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The Arctic halocline is generally stable to the development of double-diffusive and
dynamic instabilities – the two major sources of small-scale mixing in the mid-latitude
oceans. Despite this, observations show the abundance of double-diffusive staircases
in the Arctic Ocean, which suggests the presence of some destabilizing process
facilitating the transition from smooth-gradient to layered stratification. Recent studies
have shown that an instability can develop in such circumstances if weak static shear
is present even when the flow is dynamically and diffusively stable. However, the
impact of oscillating shear, associated with the presence of internal gravity waves, has
not yet been addressed for the diffusive case. Through two-dimensional simulations of
diffusive convection, we have investigated the impact of the magnitude and frequency
of externally forced oscillatory shear on the thermohaline-shear instability. Simulations
with stochastic shear – characterized by a continuous spectrum of frequencies from
inertial to buoyancy – indicate that thermohaline layering does occur due to the
presence of destabilizing modes (oscillations of near the buoyancy frequency). These
simulations show that such layers appear as well-defined steps in the temperature and
salinity profiles. Thus, the thermohaline-shear instability is a plausible mechanism for
staircase formation in the Arctic and merits substantial future study.

Key words: double diffusive convection, internal waves, ocean processes

1. Introduction
Diffusive convection plays an important role in heat transport in the Arctic Ocean.

In particular, a region of active diffusive layering in the Arctic halocline separates the
warm North Atlantic water from the colder waters of Pacific origin in the Canadian
Basin and from the polar mixed layer elsewhere (Neal, Neshyba & Denner 1969;
Neshyba, Neal & Denner 1971; Perkin & Lewis 1984). Were it not for the low thermal
flux through these layers, this reservoir of warm water could melt the Arctic sea ice
in a matter of years (Turner 2010). However, the origin of the layers in the Arctic
halocline is highly uncertain.

One of the potential causes of diffusive layering is oscillatory double-diffusive
convection, which was first discussed mostly as a curious analogy to the case of
salt fingering (Stern 1960; Walin 1964). Oscillatory double-diffusive convection can
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Initiation of diffusive layering by time-dependent shear 589

occur in a fluid under specific conditions: the density must be stably stratified and
must depend on two fluid properties (typically temperature and salinity) that diffuse
at different rates, the more rapidly diffusing field must be oriented such that the
resulting density from that field alone would be unstably stratified, and the more
slowly diffusing field such that that the resulting density field would be stably
stratified. These conditions are necessary but not sufficient for this instability; the
primary quantity that determines whether the system is unstable is the density ratio,
defined as

R−1
ρ ≡

β

α

∣∣∣∣∂S∗tot

∂z∗

∣∣∣∣∣∣∣∣∂T∗tot

∂z∗

∣∣∣∣ , (1.1)

where α is the thermal expansion coefficient, β is the haline contraction coefficient
and (∂T∗tot/∂z∗) and (∂S∗tot/∂z∗) are the vertical gradients of temperature and salinity
(dimensional variables are denoted by asterisks hereafter). Linear stability analysis by
Baines & Gill (1969) revealed that a fluid is unstable to oscillatory double-diffusive
convection if 1 < R−1

ρ < (Pr + 1)/(Pr + τ), where Pr is the Prandtl number and τ

is the inverse Lewis number. This leads to an instability (often called the ‘primary’
or ‘fundamental’ oscillatory double-diffusive instability) which takes the form of thin
columns of material oscillating vertically, mediated by lateral exchange of heat with
adjacent columns. In the ocean, this condition is roughly 1 < R−1

ρ < 1.1; however,
measurements in the Arctic halocline staircases, such as by Shibley et al. (2017),
reveal much larger density ratios, in the range of 3–7. This would seem to preclude
traditional oscillatory double-diffusive convection as the mechanism by which these
layers formed.

