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The study of copepod assemblages indicated the presence of 22 species and 12 families in the southern coast of Sfax, 20 species
and 13 families in the northern coast and 14 species and 8 families in the Ghannouch area, with a dominance of Oithonidae
(79, 51 and 43% in the southern, northern and Ghannouch coasts, respectively). The relative abundance and the richness
diversity of Oithonidae were found to be the most relevant indicators of anthropogenic pollution. Oithona nana,
Euterpina acutifrons and Acartia clausi differed significantly in abundance between these three areas under differing
degrees of pollution. The study of the structure, composition and density of the copepod fauna showed that the southern
coast was a pollution-resistant ecosystem (H′ ¼ 1.49 + 0.33 bits ind21; 22 species; density ¼ 51.375 + 4.340 ×
103 ind m23) followed by Ghannouch area (H′ ¼ 1.74 + 0.28 bits ind21; 15 species; density ¼ 11.979 + 5.651 ×
103 ind m23) and the northern coast, considered as a restored area (H′ ¼ 1.95 + 0.26 bits ind21; 21 species; density ¼
6.516 + 4.304 × 103 ind m23). The three ecosystems can thus be classified according to their degree of resistance to the
anthropogenic inputs based on the results of the physico-chemical parameters and the species diversity as follows: southern
coast . Ghannouch area . northern coast.
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I N T R O D U C T I O N

Marine coastal ecosystems include intertidal and nearshore
systems that are influenced by atmospheric, terrestrial and
autochthonous processes (Kennedy et al., 2002; Carr et al.,
2003; Ruttenberg & Granek, 2011; Bahloul et al., 2015).
These ecosystems are generally sensitive to changes in
upstream terrestrial systems and to direct inputs
(Ruttenberg & Granek, 2011). Thus, they are undergoing sig-
nificant and growing anthropogenic threats (Cloern, 2001;
Newton et al., 2003; Beaugrand et al., 2010; Brander, 2010;
Burrows et al., 2011; Bahri-Trabelsi et al., 2013; Bahloul
et al., 2015; Serranito et al., 2016).

Zooplankton plays a pivotal role in aquatic food webs by
transferring carbon to higher trophic levels, consuming
microorganisms (bacteria, protists) and serving as a prey for
fish and invertebrates (De-Young et al., 2004; Sampey et al.,
2007; Ziadi et al., 2015). Zooplankton communities are
known to quickly respond to fluctuations in environmental

factors particularly in coastal areas where the combination
of land and marine influences drives strong spatiotemporal
variability (Siokou-Frangou, 1996). Zooplankton can thus be
considered as useful indicators of ecosystem health status
(Hays et al., 2005; Longhurst, 2007). The presence or
absence of certain zooplankton species may indicate the rela-
tive influence of different water types on ecosystem structures
and may serve as an early indication of a biological response to
environmental and climatic changes (Hays et al., 2005; Ziadi
et al., 2015). Zooplankton signatures may characterize specific
hydrographic conditions in most of the world’s ecosystems.
Several studies have been undertaken in the Gulf of Gabes
regarding the characterization of local zooplankton assem-
blages (Drira et al., 2010a, b, 2014; Ben Ltaief et al., 2015,
2017). In this area, the functioning of the coastal environ-
ments is highly complex due to the interaction of various
factors, i.e. water movements, tide currents, anthropogenic
inputs, marine traffic and fishing activities (Drira et al.,
2008, 2016; Feki et al., 2013). The Gulf of Gabes is subject
to a variety of human activities (Bejaoui et al., 2004;
Gargouri et al., 2011, 2015). These activities include urban set-
tlements, industrial areas and intense maritime traffic, result-
ing in the discharge of industrial and municipal effluents
enriched in nutrients and pollutants which might negatively
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affect the water quality and the state of the ecosystem (Bejaoui
et al., 2004; Gargouri-Ben Ayed et al., 2007; Gargouri et al.,
2011, 2015; Aloulou et al., 2012; Ben Salem et al., 2015; Ben
Salem & Ayadi, 2016; Drira et al., 2016, 2017).

The main goal of this study was to improve knowledge
about the spatial distribution of zooplankton abundance and
composition in a large spectrum of three coastal areas in the
Gulf of Gabes characterized by different degrees of pollution:
(1) the northern coast of Sfax city which is an area restored via
the Taparura project (Callaert et al., 2009); (2) the southern
coast of Sfax city; and (3) Ghannouch coast, close to Gabes
city, which is considered as highly polluted. The second aim
was to relate the differences observed between the three
sampled areas in respect of zooplankton abundance with
physical (temperature, salinity and pH), chemical (ammo-
nium ions (NH4

+), nitrates (NO3
2), nitrites (NO2

2), total nitro-
gen (T-N), orthophosphate (PO4

32), total phosphorus (T-P)
and silicon atoms ions Si(OH)4) and biogeochemical (sus-
pended particulate matter (SPM), particulate organic carbon
and nitrogen (POC and PON), chlorophyll-a (chl-a) and
phaeopigment-a (Phaeo-a)) water parameters characterizing
the trophic and pollution status of each zone.

M A T E R I A L S A N D M E T H O D S

Study area
The Gulf of Gabes (Eastern Mediterranean Sea, between 358N
and 338N, Tunisia), is endowed with rich aquatic resources
contributing to about 65% of the national fish production in
Tunisia (DGPA, 2004). Sampling was carried out in the
Gulf of Gabes during October and November 2014, in three
coastal areas i.e. the southern and the northern coasts of
Sfax and the Ghannouch area. Thirty stations were sampled
in the Gulf of Gabes among which 10 sampling stations
were chosen for each area (SC, NC and GA) taking into
account the pollution gradient (Figure 1).

The coastline of Sfax concentrates a great number of indus-
trial activities, mainly related to phosphates, salt works, tan-
neries, lead foundry, textiles, ceramics industry, soap
factories and building materials (Barhoumi et al., 2009).

The southern coast of Sfax (hereafter called SC) lies
between the fishing harbour in the north and Gargour
village in the south. This area is marked by the presence of
the Société Industrielle d’Acide Phosphorique et d’Engrais

Fig. 1. Location of the studied stations in the southern (stations 1–10) and northern (stations 11–20) coastal areas of Sfax and the Ghannouch area (stations
21–30) sampled during autumn (October–November 2014).
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(SIAPE) industry, which has released large amounts of phos-
phogypsum wastes for 40 years. These phosphogypsum wastes
are a significant source of phosphates (PO4

32), chloride (Cl2)
and sulphates (SO4

22) for seawater and may explain the high
chemical oxygen demand (COD) in the SC surface waters
(Bahloul et al., 2015; Drira et al., 2016). Besides the SIAPE
industry and its phosphogypsum wastes, the SC comprises
several industrial areas related to textiles, tanneries, salt,
olive oil, food processing, construction materials, ceramics
and glass. Hence, several industrial effluents are released to
the sea in this area. All these anthropogenic inputs have
been shown to alter the marine environment and biodiversity
in SC (Zaghden et al., 2005; Gargouri, 2006; Aloulou et al.,
2012; Rekik et al., 2013; Bahloul et al., 2015).

