000

Sampling Time 1 s

Elevation Mask 5x

14000

12000

10000

8000

6000Fl
op

s

4000

2000

0

14000

12000

10000

8000

6000Fl
op

s

4000

2000

0
3 4

Confidence Level (k σ) Confidence Level (k σ)

Computational efforts of 1st epoch Computational efforts of one candidate

Conventional
Proposed

5 3 4 5

Conventional
Proposed

Figure 2. Computational Efforts Required for Proposed and Conventional Search Processes.
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As evident in Figure 3, the absolute values of the time-to-fix of the proposed
method are much smaller than those of the conventional method for each confidence
level. A second point of interest in Figure 3 is the slope of each line. The slope of the
time-to-fix vs k trend for the proposed method is smaller than that of the conven-
tional method. This demonstrates that the proposed method provides a more reliable
solution with less additive effort than the conventional method. The experimental
results are summarized in Table 2 with explicit values.

The performance of the proposed method is partly dependent on the averaging
constant M. With equation (22), we may find that it is not necessary for M to be an
integer, as it simply decides the weighting of the current decision variable. In fact, M
can take the value of any float number larger than 1, but its range might be limited by
its properties in relation to the proposed method. The larger the constant M, the
smaller the time-to-fix but the more the method is influenced by measurement biases.
Increasing M acts to decrease the weighting of the current decision variable and
increase the dependence on past information, as with increasing the window size of
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c,
 m
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n)
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50

0
3 4

Confidence Level (k σ)

Conventional
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5

300

Figure 3. Time-to-fix vs Confidence Level.

Table 2. Summary of experimental results.

Conventional

method

Proposed

method Improvement

Computational efforts (4s case)

Total flops for first epoch 12,146 4,626 62% reduction

Flops for one candidate 3,091 2,247 27% reduction

Time-to-fix

3s 141 12 91% reduction

4s 244 32 87% reduction

5s 317 55 83% reduction

Time-to-fix vs k

Slope 87.8 21.7 75% reduction
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the moving average. We fixed the confidence level at 3 and examined the performance
of the proposed method with various averaging constantsM. The results are shown in
Figure 4.

As evident in Figure 4, the time-to-fix decreases for larger M, but the success ratio
also falls below 100%. This is because the residual errors of double-differenced
measurements are not perfectly Gaussian; the larger M therefore results in the
accumulation of bias effects. This is why the constantM is the design parameter of the
proposed method. It may be a rather complicated problem to choose an appropriate
M, but, as in many other approaches, this may be possible on an empirical basis
via the statistical analysis of a very large data set under various conditions. Such
an approach must have different values for each receiver and each environmental
condition.

4. CONCLUSIONS. In this study, we derived new decision variables by con-
sidering a related mathematical model and the additional unmodelled properties of
GPS measurements. To verify our proposed algorithm, we analysed the perform-
ance of the algorithm using real data and comparison with the conventional
method. The proposed approach showed better performance than the conventional
approach. We effectively reduced computational efforts to approximately 60%
of that required by the conventional method. In particular, we used a sequential
pseudo-moving-average technique to develop a method that can easily obtain the
combined results of multiple epochs. As a result, we achieved the efficiency of a
sequential test process. Our approach requires only approximately 15% of the time
taken by the conventional technique, yet we obtained equally reliable solutions.
Our proposed method is a possible solution for a faster and more reliable technique
for the ambiguity search. For further practical use of this algorithm, we intend to
apply the optimal value of the averaging constant for the pseudo-moving average,
considering the performance of the GPS receiver and the environmental conditions.
This can be done by statistical analysis of a large data set under varying conditions.
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