Since the primary oscillatory double-diffusive instability alone is not likely to be the
ultimate cause of layering, several alternatives have been considered. The formation
and stability of these diffusive layers has been a topic of substantial scientific interest
in the past half-century, particularly in laboratory settings (Turner & Stommel 1964;
Turner 1965; Huppert 1971; Crapper 1976; Huppert & Linden 1979). Numerical
studies (Molemaker & Dijkstra 1997; Noguchi & Niino 2010; Carpenter, Sommer &
Wüest 2012; Flanagan, Lefler & Radko 2013; Flanagan et al. 2014) have only recently
become available with advances in modern computing. These studies have historically
identified three major mechanisms for the formation of staircases in nature. Turner &
Stommel (1964) showed that layers can develop in laboratory experiments by gradual
bottom heating until some fluid parcels become buoyant. Such layers do exist in
the deep waters of the Arctic (Timmermans, Garrett & Carmack 2003); however,
this formation mechanism is not relevant to the layers forming in the halocline
due to the small values of the heat flux from the Atlantic water. Merryfield (2000)
found numerically that staircases occur naturally in the presence of weak horizontal
gradients via intrusions for salt fingering, which was shown semi-analytically to apply
to diffusively stratified regions by Bebieva & Timmermans (2017), and Radko (2003)
identified a layering mechanism he termed the γ -instability. Of these mechanisms,
only intrusions are applicable to the Arctic halocline, and such structures have been
identified throughout the Arctic basin (Rudels et al. 2009).

A fourth mechanism more recently announced is the interaction of double-diffusive
convection with shear via the newly discovered thermohaline-shear instability, which
has been seen to produce well-defined diffusive layers in numerical simulations
(Radko 2016). In typical oscillatory double-diffusive convection, fluid oscillates
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590 J. M. Brown and T. Radko

vertically in stable, coherent columns known as ‘elevator modes’ due to buoyancy
forces. There is typically very little lateral motion within these columns. The addition
of shear fundamentally changes this picture, resulting in lateral transfer of fluid from
upwelling regions to down-welling regions; see figure 13 in Radko (2016). This leads
to more cellular motions of the particles instead of the purely vertical motions of the
original case. The thermohaline-shear instability was found to be active for a larger
range of R−1

ρ than the traditional oscillatory double-diffusive instability (Radko 2016).
The mechanism by which this instability would develop into diffusive layers is less
clear, but Radko (2016) observed such layers forming spontaneously in his numerical
simulations.

It should be emphasized that the original model of the thermohaline-shear instability
was formulated in the case of steady shear; however, in the oceanographic context,
the main sources of shear are internal gravity waves and eddies (see, e.g. the
measurements of Guthrie, Morison & Fer 2013; Cole et al. 2014). Thus, oceanic
shear is fundamentally time dependent. In order to confirm the relevance of the
thermohaline-shear mechanism to the problem of layering, the stability analysis has
to be reproduced for oscillatory shear (see the discussion in Garaud 2017), which
constitutes the main objective of this study. We find that the thermohaline-shear
instability can be triggered by time-dependent shear. Since we intend to represent the
effects of time-dependent phenomena, such as internal gravity waves, we apply shear
with a spectrum of frequencies. The thermohaline-shear instability can develop into
diffusive layers if there is at least a small amount of energy at frequencies near the
buoyancy frequency of the system. Additionally, we see that layers formed by this
instability have the tendency to merge and form stable staircases.

This paper is organized as follows. Section 2 summarizes the equations that govern
our physical system. Section 3 describes the numerical considerations, including the
numerical scheme, resolution tests and typical evolution of the simulations. Sections 4–
6 present the major results of the simulations in terms of the early growth, quasi-
equilibrium and late-time behaviour, respectively. We discuss the implications of these
results and make some final remarks in § 7.

2. Governing equations and formulation
The velocity (u∗tot), pressure (p∗tot), temperature (T∗tot) and salinity (S∗tot) are separated

into background components (u∗bg, p∗bg, T∗bg, S∗bg) and deviations from those backgrounds
(u∗, p∗, T∗, S∗). The background components for temperature and salinity are
comprised of a constant reference value (T∗0 , S∗0) and a linear vertical profile so
that the temperature and salinity fields take the following forms:

T∗tot = T∗0 +
∂T∗bg

∂z∗
z∗ + T∗, (2.1)