The northern coast of Sfax (hereafter called NC), extending
from the commercial harbour to wadi Ezzit and beyond, also
suffers from the pressure of human activities (Hamza-Chaffai
et al., 1997; Tayibi et al., 2009) and is subjected to increasing
eutrophication with both red (Louati et al., 2001) and green
tides caused by coastal Ulva rigida replacing the Posidonia
oceanica seagrass beds (Ben Brahim et al., 2010). Previous
studies in NC have focused on the sources and distribution
of hydrocarbons in sediments (Louati et al., 2001; Zaghden
et al., 2005) and marine bivalves (Hamza-Chaffai et al., 2003).

This area was recently restored through the Taparura
project (2006–present), which aimed at remediating this
part of Sfax city’s coast. The project included the rehabilitation
of a former complex industrial site, the reclamation of beaches
and restoration of the area (Callaert et al., 2009). It led to sig-
nificant improvement of plankton communities and water
quality (Rekik et al., 2013, 2015). Indeed, this zone was
strongly polluted by the phosphogypsum wastes from the
NPK phosphoric acid industry, situated near the commercial
harbour. The NPK was closed in 1992 and the Taparura
project allowed the burial and confinement of the phospho-
gypsum wastes and the rehabilitation of the area between
the commercial harbour and Sidi Mansour. In the NC, there
are also the outlet of the rainwater drainage channel (‘PK4’),
which crosses the city from south-west to north-east, the
outlet of the wadi Ezzit, which receives untreated domestic
and industrial effluents.

Ghannouch area (hereafter called GA) includes a chemical
industry complex as well as a commercial harbour, located
3 km north of Gabes city (Bejaoui et al., 2004). This complex
houses the ‘GCT-Gabes’ phosphoric acid industry. Contrary
to the SIAPE which stores its phosphogypsum wastes on
land in an unprotected dome, the GCT-Gabes directly dis-
charges its phosphogypsum wastes into the sea via an open
channel. Organic pollution and drastic pollution by phosphate
coming from the discharged sewage waters of the chemical
plants of Ghannouch (Zaouali, 1993) favoured the emergence
of green tides and Valonia to Ulva and the red tide or phyto-
plankton bloom (Hamza-Chaffai et al., 1995). This pollution
also caused the disappearance of Caulerpa meadows, regres-
sion of Posidonia seagrass beds and decreasing diversity of
the benthic fauna (Zaouali, 1993). Besides chemical industries,
trawling practices (shrimps fishing) contribute to the deterior-
ation of the Gabes ecosystem as well (Zaouali, 1993).

Sampling and on board measurements
Sampling was performed on board the vessel ‘Taparura’
between 10:30 am and 3:30 pm (18 and 23 October 2014;

SC and NC, respectively), 8:30 am and 12:30 am
(13 November 2014; GA) around high tide and under condi-
tions of calm sea and sunny weather. Seawater samples were
collected at �0.1 m depth using 4 l Nalgenew polycarbonate
bottles. The bottles were opened below the water surface to
avoid sampling of the surface microlayer. They were exten-
sively washed with 1 M hydrochloric acid (HCl) and Milli-Q
water before use, rinsed three times with the respective
sample before filling and placed in the cold and in the dark
after collection.

Zooplankton was collected using a cylindro-conical net
(30 cm aperture, 100 cm height, 100 mm mesh size) equipped
with an Hydro-Bios flowmeter. The net was towed obliquely
from near bottom to surface at each station at a mean speed
of 1 m s21 during 4 mins. After collection, zooplankton
samples (200 ml) were rapidly preserved in a buffered formal-
dehyde solution (2%). They were stained with Rose Bengal to
identify the internal tissues of the different zooplankton
species and also to facilitate copepod dissection. In situ mea-
surements of temperature, salinity and pH were carried out
with measuring cells type TetraConw 4-electrode system and
a refractometer.

Filtration, chemical and biogeochemical
analyses and zooplankton identification
Back in the laboratory, samples were immediately filtered
under a low vacuum (,50 mm Hg) through pre-combusted
(5008C, 4 h) GF/F (�0.7 mm) glass fibre filters (25 or
47 mm diameter, Whatman) using glassware filtration
systems. Nutrients, i.e. NO2

2, NO3
2, NH4

+, PO4
32, Si(OH)4,

T-N and T-P, were analysed with a BRAN and LUEBBE
type 3 autoanalyser and their concentrations were determined
colorimetrically using a UV-visible 6400/6405 spectropho-
tometer according to the ‘Standard Methods for the
Examination of Water and Wastewater’ (APHA, 1992).

For Chl-a and Phaeo-a analyses, 250–300 ml of samples
were filtered. Filters were then extracted with methanol (RP
prolabo) according to Raimbault et al. (2004). After 30 min
of extraction in the dark at 48C, a fluorescence measurement
was performed with a fluorometer model 10 Turner Designs
(Sunnyvale, USA) at lEx/lEm of 450/660 nm. The acidification
method was applied to determine Phaeo-a concentrations.
The fluorometer was calibrated with solutions of methanol
(96%) and Chl-a (Sigma C5753). For SPM, POC and PON
between 250 and 1100 ml of sample were filtered with pre-
weighted GF/F filters (the same filter was used for SPM,
POC and PON analyses). After filtration, filters were dried
at 608C for 24 h and reweighed on the same balance. SPM
concentration was calculated as the difference between filter
weight before and after sample filtration, normalized to the fil-
tration volume (Neukermans et al., 2012). POC and PON
quantification were performed simultaneously with an
autoanalyser II Technicon (New York, USA), using the
wet-oxidation procedure according to Raimbault et al.
(1999). POC and PON had a detection limit of 0.50 and
0.10 mm, respectively.

Zooplankton samples were identified according to Rose
(1933), Bradford-Grieve (1999) and Costanzo et al. (2007).
The different copepod species were sorted into four demo-
graphic classes (nauplii, copepodids, adult males and adult
females). Miscellaneous zooplankton were also counted
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according to Tregouboff & Rose (1978a, b). Enumeration was
performed under a vertically mounted deep-focus dissecting
microscope (Olympus TL 2) and numerical density was
expressed in individual m23. Total length of body size for
the adult copepod was measured for each species in each
sampled station (10 individuals for each species in each
sampling set).

Data processing and statistical analysis
We applied the Geographic Information Systems (GIS)
tools using ArcGIS 10.2 version software to make contour
plots. Kriging was the method used to build maps
relative to spatial distribution for all dataset parameters.
Mesozooplankton diversity was measured using a range of
univariate and multivariate diversity measurements. Species
diversities were assessed using the Shannon diversity index
H′ (Shannon & Weaver, 1949) and using the formula
proposed by J′ Pielou’s evenness index (1966):

H′ = −
∑i=1

ni

ni

N
log2

ni

N
,

J ′ = H′/Log2S;

where ni is the number of individuals belonging to the species i
and N is the total number of individuals in each station.