S∗tot = S∗0 +
∂S∗bg

∂z∗
z∗ + S∗, (2.2)

where (∂T∗bg/∂z∗) and (∂S∗bg/∂z∗) are constants. We assume a linear equation of state,
so the density, ρ∗tot, can be expressed in terms of a constant reference density, ρ∗0 , as

ρ∗tot − ρ
∗

0

ρ∗0
=−α

(
T∗tot − T∗0

)
+ β(S∗tot − S∗0), (2.3)

where α and β are the thermal expansion coefficient and haline contraction
coefficient, respectively. It then follows that the background density gradient is
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Initiation of diffusive layering by time-dependent shear 591

(∂ρ∗bg/∂z∗) = ρ∗0
(
α(∂T∗bg/∂z∗)+ β(∂S∗bg/∂z∗)

)
. For the background fields to satisfy

hydrostatic balance, the pressure background must be given by ∇∗p∗bg = ρ
∗

bgg, where
g is the acceleration due to gravity. The background component of the velocity field
is a sinusoid of the form

u∗bg (z
∗, t∗)=U∗0 sin

(
2πn
L∗z

z∗ −ω∗t∗
)
, v∗bg = 0, w∗bg = 0, (2.4a−c)

where U∗0 is the velocity amplitude, L∗z is the domain height, n is the integer number
of wavelengths across the domain and ω∗ is the angular frequency of the oscillation.
The velocity field presented is a simplification of the true appearance of internal waves.
It should be noted that (2.4) excludes the effects of vertical velocities associated with
background shear, which could become substantial for high-frequency internal waves
characterized by inclined wave fronts. As an initial study, this work isolates the
effects only of vertical large-scale shear with amplitude and frequency characteristics
that broadly correspond to the wave-induced forcing; the effects of including vertical
velocity will be addressed in the future.

Because we are solely interested in the dynamics of the microstructure, we assume
a Boussinesq fluid in the absence of external rotation. These approximations reduce
the governing Boussinesq equations of motion to the following (Baines & Gill 1969):

∇
∗
· u∗ = 0, (2.5)

ρ∗0

(
∂

∂t∗
u∗tot + u∗tot ·∇

∗u∗tot

)
=−∇

∗p∗ + ρ∗0 (αT∗− βS∗) gêz + ρ
∗

0ν∇
∗2u∗tot + f ∗, (2.6)

∂

∂t∗
T∗ + u∗tot ·∇

∗T∗tot = κT∇
∗2T∗, (2.7)

∂

∂t∗
S∗ + u∗tot ·∇

∗S∗tot = κS∇
∗2S∗, (2.8)

where ν is the kinematic viscosity, κT is the thermal diffusion coefficient and κS is
the salt diffusion coefficient. To ensure that the background velocity field of (2.4)
resists viscous decay, a forcing term, f ∗ = ρ∗0 (∂/∂t∗)u∗bg − ρ

∗

0ν∇
∗2u∗bg, has been added

to the momentum equation. In the ocean, of course, internal waves are omnipresent
and so would continually be entering the physical region of interest, and so this term
is intended to represent that reservoir. The z-axis has been chosen to be anti-parallel
to gravity, with êz denoting the unit vector in the positive-z direction. We are ignoring
the effects of horizontal gradients, which are an important aspect of Arctic halocline
staircases as pointed out by Timmermans et al. (2008) and others, which makes it
possible to truly isolate the effects of time-varying shear.

The governing equations can be non-dimensionalized using the standard non-
dimensionalization for double-diffusive problems (Radko 2013):

x∗→ xd≡ x

 νκT

αg
∣∣∣∣∂T∗bg

∂z∗

∣∣∣∣


1/4

, L∗z → dLz, t∗→ t
d2

κT
, ω∗→ω

κT

d2
, u∗→ u

κT

d
,

T∗→ Td
∣∣∣∣∂T∗bg

∂z∗

∣∣∣∣ , S∗→ Sd
α

β

∣∣∣∣∂T∗bg

∂z∗

∣∣∣∣ , ρ∗→ ρρ∗0 α

∣∣∣∣∂T∗bg

∂z∗

∣∣∣∣ d, p∗→ pρ∗0
νκT

d2
.


(2.9)
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592 J. M. Brown and T. Radko

This yields the following non-dimensional forms of (2.5)–(2.8):

∇ · u= 0, (2.10)
1

Pr

(
∂

∂t
u+ utot · ∇utot

)
=−∇p+ (T − S) êz +∇

2u, (2.11)

∂

∂t
T + utot · ∇T −w=∇2T, (2.12)

∂

∂t
S+ utot · ∇S− R−1

0 w= τ∇2S, (2.13)

where Pr ≡ (ν/κT), τ ≡ (κS/κT) and R−1
0 ≡ (β/α)

∣∣(∂S∗bg/∂z∗)
∣∣/∣∣(∂T∗bg/∂z∗)

∣∣ are
the Prandtl number, the inverse Lewis number and the background density ratio,
respectively. Typical values of these parameters in the Arctic are Pr ∼ 13, τ ∼ 0.01,
3 . R−1

0 . 7. The background velocity field is then, in non-dimensional units,

ubg (z, t)=U0 sin
(

2π

H
z−ωt

)
, (2.14)

where H ≡ Lz/n is the vertical wavelength of the shear.
The relevant non-dimensional quantities for the strength of the shear are the

maximal Richardson and Péclet numbers, defined as

Ri≡
N2

BV(
∂ubg

∂z

∣∣∣∣
max

)2 =
N2

BV(
2πU0H−1

)2 , (2.15)

Pe≡U0H =
H2NBV

2πRi1/2
, (2.16)

where NBV is the buoyancy frequency, which in non-dimensional units reduces to

NBV ≡

√
Pr
(
R−1

0 − 1
)
. (2.17)

In the problem of staircases in the Arctic halocline (which have a characteristic layer
height of the order of metres), these take the typical values of Ri ∼ 10 (Cole et al.
2014), and Pe∼ 7× 105.

3. Direct numerical simulations
The governing equations are solved in two dimensions via the use of a de-

aliased pseudo-spectral code (Traxler et al. 2011). This code evaluates the linear
(non-advective) terms of the above equations in Fourier space and the nonlinear
(advective) terms in Cartesian space, using a multi-dimensional fast Fourier transform
to transition between the two. The code integrates the governing equations in time
using a third-order Adams–Bashforth scheme. The spectral modes are of the form

q=
Nx∑

j=−Nx

Nz∑
l=−Nz

qj,leik·x, (3.1)

where k = 2π {( j/Lx), (l/Lz)}, {Lx, Lz} are the physical dimensions of the simulation
and Nx and Nz are the integer number of Fourier modes in the x- and z-directions,
respectively.
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3.1. Configuration
Unless otherwise specified, all simulations have n = 1, Pr = 10, τ = 0.1, Lz = 25
and Lx = 1600. The aspect ratio of these simulations is indeed relatively extreme,
but so too are the horizontal extents of the unstable modes of these systems, which
was demonstrated in the low-Pe experiments by Radko (2016). In some cases, the
fundamental instability had even more extreme aspect ratios, and for these, the aspect
ratio was necessarily increased. Our numerical value for τ is a factor of ten larger
than is the case for heat–salt systems; however, based on the reproduction of selected
runs with τ = 0.01, reducing τ to more oceanographically relevant values does not
qualitatively impact results. As τ limits our physical resolution, the larger value was
chosen in order to perform more simulations at the same computational cost.

Two distinct simulation configurations are considered: single-frequency simulations
and stochastic experiments, the latter of which are represented by a superposition
of individual components with various frequencies, amplitudes and initial phase.
Unlike in the work of Radko et al. (2015) where the oscillating shear was in the
form of standing waves, the shear profile in this study travels through the domain,
which is perhaps more oceanographically relevant; however, our results show no
discernible differences in the growth rates by comparing these set-ups. We choose
to use the propagating, rather than standing, wave set-up because it simplifies our
comparison with analytics. As in Radko (2016), we compare the measured growth
rates of our single-frequency simulations to predictions from the fastest growing
mode in the linearized system with applied shear. The conventional techniques of
linear stability analysis for spatially periodic states (using Floquet theory) require
substantial modification for temporally varying basic fields. Full details of this
analysis are included in appendix A. The representation of the spectrum of gravity
waves in the stochastic experiments is analogous to the method used by Radko et al.
(2015) for the analysis of salt fingers in shear. The range of relevant frequencies
in non-dimensional units is limited by the rotational frequency of the Earth and the
buoyancy frequency, NBV .