To identify the suitable environmental health indicator of
these three coastal marine areas under contrasting anthropo-
genic inputs, we calculated the Indicator Value (IndVal) for
each taxa as per Dufrene & Legendre (1997) as used recently
in Hemraj et al. (2017). Indicator species of each station was
extracted by an indicator species analysis (Dufrene &
Legendre, 1997). The highest indicator value for given
species was saved as a summary of the overall indicator
value of that species. The IndVal of each species was
computed as follows:

IndVal = RAkj × RFkj × 100

where RAkj is the relative abundance of species j in group k,
and RFkj is the relative frequency (presence/absence) of
species j in group k.

All statistical analyses were conducted using the XLStat
2014 software. ANOVA was applied to identify significant dif-
ferences between these three sampled areas for physico-
chemical and biogeochemical variables. The spatial variability
of copepod communities in relation to environmental vari-
ables was assessed using multivariate analysis after data trans-
formation [log10 (x + 1)] (Sokal & Rohlf, 1981). Moreover, to
explain the relationship between physico-chemical (depth,
temperature, salinity and pH), chemical (NO3

2, NO2
2, NH4

+,
PO4

32, T-N, T-P, N/P ratio and Si(OH)4) and biogeochemical
(copepods, chl-a and SPM) parameters, we used a canonical
correspondence analysis (CCA) (Ter-Braak, 1986) assessed
by over 30 observations (30 stations). Pearson’s rank correla-
tions were used to determine the potential correlations
between the copepod community and the physico-
biogeochemical variables.

R E S U L T S

Physico-chemical and biogeochemical
parameters
Mean values + standard deviation (SD) of physico-chemical
and biogeochemical parameters recorded in surface waters
of the three studied areas are given in Table 1. Surface water
temperature was warmer in SC (26.8 + 0.238C) than in
NC (21.91 + 0.78C) and GA (19.8 + 1.688C) (Table 1;
Figure 2A) and the difference was significant (ANOVA,
P , 0.0001). The highest temperature (27.38C) was recorded
at station 10 from the SC and the lowest one (188C) at stations
21–24 from the GA (Table 1; Figure 2A). Salinity averaged at
38.4 + 3.4 psu, varying from 32 psu at stations 3 (SC), 25
and 30 (GA) to 45 psu at stations 16 (NC). It was signifi-
cantly higher in the NC than in the two other areas
(ANOVA, P , 0.0001) (Table 1; Figure 2B). pH (mean
value of 8.05 + 0.08) was higher in the NC (8.11 + 0.06)
than in the GA (8.04 + 0.07) and the SC (7.99 + 0.07)
(ANOVA, P , 0.0001) (Table 1; Figure 2C).

The concentration of total nitrogen (T-N) averaged 15.8 +
4 mm and varied from 11.6 (station 25, GA) to 28.9 mm
(station 13, NC) with no significant difference between sites
(ANOVA, P . 0.6) (Table 1; Figure 3A). The relatively import-
ant T-N concentrations were due to the high contribution of
NH4

+, close to 66% of T-N, which displayed a mean concentra-
tion of 5.2 + 1.6 mm and showed highest value in the SC
(ANOVA, P , 0.001) (Table 1; Figure 3B). NO3

2 concentration
was also quite high, ranging from 1.3 (station 10; SC) to 11.4 mm
(station 13; NC), while NO2

2 concentration was much lower
(0.03–2.6 mm, stations 25, GA and 13, NC) (Table 1;
Figure 3C, D). Both oxidized nitrogen forms did not vary signifi-
cantly between the three areas (P . 0.4). The concentration of
total phosphorus (T-P) was on average 13.1 + 5.7 mm,
ranging from 5 (station 2) to 25.1 (station 24) mm (Table 1;
Figure 3E) with highest values in GA (P ¼ 0.05). PO4

32 concen-
tration was on average 3.2 + 2.4 mm with minimal and
maximal values 0.5–9.6 mm at stations 2 and 24, respectively
and no significant difference between sites (P . 0.05)
(Table 1; Figure 3F). The N/P ratio varied between 2.5
(station 7) and 30.3 (station 1) and was significantly higher in
the SC than in the two other sites (P , 0.05) (Table 1;
Figure 3G). Si(OH)4 concentration was on average 5.2 +
4.1 mm with minimal and maximal values 1.5–19.5 mm at sta-
tions 1 and 26, respectively (P . 0.9) (Table 1; Figure 3H). SPM
showed a mean value of 19.8 + 11 mg l21 and varied between
8.5 and 59.5 mg l21 at stations 5 and 16, respectively with no
significant difference between sites (P . 0.1) (Table 1). Chl-a
concentration was higher in the SC (11.7 + 13 mg l21) than
in the GA (6.5 + 1.7 mg l21) and the NC (5.1 + 4.2 mg l21)
(Table 1) but the differences were not significant (P . 0.1).
Phaeo-a concentration was higher in the SC (3.3 + 3 mg l21)
than in the NC (1.6 + 1 mg l21) and the GA (1.4 +
0.4 mg l21) with no significant difference between zones (P .

0.5) (Table 1). POC and PON showed a similar trend, with
minimal and maximal concentrations in GA and NC, respect-
ively; but with no significant difference between zones (P .

0.2). C/N ratio, averaged 5.9 + 0.9 mg l21, with higher mean
values in GA (6.4 + 0.5 mg l21) than in NC (6.1 + 1 mg l21)
and in SC (5.1 + 0.6 mg l21) (P , 0.001) (Table 1).
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Table 1. Mean values and standard deviation (SD) of physico-chemical and biogeochemical parameters of 30 stations sampled in the northern and southern coastal areas of Sfax and the Ghannouch area sampled in
October–November 2014. In the last column, results of ANOVA test for the comparison between these three sampled areas. Asterisks denote significant differences between different sampled areas: ∗P , 0.05; ∗∗P ,

0.001; ∗∗∗P , 0.0001.

Parameters Southern coastal area Northern coastal area Ghannouch area Stations with
min value

Stations with
max value

F (P values)

Min Max Mean +++++ SD Min Max Mean +++++ SD Min Max Mean +++++ SD

Physical and chemical parameters
Depth (m) 1 9 4.9 + 2.7 0.9 2 1.6 + 0.5 2.8 10.5 8.0 + 2.4 18 22 23.778 (0.0001)∗∗∗

Temperature (8C) 26.5 27.3 26.8 + 0.23 21 23.2 21.91 + 0.7 18 22 19.8 + 1.68 21–24 10 8.617 (0.001)∗∗∗

Salinity (psu) 32 40 38.0 + 2.7 38 45 41.5 + 2.07 32 40 35.7 + 2.7 3, 25, 30 16 12,781 (0.0001)∗∗∗

Ph 7.9 8.11 7.99 + 0.07 8 8.21 8.11 + 0.06 7.97 8.14 8.04 + 0.07 1 17 8.645 (0.001)∗∗∗

Biogeochemical parameters
NO3

2 (mm) 1.31 7.51 3.15 + 1.92 1.71 11.44 3.07 + 2.95 1.33 3.1 2.13 + 0.48 10 13 0.905 (0.417)
NO2

2 (mm) 0.03 0.88 0.25 + 0.3 0.04 2.64 0.37 + 0.8 0.04 0.35 0.15 + 0.1 25 13 0.315 (0.733)
NH4

+ (mm) 5.48 10.22 6.42 + 1.36 2.99 7.57 5.01 + 1.71 3.27 5.21 4.14 + 0.7 19 1 8.297 (0.002)∗∗∗

T-N (mm) 12.98 26.31 16.41 + 3.96 11.99 28.98 16.16 + 5.4 11.61 18.28 14.72 + 2.35 25 13 0.472 (0.629)
PO4

32 (mm) 0.45 7.92 3.11 + 2.82 1.25 2.97 2.07 + 0.62 1.3 9.56 4.46 + 2.6 2 24 2.661 (0.088)
T-P (mm) 4.95 24.14 13.49 + 7.25 8.02 11.26 9.75 + 1.26 9.95 25.13 16 + 5.42 2 24 3.347 (0.050)∗

Si(OH)4 (mm) 1.56 9.41 4.38 + 3.2 3.58 17.48 5.92 + 4.18 2.48 19.48 5.37 + 5 1 26 0.926 (0.408)
N/P ratio 2.50 30.29 9.57 + 8.50 3.30 16.74 6.07 + 3.95 2.57 7.45 3.66 + 1.50 7 1 3.889 (0.033)∗

SPM (mg l21) 8.31 32.17 15.4 + 8.42 9.66 59.38 24.14 + 15.56 16.98 22.66 20.12 + 1.87 5 16 1.970 (0.158)
Chlorophyll-a (mg l21) 2 40.7 11.7 + 13 1.7 16.1 5.1 + 4.2 2.95 8.7 6.5 + 1.7 14 8 1.935 (0.164)
Phaeopigment-a (mg l21) 0.43 9.70 3.32 + 3.07 0.57 3.53 1.62 + 1.02 0.65 2.09 1.44 + 0.40 10 8 3.043 (0.064)
POC (mg l21) 178.43 2129.44 764.73 + 722.88 283.49 2937.04 1013.80 + 942.12 294.37 657.88 487.84 + 113.94 10 18 1.459 (0.25)
PON (mg l21) 31.18 483.85 160.32 + 167.73 58.19 522.32 163.22 + 152.86 41.61 107.48 76.76 + 18.39 10 18 1.395 (0.265)
C/N ratio 4.40 6.32 5.17 + 0.60 4.70 7.69 6.08 + 1.08 5.85 7.07 6.39 + 0.46 6 13 6.840 (0.004)∗∗

Zooplankton
Total zooplankton

(×103 ind m23)
6 157.32 61.73 + 51.73 2.57 20.85 7.73 + 5.5 4.82 28.36 15.77 + 6.64 16 4 11.170 (0.000)∗∗∗

Non-copepod zooplankton
(×103 ind m23)

0.8 29.5 10.35 + 9.04 0.18 4.1 1.21 + 1.28 1.11 7.2 3.79 + 1.79 16 4 12.604 (0.000)∗∗∗

Total copepods (×103 ind m23) 5.2 127.82 51.37 + 43.41 2.39 16.73 6.51 + 4.3 3.33 24.18 11.98 + 5.65 16 4 10.675 (0.000)∗∗∗

Calanoids (×103 ind m23) 0.41 21.9 9.13 + 8.5 1.27 4.48 2.07 + 0.94 1.28 13.73 5.8 + 3.65 7 2 2.421 (0.108)
Harpacticoids (×103 ind m23) 0 1.4 0.45 + 0.52 0 0.65 0.25 + 0.25 0.14 1.81 0.72 + 0.6 8, 9, 13 22 2.047 (0.149)
Cyclopoids (×103 ind m23) 3.14 107.75 37.41 + 35.85 0.78 5.08 2.54 + 1.49 1.72 10 4.92 + 2.49 16 4 17.203 (0.0001)∗∗∗

Adult male (×103 ind m23) 0.69 27.983 6.98 + 8.44 0.5 1.88 1.18 + 0.5 0.13 5.19 1.18 + 1.48 24 4 9.994 (0.001)∗∗∗

Adult female (×103 ind m23) 0.95 60.05 22.27 + 19.97 0.49 4.24 1.75 + 1.09 0.6 8.63 6.07 + 2.84 16 4 9.343 (0.001)∗∗∗

Copepodit (×103 ind m23) 1.04 30.24 13.32 + 11.22 0 0.003 0.001 + 0 0.85 3.58 2.41 + 1.01 16 4 257.789 (0.0001)∗∗∗

Nauplii (×103 ind m23) 0.45 8.7 4.36 + 3.03 0 0.006 0.001 + 0.002 0 1.14 0.52 + 0.43 16, 19–20, 27,
30

4 45.899 (0.0001)∗∗∗

Length of copepod species (mm) 0.70 0.72 0.71 + 0.004 0.68 0.69 0.68 + 0.001 0.82 0.83 0.82 + 0.001 15 21 6816.340 (0.000)∗∗∗

Sex ratio 0.13 2.35 0.63 + 0.81 0.36 2.45 0.86 + 0.6 0.01 0.83 0.27 + 0.28 24 16 3.646 (0.040)∗

Number of copepod species 9 18 12.6 + 2.59 8 15 11.9 + 2.33 5 12 8.1 + 2.18 30 3 11.775 (0.000)∗∗∗

Shannon index (bits ind21) 0.96 1.94 1.49 + 0.33 1.63 2.4 1.95 + 0.26 1.24 2.21 1.74 + 0.28 9 19 6.160 (0.006)∗∗
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Zooplankton

The total zooplankton abundance varied from 2.57 × 103

(station 16) to 157.32 × 103 ind m23 (station 4) (Table 1;
Figure 4A). Zooplankton assemblages were dominated by
copepods which represented 82, 80 and 75% of total zooplank-
ton abundance, in SC, NC and GA, respectively (Table 2). The
density of non-copepod zooplankton varied from 0.18 × 103

(station 16) to 29.5 × 103 ind m23 (station 4) (Table 1;
Figure 4B). Polychaete larvae, cirriped larvae, ostracods, jelly-
fish, zoea, fish eggs and gastropods were permanent compo-
nents of meroplankton contributing to 90, 67 and 85% of
the non-copepod abundance, in SC, NC and GA, respectively
(Table 2). On the other hand, appendicularians, cladocerans,
foraminifera and amphipods were also permanent compo-
nents of the holoplankton but did not exceed 33% of non-
copepod abundance (Table 2). Total copepods varied from
2.39 (station 16) to 127.82 × 103 ind m23 (station 4)
(Table 1; Figure 4C).