The stochastic simulations are based on the multimodal generalization of ubg in
(2.14):

ubg (z, t)=
Nm∑

m=1

U0(ωm) sin
(

2π

H
z−ωmt+ φm

)
, (3.2)

where Nm is the total number of shear modes (typically, of order 104) and each φm is a
random number in the range [0, 2π). The mean square of the shear of this background

flow can be evaluated at z = 0,
(
(∂/∂z)ubg (0, t)

)2, by averaging (3.2) in time. The
functional form of U0 was chosen to roughly resemble a shallow spectrum (relative
to that of Garrett & Munk 1972) typical of the Arctic (see, e.g. Levine, Paulson &
Morison 1987):

U2
0 (ω)=C

(
ω2
−ω2

0

)−(1/2)
, (3.3)

where C is a calibration constant and ω0 is the Coriolis frequency (ω0 ∼ 0.05 in this
non-dimensionalization for the parameters of interest). The constant C is chosen to
enforce the desired Richardson number of the time-averaged flow, Ri, such that

Ri≡
N2

BV(
∂

∂z
ubg (0, t)

)2
, (3.4)
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(a) (b)

FIGURE 1. (Colour online) The instantaneous maximum temperature perturbation is
plotted as a function of time for two sets of parameters, one with slowly oscillating shear
and Ri= 10 (a) and one with a much higher frequency and Ri= 2.5 (b), each of which
was simulated with four different resolutions, shown in the legend as Nx×Nz. The density
ratio, R−1

0 , is 2 for both simulations, and the vertical domain extent is 25. The time axis
is adjusted such that the maximum temperature first rises above 1 at t = 0 for ease of
comparison. The slowly oscillating case (a) shows negligible dependence on resolution
down to 512 × 32. The rapidly oscillating case (b) shows more resolution dependence
and so a higher resolution (2048× 32) is needed for simulations with faster oscillations.

which ranged from 0.5 to 10.0 across the simulations, and an analogous Pe can be
defined in terms of Ri using (2.16).

3.2. Resolution
Numerical resolution typically includes a minimum of 512 Fourier modes in the
x-direction and 32 modes in the z-direction for a simulation of dimensions 1600× 25,
with proportionately higher resolutions for larger simulations. Because of the effects
of spectral aliasing, this corresponds to three times the number of physical grid
points in the simulation in each direction. To ensure that all of our simulations
are adequately resolved, we performed a detailed resolution test, some examples of
which are shown in figure 1. For these tests, we show the instantaneous maximum
temperature perturbation of these simulations, which we use in § 4 to calculate the rate
of growth of these simulations. As is evident in figure 1(a), a resolution of 512× 32
is perfectly adequate to measure the growth rates and fluxes of these systems when
the oscillations are slow. The growth rates show little variation across resolution until
the oscillation frequency approaches the buoyancy frequency, an example of which
is shown in figure 1(b). The growth rates in this parameter range do show slight
variation (a few per cent). To address this, an increased resolution of 2048 × 32 is
used for simulations with ω/NBV > 0.5 (including the stochastic simulations).

3.3. Typical evolution
The typical evolution of these systems is evident in figure 1 and is largely consistent
with previous results of double-diffusive instabilities: an initial exponential growth
of initial perturbations is followed by saturation and an eventual statistically steady
state. At early times, in the limit of small perturbations away from the background
state, the governing equations reduce to a linear set of partial differential equations, to
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which the solution is, naturally, an exponentially growing or decaying waveform. The
linear system for this problem is not analytically tractable, but it can be numerically
solved to calculate the linear growth rate (see appendix A). Once the perturbations
have grown substantially, nonlinear effects become significant, eventually causing the
exponential growth to saturate as the production and dissipation terms balance in the
equations, resulting in a statistically steady state. In some cases, this quasi-equilibrium
state can continue to evolve as large-scale structure develops, such as the onset of
diffusive layers. We describe our simulations in the framework of each of these stages
in detail.