A total of 25 different copepod species were identified
throughout the study period belonging to three different
orders: Calanoida, Cyclopoida and Harpacticoida (Table 2;
Figure 5D–F). Calanoida was the most diverse order (12
species) followed by Cyclopoida (seven species) and

Harpacticoida (six species), which contributed to 19, 80 and
1%, respectively to the total zooplankton abundance in SC,
43, 52 and 5% in NC and 51, 43 and 6% in GA (Table 2).
Among calanoid copepods, Paracalanus parvus (Claus,
1863) and Paracartia grani (Sars, 1904) were the most abun-
dant species in SC (6 and 3.5%) and NC (10 and 16% total
zooplankton abundance), whereas Paracalanus parvus
(22.5% total zooplankton abundance) prevailed in GA.
Among cyclopoid copepods, Oithona nana (Giesbrecht,
1892) and Oithona similis (Claus, 1866) were the most abun-
dant species representing 59, 33 and 24% of total zooplankton
abundance, in SC, NC and GA, respectively. Oithona similis
was the only ubiquist and cosmopolitan species in this study
period (100% occurrence frequency) (Table 2). Conversely,
Oithona setigera (Crisafi, 1959), Acamthocyclops sp. (Kiefer,
1927) and Paracartia latisetosa (Kritchagin, 1873) were spe-
cific to SC and totally absent in the two other areas, whereas
Tisbe battagliai (Volkmann-Rocco, 1972) and Tigriopus sp.
(Mori, 1932) were recorded only in NC. The main differences
in copepod between the two sampled areas nearest in time
(NC and SC) were found to be influenced by the water
column depth. In fact, the noticeable presence of meiobenthic
copepods such as Tigriopus and Tisbe were observed only in
the shallower area (NC mean depth: 1.6 m). However, the

Fig. 2. Spatial variation of physical parameters, i.e. temperature (A), salinity (B) and pH (C) in stations sampled in the northern and southern coastal areas of Sfax
and the Ghannouch area during autumn (October–November 2014).
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highest abundance of all main copepod taxa was recorded in
the deeper area (SC mean depth: 4.9 m) which corroborates
this fact (Tables 1 & 2, and CCA). All these species did not
exceed 40% of occurrence frequency. Harpacticoids did not
exceed 6% of total zooplankton abundance during the
survey period and the highest abundance was observed with
Euterpina acutifrons (Dana, 1847) in GA which represented
4.7% of total zooplankton (Table 2).

The abundance peak of copepods recorded at station 4 was
associated with a high density of cyclopoids, adult male and
female, copepodit and nauplii (Tables 1 & 2; Figures 4C &
5C–E, G–H). During this period, low percentages of larval
stages (copepodids: 29, 1 and 25%, nauplii: 9, 22 and 6% of
total copepod abundance) and high numbers of adults (62,

47 and 69% of total copepod abundance) were recorded at
SC, NC and GA, respectively. The sex-ratio (adult male/
adult female) did not exceed 0.89 in most stations and was
.1 (male dominance) only at stations 3, 7, 16 and 20 where
it varied from 1.06 to 2.45 (Table 1; Figure 5F). Shannon–
Weaver diversity index (H′) for copepods was relatively low
with values ranging between 0.96 (10 species, station 9 in
SC) and 2.4 bits ind21 (15 species, station 19 in NC)
(Table 1; Figure 5A). Evenness index (J ) was higher in the
GA (0.6 + 0.1) and in NC (0.6 + 0.08) than in SC (0.5 +
0.1) (Figure 5B).

Most of the zooplankton parameters displayed significant
differences between NC, SC and GA, except for calanoid
and harpacticoid (ANOVA, P , 0.05). Total zooplankton,

Fig. 3. Spatial variation of nutrient compounds, i.e. total nitrogen (T-N) (A), ammonium (NH4
+) (B), nitrite (NO2

2) (C), nitrate (NO3
2) (D), total phosphate (T-P)

(E), orthophosphate (PO4
32) (F), N/P ratio (G) and silicate (Si(OH)4) (H) in stations sampled in the northern and southern coastal areas of Sfax and the

Ghannouch area during autumn (October–November 2014).
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Table 2. Quantitative aspects (D, Density; RA, Relative abundance; FO, Frequency of occurrence; TL, Total length) of the zooplankton taxa sampled from 30 stations of the northern and southern coastal areas of Sfax and
the Ghannouch area sampled in October–November 2014 (Abbr: Abbreviation, ∗: Large copepods with TL . 1.45 mm).

Zooplankton Abbr Southern coastal area Northern coastal area Ghannouch area

D (ind m23) RA (%) FO
(%)

TL
(mm)

D (ind m23) RA
(%)

FO
(%)

TL
(mm)

D (ind m23) RA
(%)

FO
(%)

TL
(mm)

Copepods 82 80 75
Calanoids 19 43 51

Acartia clausi (Giesbrecht, 1889) Acl 347.992 + 661.81 0.61 80 1.02 19.626 + 31.962 0.32 40 1.06 – – – –
Acartia discaudata (Giesbrecht,

1882)
Adi 1.2717 + 4.021 0.002 10 1.20 – – – – 15.543 + 49.151 0.10 10 1.30

Acartia sp. (Dana, 1846) Aca 131.585 + 188.125 0.23 70 1.14 20.799 + 42.937 0.34 30 1.15 63.302 + 151.765 0.42 20 1.16
Paracalanus parvus (Claus, 1863) Ppa 3296.7355 + 3667.654 5.75 90 0.81 609.529 + 550.77 10 100 0.84 3403.281 + 1743.181 22.31 100 0.81
Paracartia grani (Sars, 1904) Pgr 1938.0378 + 2850.466 3.38 90 1.13 953.156 + 245.02 15.64 100 1.15 485.082 + 592.992 3.18 60 1.14
Paracartia latisetosa (Kritchagin,

1873)
Pla 1.526 + 4.825 0.003 10 1.13 – – – – – – – –

Temora longicornis (Müller, 1792) Tlo 125.851 + 356.164 0.22 40 0.86 76.277 + 96.902 1.25 60 0.88 510.234 + 849.184 3.35 40 0.82
Temora stylifera (Dana, 1849) Tst – – – – 20.135 + 43.807 0.33 20 0.85 641.855 + 1081.192 4.21 60 0.85
Temora sp. (Baird, 1850) Tsp 346.019 + 494.655 0.60 90 0.80 – – – – 141.3 + 446.829 0.93 10 0.82
Centropages kröyeri (Giesbrecht,

1893)
Ckr 2010.816 + 2756.877 3.51 90 0.78 277.133 + 283.274 4.55 80 0.78 226.503 + 573.476 1.49 30 0.76

Aglaodiaptomus leptopus (Forbes,
1882)

Ale 0.1 + 0.316 0.0002 10 0.86 8.901 + 19.337 0.15 20 1.63∗ 269.883 + 411.052 1.77 40 1.60∗

Eucalanus sp. (Dana, 1852) Esp 933.814 + 1657.699 1.63 100 0.69 90.752 + 85.856 1.49 100 0.71 49.666 + 157.06 0.33 10 0.68
Harpacticoids 1 5 6

Clytemnestra scutellata (Dana,
1847)

Csc 45.165 + 110.298 0.08 40 0.16 30.697 + 42.916 0.50 70 0.18 – – – –

Euterpina acutifrons (Dana, 1847) Eac 349.566 + 490.107 0.61 80 0.25 52.832 + 69.231 0.87 60 0.29 724.812 + 601.595 4.75 100 0.27
Harpacticus littoralis (Sars, 1910) Hli 52.945 + 70.244 0.09 50 0.33 97.97 + 137.835 1.61 60 0.35 – – – –
Tisbe battagliai (Volkmann-Rocco,

1972)
Tba – – – – 59.035 + 94.881 0.97 40 0.23 – – – –

Microsettela norvegica (Boeck,
1865)

Mno 10.061 + 27.981 0.02 20 0.21 6.994 + 22.118 0.11 10 0.26 – – – –

Tigriopus sp. (Mori, 1932) Tsp – – – – 4.38 + 9.253 0.07 20 0.23 – – – –
Cyclopoids 80 52 43

Oithona nana (Giesbrecht, 1892) Ona 20,593.312 + 21,463.701 35.90 100 0.57 777.948 + 597.39 12.77 80 0.61 974.489 + 644.897 6.39 100 0.56
Oithona plumifera (Baird, 1843) Opl 2829.25 + 4368.842 4.93 100 0.63 367.42 + 224.239 6.03 100 0.66 831.479 + 880.519 5.45 80 0.63
Oithona similis (Claus, 1866) Osi 13,191.252 + 13,569.645 22.99 100 0.48 1309.853 + 1014.211 20.86 100 0.57 3120.144 + 1791.003 17.27 100 0.52
Oithona sp. (Baird, 1843) Osp 637.283 + 1310.432 1.11 40 0.48 24.031 + 49.854 0.39 30 0.49 – – – –
Oithona setigera (Crisafi, 1959) Ose 21.035 + 66.519 0.04 10 0.51 – – – – – – – –
Acanthocyclops vernalis (Fischer,

1853)
Ave 144.291 + 442.027 0.25 30 0.90 66.538 + 76.68 1.09 50 1.01 – – – –

Acanthocyclops sp. (Kiefer, 1927) Asp 2.289 + 7.238 0.004 10 0.68 – – – – – – – –
Non-copepod zooplankton 18 20 25
Meroplankton 90 67 85

Polychaeta larvae Pla 585.594 + 771.279 1.0 100 – 82.276 + 75.335 1.4 90 – 259.073 + 182.159 1.7 80 –
Cirripedia larvae Cla 1227.195 + 1283.605 2.1 100 – 245.18 + 321.581 4.0 90 – 420.155 + 632.759 2.8 60 –
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non-copepod zooplankton, total copepods, cyclopoid, adult
males, adult females, copepodit, nauplii and number of
copepod species were more abundant in SC than in NC and
GA (ANOVA, P , 0.0001) (Table 1). The lowest abundances
were always recorded at NC with total zooplankton being
8-fold and 2-fold less abundant than at SC and GA respect-
ively and particularly low values for nauplii and copopodites
almost absent in this area. The Shannon and Weaver diversity
index (H′) for copepods was significantly higher at NC than at
SC and GA. The length of copepod species was significantly
higher in GA (0.82 + 0.001 mm) and in SC (0.71 +
0.004 mm) than in NC (0.68 + 0.001 mm) (Table 1) (P ,

0.0001). Small planktonic copepods (,1.45 mm) contributed
to 100, 99.9 and 98% of total copepod abundance in SC, NC
and GA, respectively, while the largest copepods (1.45–
2.5 mm) represented mostly by one species Aglaodiaptomus
leptopus (Forbes, 1882) (1.6 mm) did not exceed 2% at NC
and GA (Table 2).

The classification of copepod species according to their
Indicator Value (IndVal) in these three coastal marine ecosys-
tems under contrasting anthropogenic inputs showed that
each zone was characterized by a suitable and specific environ-
mental health indicator. In fact, in the SC, several species have
a high IndVal (.40%). They were composed of 10 copepod
species which represented 45% of the copepod species’ rich-
ness in this area and in particular Oithona nana (Indval ¼
92%) which was the most indicative of water quality in
this zone, followed by Eucalanus sp. (Dana, 1852) (87%)
and Oithona similis (77%) (Table 3). Concerning the NC,
IndVal was very low and only Tisbe battagliai (40%) and
Harpacticus littoralis (Sars, 1910) (39%) could be good indica-
tors. However, in GA the best indicator species are Euterpina
acutifrons (64%), Temora stylifera (Dana, 1849) (58%) and
Paracalanus parvus (47%) (Table 3).

Multivariate analysis
The Canonical Correspondence Analysis (CCA) on the zoo-
plankton parameters and various physico-chemical and bio-
geochemical factors explained 46.5% for the F1 and F2 axes
(Figure 6). The F1 axis (26.9%), selected positively SC stations
(1–10) with calanoid, cyclopoid, total copepod, non-copepod-
zooplankton, total zooplankton and temperature. We note
that temperature displayed significant positive correlations
with total zooplankton (r ¼ 0.59, P , 0.05), total copepods
(r ¼ 0.60, P , 0.05) and cyclopoids (r ¼ 0.57, P , 0.05).
F1 axis selected negatively NC stations (11–20) with
Evenness index (J ), the diversity index (H′), pH, sex ratio
and salinity. The F2 axis (19.6%) selected negatively the GA
stations (21–30) with harpacticoid, T-P, PO4

32 and SPM
(Figure 6A). The plots of the copepod species confirmed our
observation with SC characterized by Oithona nana and
Oithona similis among cyclopoid copepods, and GA charac-
terized by Paracalanus parvus among calanoid copepods
and Euterpina acutifrons among harpacticoid copepods
(Figure 6B).

D I S C U S S I O N

Zooplankton is recognized among the best indicators for
investigating and documenting environmental changes
(Siokou-Frangou & Papathanassiou, 1991; Sipkay et al.,
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2009; Bagheri et al., 2013). The variations of zooplankton
populations are closely related to environmental parameters
such as temperature, pH and salinity (Pascual & Guichard,
2005; Rossi & Jamet, 2009; Srichandan et al., 2013). Main zoo-
plankton taxa have short life cycles and their community
structure is able to reflect real-time scenarios as it is less
enforced by the stability of individuals from previous years
(Richardson, 2008; Bagheri et al., 2013). Thus, hypoxic/
anoxic conditions related to organic enrichment are found
to be associated with the decrease of zooplankton abundance
in eutrophic and/or organically polluted systems (Stalder &
Marcus, 1997; Park & Marshall, 2000; Gordina et al., 2001)

and high turbidity can increase the death rate of copepods
(e.g. Castel & Feurtet, 1992).