4. Fastest growing modes

Since our primary interest lies in determining under what circumstances oscillating
shear leads to the thermohaline-shear instability, we measure the growth rate of the
simulations and compare to a linear stability analysis. A simple method to measure the
growth rate of the instability is through the maximum perturbation of one of the fields,
which avoids the complication of having to filter out wave oscillations. The measured
growth rate is then calculated from the instantaneous maximum global temperature
perturbation (see, for example, figure 1), to which an exponential of the form Aeλt
is fitted. The value of A in this fit is irrelevant, as it depends strongly on the initial
conditions. The data used in this fit only include times before the non-dimensional
temperature perturbation first exceeds unity, as the amplitude grows approximately
exponentially until then.

4.1. Regimes of instability
Linear stability theory suggests (and numerical simulations confirm) the presence of
four regimes of stability and instability for these systems. These regimes can be seen
in figure 2, which illustrates the growth rates for three distinct series of simulations
of varying Pe, Ri, ω and R0. Figure 2(a) shows simulations with R−1

0 = 2 and H= 25.
Figure 2(b) shows simulations with R−1

0 = 2 and H = 50, resulting in four times the
value of Pe for a given Ri. Figure 2(c) contains simulations identical to figure 2(a) but
with R−1

0 = 3. The range of R0 was chosen in order to investigate the parameter regime
where the thermohaline-shear instability was strongest; however, as figure 2 indicates,
the dependence on R0 is relatively weak. The first regime occurs for Ri< 1 – where
the dynamical shear dominates any double-diffusive instabilities – characterized by
large growth rates and very little dependence on the frequency, ω, or the density ratio,
R−1

0 . For systems with Ri > 1, three distinct phases are noted. For low frequencies
(ω/NBV . 10−2), the growth rates approach those for the static thermohaline-shear
instability (Radko 2016), which we call the ‘quasi-steady’ regime. For moderate
frequencies (10−2 . ω/NBV . 10−1), the thermohaline-shear instability does not occur;
we call this the ‘inhibited’ regime. For the highest frequencies (ω/NBV ∼ 1), there
is a renewed vigour of instability associated with the shear frequency approaching
the buoyancy frequency of the system and leading to resonances, which we call the
‘near-resonant’ regime.

The threshold frequency that separates the quasi-steady and inhibited regimes varies
slightly with both Pe and Ri, the effect of which can be seen by comparing figures
2(a), 2(b), and 2(c). The threshold between the quasi-steady and inhibited regimes is
shifted to lower frequencies for H= 50 and for R−1

0 = 3. For Ri> 1, this transition is
largely independent of the magnitude of shear, as long as the shear is relatively weak.
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FIGURE 2. (Colour online) The non-dimensional growth rate, λ, measured for each
simulation during its linear phase (colour-filled circles) plotted against the Richardson
number and the frequency of the forced waves as a fraction of the buoyancy frequency.
Red and green circles (dark grey in the monochrome version) indicate simulations with
greater aspect ratios (128 and 256, respectively). White-filled circles indicate that the
growth rate is less than 10−6, consistent with no instability. The equivalent values of Pe
are shown on the right axis. The panels present (a) simulations with R−1

0 = 2 and H= 25,
(b) simulations with R−1

0 = 2 and H = 50, i.e. four times Pe as compared to (a), and
(c) simulations with R−1

0 = 3 and H = 25. The background colour shows the analytic
prediction from the linearized equations (see appendix A), which behaves nearly identically
to the simulated data. The dashed lines present a possible prediction for the transition
between the low-frequency and mid-frequency regimes by equating the shear period with
the thermal diffusion time scale.

In order to construct a simple predictive model for the transition frequency (ωc), it is
reasonable to compare the shear time scale at the point of transition to the horizontal
thermal diffusion time scale of an individual column, τT . The width of these columns
are comparable to the vertical wavelength of the shear, thus the time scale is given
by

τT =H2. (4.1)
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FIGURE 3. (Colour online) (a) The growth rate measured for each single-frequency
simulation with ω/NBV = 0.98 × 10−3 and R−1

0 = 2 plotted with respect to Ri and with
colours scaled by Pe. (b,c) The same for ω/NBV = 0.98 × 10−1 and ω/NBV = 0.98,
respectively. (d) The same for the stochastic simulations. Squares indicate simulations
with one shear layer, and circles indicate those with two. By construction, for given
Ri, simulations with larger Pe have longer shear wavelengths. It can be seen in (c) that
simulations with the same Pe but with different numbers of layers show approximately
the same growth rates. Typically, higher values of Pe result in slower growth rates in
the quasi-steady regime (a), no change for the inhibited regime (b) and faster growth
rates in the near-resonant regime (c) and stochastic simulations (d). This implies that the
near-resonant regime of the instability is even more significant in the large Pe values
typical of the Arctic (∼106).

We use this to construct a critical frequency, letting ωC = 2πτ−1
T :

ωc =
2π

H2
. (4.2)

For shear oscillations above this frequency, diffusive transport – an integral part of
the thermohaline-shear instability – will not play a substantial role, and thus, the
thermohaline-shear instability is inhibited. We illustrate the performance of the model
by adding dashed lines to figure 2 at the predicted critical frequency, which roughly
corresponds to this transition and demonstrates the same approximate dependence on
Pe and R−1

0 .
The major qualitative difference between the quasi-steady and near-resonant regimes

is an opposite dependence of growth rates on Pe; this is apparent in figure 3, where
the growth rates are shown for a number of single-frequency simulations with
0.1 6 Ri 6 10 and for ω/NBV = 0.98× 10−3, ω/NBV = 0.98× 10−2, and ω/NBV = 0.98.
The growth rates decrease with increasing Pe for the quasi-steady simulations in
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figure 3(a). The growth rates show little dependence on Pe in the inhibited regime in
figure 3(b), and they increase with Pe for the near-resonant simulations in figure 3(c).
Although the latter is consistent with the analytic predictions for the near-resonant
simulations (and shows no dependence on the domain height or the number of modes
of the simulation), the trend is opposite that of the static case discussed by Radko
(2016).

The stochastic simulations show a similar dependence on Ri and Pe as the near-
resonant single-frequency calculations, which can be seen by comparing figure 3(c)
with figure 3(d) (or more directly in figure 4). Two values of the shear wavelength
were explored for each value of Ri: a shorter simulation with a shear wavelength of
H= 50, and a taller one with H= 100. Note that (3.3) implies that the majority of the
kinetic energy is in the slowest, near-inertial frequency, modes, which would typically
inhibit the thermohaline-shear instability, based on the single-frequency calculations in
this study. Only a small fraction of the energy is in the near-resonant regime and is
therefore available to trigger instability.

4.2. Physical mechanism
The basic mechanism for the thermohaline-shear instability is outlined in depth in
Radko (2016), and so will not be reiterated here; however, some subtle modification
of the physical interpretation is required for time-dependent shear. In particular, we
would like to address different stability properties in the quasi-steady, inhibited, and
near-resonant regimes. We note that shear forcing near the buoyancy frequency allows
phase locking between the free oscillations of individual particles and oscillations of
the shear. Thus, the shear flow tends to shift the parcels laterally in one direction
during ascent and in the other during descent, resulting in parcel motion resembling an
inclined ellipse. Once the particle motion is synchronized with the periodicity of the
shear, the thermohaline-shear instability can take effect, and the physical mechanism
proposed by Radko (2016) for the static case becomes relevant for the case of
oscillating shear as well. For the inhibited range of frequencies, such synchronization
may not be possible due to the dissimilarity of the forcing and natural frequencies,
and therefore, the thermohaline-shear instability cannot take place. Finally, for very
low frequencies, the shear becomes effectively quasi-steady on time scales of the
thermohaline-shear instability, and the arguments invoked by Radko (2016) can be
applied directly.