Anthropogenic inputs status of the coastal
zone
We found quite high PO4

32 concentrations, very probably
related to inputs from the phosphate processing industries
(SIAPE-Sfax and GCT-Gabes), revealing different anthropo-
genic input degrees. In this context, we may say that GA is
the most affected by PO4

32 followed by SC and NC. The

Fig. 4. Spatial variation of zooplankton parameters, i.e. abundance of total zooplankton (A), non-copepod zooplankton (B), total copepods (C), cyclopoids (D),
calanoids (E) and harpacticoids (F) in stations sampled in the northern and southern coastal areas of Sfax and the Ghannouch area during autumn (October–
November 2014).
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high concentration of PO4
32 (4.46 + 2.60 mm) in GA was in

the range of values previously reported by Baccar (2014) in
the Gabes area (3.73 + 1.57 mm), while the values we found
at SC (3.11 + 2.81 mm) and NC (2.07 + 0.62 mm) were far
higher than the ones noted by Rekik et al. (2012) (0.28 +
0.05 mm) in SC or by Drira et al. (2009) in the offshore
waters of the Gulf of Gabes (0.06 + 0.03 mm). The highest
levels of PO4

32were always found near the potential sources,
i.e. the SIAPE-Sfax plant (station 4), wadi El Maou (station
7), the Sfax fishing harbour (station 9) and the commercial
harbour (stations 25 and 27) and the GCT-Gabes phosphoric
acid industry (station 28) for GA. Therefore, the high appar-
ent availability of inorganic phosphates in the SC and GA
areas were related to the release of phosphate residues from

the SIAPE and GCT-Gabes industries (Bejaoui et al., 2004;
Ben Brahim et al., 2010; Rekik et al., 2012; Ben Salem et al.,
2015; Drira et al., 2016). Ammonium, which was the chemical
factor with the most significant differences between areas,
showed the highest value in the SC (ANOVA, P , 0.001).
The importance of ammonium compared with nitrite and
nitrate was a typical finding of coastal eutrophic waters due
to anthropogenic pollution, mainly represented by untreated
discharges (Nuccio et al., 2003; Bouchouicha-Smida et al.,
2012). Our result also showed that NC was slightly alkaline
(pH 8.12 + 0.06) compared with GA (pH ¼ 8.05 + 0.07),
and SC (pH ¼ 7.99 + 0.07), which is in agreement with
results reported by Rekik et al. (2013) at the same season
(8.16 + 0.3) for this area.

Fig. 5. Spatial variation of zooplankton parameters, i.e. Shannon index (E) (A), Evenness (J ) (B), abundance of adult (C), adult female (D), adult male (E),
sex-ratio (F), copepodit (G) and nauplii (H) in stations sampled in the northern and southern coastal areas of Sfax and the Ghannouch area during autumn
(October–November 2014).
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Copepod assemblages as a bioindicator of
environmental quality
Investigations on zooplankton community in relation with
anthropogenic inputs have already been conducted in the
Mediterranean Sea (Siokou-Frangou, 1996; Jamet et al.,
2001; Isinibilir et al., 2008; Papantoniou et al., 2015). One pre-
vious study has been performed so far in the coastal waters of
the Gulf of Gabes, i.e. in the SC (Drira et al., submitted). In
this study, we tried to determine the effects of anthropogenic
inputs on planktonic copepods by comparing the abundance
and spatial distribution of the main species in three coastal
marine areas with different anthropogenic input levels. Our
results showed a clear dominance of copepods (nauplii stage
to the adult stage) in the three areas, representing 76, 83
and 84% of total zooplankton in GA, SC and NC, respectively.
The dominance of copepods has already been reported in
several studies in the Gulf of Gabes: in SC (5–50%; Ben
Salem et al., 2015), NC (82%, Rekik et al., 2012), in the city
of Gabes: Ghannouch and Zarrat (46–83%; Baccar, 2014)
and in offshore waters of the Gulf of Gabes (83%; Drira
et al., 2014; Ben Ltaief et al., 2015).

In this study, we reported the presence of 25 species
belonging to 13 families and three orders, namely calanoid,
cyclopoid and harpacticoid, while poecilostomatoid were vir-
tually absent. We found a preponderance of cyclopoids, par-
ticularly in SC (with 80% of total copepod abundance),
while calanoids were also important in GA (51%) and NC
(43%). This is consistent with previous works showing that
cyclopoids are numerically the most important group in the
Gulf of Gabes (Drira et al., 2009, 2014; Ben Ltaief et al.,
2015). This predominance of cyclopoids in such polluted
areas agrees with their cosmopolitan and less demanding
character in terms of environmental conditions compared

with other groups (Sarkka et al., 1998). Adult copepods domi-
nated other developmental stages of copepods in the three
study sites with adult females being predominant (.58% of
adults). The dominance of females was already reported in
the Gulf of Gabes (2005–2007) (Drira et al., 2010a, b,
2014). Dominance of females compared with males, which
reduces the sex ratio (Kiorboe, 2006), may be due to
the higher mortality of males because of their increased
vulnerability to predation during their search for mates
(Mendes-Gusmão et al., 2013). In addition, environmental
factors such as pollution have strong effects on copepod sex
ratio, and suggest that differential physiological longevity of
males and females may be more important in determining
the sex ratio (Mendes-Gusmão et al., 2013). Oithonids were
numerically very important with O. nana (36% of zooplank-
ton abundance in SC, 12.7% in NC and 6.4% in GA and O.
similis (23% in SC, 21% in NC and 17% in GA) as the main
species. In previous studies, O. nana were also reported at a
very high abundance in SC (Drira et al., submitted) as well
as in NC before (2007; Rekik et al., 2012) and after (2009–
2010; Rekik et al., 2013) the Taparura restoration process.
In the CCA analysis, Oithonids (and O. similis) were nega-
tively correlated with the NC stations corresponding to the
less disturbed area and positively correlated with the polluted
SC stations, which clearly indicates an affinity of these cope-
pods for anthropogenic inputs. In general, oithonidae may
survive in a wide range of habitats and maintain their popula-
tions under adverse conditions because they are morphologic-
ally less specialized than calanoids (Paffenhöfer, 1993). In
agreement with our study, Oithonidae, and more specifically
O. nana, are often associated with a high degree of anthropo-
genic inputs and regarded as a bio-indicator species of
anthropogenic pollution (Annabi-Trabelsi et al., 2005; Drira
et al., 2014; Serranito et al., 2016). The good adaptation of

Table 3. Classification of copepod species according to their Indicator Value (IndVal) in each zone i.e. the northern and southern coastal areas of Sfax
and the Ghannouch area sampled in October–November 2014.

Southern coastal area Northern coastal area Ghannouch area

Copepod species IndVal
(%)

Copepod species IndVal
(%)

Copepod species IndVal
(%)

Oithona nana (Giesbrecht, 1892) 92.2 Tisbe battagliai (Volkmann-Rocco, 1972) 40.0 Euterpina acutifrons (Dana, 1847) 64.3
Eucalanus sp. (Dana, 1852) 86.9 Harpacticus littoralis (Sars, 1910) 39.0 Temora stylifera (Dana, 1849) 58.2
Oithona similis (Claus, 1866) 77.2 Clytemnestra scutellata (Dana, 1847) 28.3 Paracalanus parvus (Claus, 1863) 46.6
Acartia clausi (Giesbrecht, 1889) 75.7 Paracartia grani (Sars, 1904) 28.2 Aglaodiaptomus leptopus (Forbes, 1882) 38.7
Centropages kröyeri (Giesbrecht, 1893) 72.0 Tigriopus sp. (Mori, 1932) 20.0 Temora longicornis (Müller, 1792) 28.7
Oithona plumifera (Baird, 1843) 70.2 Acanthocyclops vernalis (Fischer, 1853) 15.8 Oithona plumifera (Baird, 1843) 16.5
Temora sp. (Baird, 1850) 63.9 Oithona plumifera (Baird, 1843) 9.1 Oithona similis (Claus, 1866) 15.4
Paracartia grani (Sars, 1904) 51.7 Centropages kröyeri (Giesbrecht, 1893) 8.8 Acartia discaudata (Giesbrecht, 1882) 9.2
Acartia sp. (Dana, 1846) 42.7 Eucalanus sp. (Dana, 1852) 8.4 Paracartia grani (Sars, 1904) 8.6
Paracalanus parvus (Claus, 1863) 40.6 Paracalanus parvus (Claus, 1863) 8.3 Acartia sp. (Dana, 1846) 5.9
Oithona sp. (Baird, 1843) 38.5 Oithona similis (Claus, 1866) 7.4 Oithona nana (Giesbrecht, 1892) 4.4
Euterpina acutifrons (Dana, 1847) 24.8 Temora longicornis (Müller, 1792) 6.4 Temora sp. (Baird, 1850) 2.9
Clytemnestra scutellata (Dana, 1847) 23.8 Microsettela norvegica (Boeck, 1865) 4.1 Centropages kröyeri (Giesbrecht, 1893) 2.7
Acanthocyclops vernalis (Fischer, 1853) 20.5 Acartia sp. (Dana, 1846) 2.9 Eucalanus sp. (Dana, 1852) 0.5
Harpacticus littoralis (Sars, 1910) 17.5 Euterpina acutifrons (Dana, 1847) 2.8
Microsettela norvegica (Boeck, 1865) 11.8 Oithona nana (Giesbrecht, 1892) 2.8
Acanthocyclops sp. (Kiefer, 1927) 10.0 Acartia clausi (Giesbrecht, 1889) 2.1
Oithona setigera (Crisafi, 1959) 10.0 Oithona sp. (Baird, 1843) 1.1
Paracartia latisetosa (Kritchagin, 1873) 10.0 Aglaodiaptomus leptopus (Forbes, 1882) 0.6
Temora longicornis (Müller, 1792) 7.1 Temora stylifera (Dana, 1849) 0.6
Acartia discaudata (Giesbrecht, 1882) 0.8
Aglaodiaptomus leptopus (Forbes, 1882) 0.0
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Fig. 6. Canonical correspondence analysis (CCA) (Axis I and II) on mean values of several physical and chemical parameters with (A) zooplankton group and (B) copepod species in stations sampled in the northern and southern
coastal areas of Sfax and the Ghannouch area sampled during autumn (October–November 2014).
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O. nana to anthropized areas can be partly explained by its
feeding habits (Serranito et al., 2016). It has been reported
to be more flexible in its diet compared with other copepods,
thus able to adapt to a wide range of food resources
(Moraitou-Apostolopoulou, 1976; Lampitt & Gamble, 1982;
Rekik et al., 2012; Serranito et al., 2016) and having a mixo-
trophic diet by incorporating faecal matter, ciliates protozoa
and dinoflagellates (Williams & Muxagata, 2006). This small
euryoecious species is characterized by a high tolerance to
various environmental parameters (Riccardi & Mariotto,
2000). Its shorter life cycle and higher reproduction rate com-
pared with larger copepods could also partly explain its higher
success in adapting to new conditions (Gallienne & Robins,
2001). Oithona similis is a ubiquitous and abundant cyclopoid
not only in our study site, but also in the Algerian basin
(Riandey et al., 2005), in the Bay of Tunis (Daly-Yahia
et al., 2004), in the lagoon of Tunis (Annabi-Trabelsi et al.,
2005) and in the offshore waters of the Gulf of Gabes (Drira
et al., 2009). In our study, harpacticoid and more specifically
Euterpina acutifrons, were clearly associated to highly
polluted conditions as they were correlated to GA stations
characterized by the highest SPM and PO4

32 concentrations.
Euterpina acutifrons, known as eurythermic and euryhaline,
lives in marine coastal areas (Furnestin, 1960; Moreira et al.,
1982; Delia Vinas et al., 2010). The plasticity of this species
which occupies several coastal habitats is often due to its
broad trophic spectrum (phytoplankton, microplankton and
detritus) (Goswani, 1976; Moreira et al., 1983).

The taxonomic diversity is also strongly influenced by
anthropogenic inputs (Danilov & Ekelund, 1999). In the
present work, we showed that NC, considered as a restored
environment in term of phosphogypsum contamination, was
characterized by a taxonomic diversity (H′ ¼ 1.95 bits ind21,
J′ ¼ 0.6) higher than in GA (H′ ¼ 1.74 bits ind21, J′ ¼ 0.6)
and SC (H′ ¼ 1.49 bits ind21, J′ ¼ 0.5). Taxonomic diversity
(as Piélou’s evenness) as well as Oithonidae relative abun-
dance were singled out as the most pertinent indicators of
anthropogenic pollution in the case study of the Bay of
Toulon (Mediterranean Sea) (Serranito et al., 2016). In our
study, based on the same indicators we could classify the
three study sites according to the significance of pollution
impact on copepods as follows: NC , GA , SC with the
diversity (H′ ¼ 1.95, 1.74 and 1.49 bits ind21, respectively),
and GA , NC , SC with the percentage of oithonidae (43,
51 and 79%, respectively). We can also note that the mean
Indicator Values for Oithonidae are also higher for the SC
area (48%) than for NC and GA (3.7 and 12.2% respectively),
which is consistent with the indicator based on this copepod
family. In this context, we may assume that GA, although
the most affected by orthophosphates (4.46 + 2.60 mm) is a
more pollution-resistant ecosystem than SC (3.11 +
2.81 mm) compared with NC (2.07 + 0.62 mm).

C O N C L U S I O N

This study was undertaken to assess the zooplankton commu-
nities in accordance with anthropogenic inputs in the Sfax
northern and southern coasts and in the Ghannouch area
during October and November 2014. These three areas were
characterized by different degrees of anthropogenic inputs
characterized by levels of PO4

32 with highest values at GA (sta-
tions 25 and 27 near the commercial harbour and station 28 in

front of GCT-Gabes) and lowest at NC. The most abundant
species in the three environments were O. nana, O. similis
and Paracalanus parvus while two species were reported for
the first time in the Gulf of Gabes (Aglaodiaptomus leptopus
and Eucalanus sp.). Oithona nana and O. similis could be
used as an indicator of anthropogenic inputs in the Gulf of
Gabes. Our results indicate that the fluctuation of copepod
abundances may be a useful tool to evaluate the ecosystem
health status. The present work shows that the Northern
coast, considered as a restored and reclaimed environment,
is characterized by slightly higher species diversity, while the
Ghannouch area, although the most affected by orthopho-
sphates, was found to be more pollution-resistant than the
southern coast. Meanwhile, our study can be useful in the
management of this ecosystem for planning the best disposal
options for treating urban and industrial wastes in the gulf’s
coastal waters.
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Baccar A. (2014) Contribution à l’étude écologique du zooplancton de la
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chlorophylle-a et des phéopigments-a par fluorimétrie après extrac-
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