The dependence of the growth rate on Pe for simulations with the same Ri appears
to be caused by the ideal fastest growing mode having a larger vertical extent
than is allowed by the shear wavelength. To maintain Ri and R−1

0 but increase
Pe, the shear wavelength and maximum shear velocity must both increase. As
Pe approaches infinity, the wavelength becomes infinitely large, and the system
would more closely resemble one with a linear velocity profile. Thus, it is
expected that, for some wavelength, the effects of the shear will approach the limit
corresponding to infinite Pe. Figure 5 shows the analytic prediction of the growth
rate as a function of the shear wavelength, which does not increase much after
H∼200. This has two major implications: the first is that shear with large wavelengths
can still lead to the development of the thermohaline-shear instability – a comforting
finding in view of long wavelengths of internal waves in the ocean, which greatly
exceed scales of primary double-diffusive processes. The second implication is that
the characteristic physical scale of this instability for Arctic parameters (Ri = 10,
R−1

0 = 3) is approximately 2 m, which is comparable to the typical height of the
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FIGURE 4. (Colour online) The non-dimensional turbulent thermal fluxes (defined in § 5)
over time for a series of simulations with stochastic shear, simulating a shallow energy
spectrum. Simulations with lower Ri are shown in (a,b), and those with higher Ri, in (k,l),
spanning 0.5–10.0. (a,c,e,g,i,k) have H = 50 and (b,d,f,h,j,l), 100; hence, the simulations
presented on the right have four times the value of Pe. The values of Ri, Pe and the
measured growth rate, λ, are presented in each panel. It can be seen that simulations
typically grow more rapidly for lower values of Ri and for larger values of Pe. The shorter
simulation with Ri=10 was stable to the development of the thermohaline-shear instability,
whereas the taller simulation with Ri= 10 was seen to develop instability. The dependence
of the growth rates on Pe and Ri is qualitatively similar to that of the near-resonant
regime from the single-frequency calculations; however, the strongest velocity amplitudes
in these stochastic shear simulations are for lower frequencies that would typically be in
the inhibited regime and hence should be stable to the development of this instability for
Ri> 1.
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FIGURE 5. (Colour online) The analytic growth rates predicted for various values of the
density ratio, R−1

0 , and vertical shear wavelength, H, with the shear frequency ω/NBV =

0.98 and Ri= 10. The vertical dashed lines show the parameter value for our low-Pe and
high-Pe single-frequency experiments. It can be seen that the growth rates increase as the
shear wavelength increases until H ∼ 200, at which point the growth rates level off. This
would suggest that the relevant physical length scale of this instability is approximately
200 non-dimensional units, or approximately 2 m for typical Arctic values. It may be no
coincidence that this is also the length scale of diffusive layers in the Arctic.

diffusive layers in the Arctic. This consistency is also suggestive, as it provides
additional support for our thesis that thermohaline layering in high-latitude diffusive
regions can be attributed to the thermohaline-shear instability. It should be noted that
the wavelength of the shear is generally different from the initial step height of the
layers, particularly in the limit of infinite wavelength.

5. Fluxes
In order to measure the nonlinear equilibration of the transport of heat and salt

of the thermohaline-shear instability, the dissipation is used as a proxy for the
time-averaged fluxes of these systems. This should not be confused with the fluxes
of fully developed staircases, which tend to be much larger. Many studies (e.g.
Malkus 1954; Osborn & Cox 1972; Shraiman & Siggia 1990) have shown that in
a system for which production and dissipation have achieved a quasi-equilibrium,
the dissipation, 〈(∇T)2〉 and 〈τR0 (∇S)2〉 in our non-dimensionalization, can be used
to evaluate the steady time-mean fluxes 〈wT〉 and 〈wS〉, respectively. Calculating
these quantities thus involves averaging 〈(∇T)2〉 and 〈τR0 (∇S)2〉 from the moment
when they achieve statistical equilibrium to the onset of any large-scale features. We
illustrate the differences between the turbulent fluxes and the dissipative terms in
figure 6. These quantities can thus be used to approximate the Nusselt numbers for
temperature and salinity (the ratio of the total flux to the diffusive flux):

NuT − 1≈ 〈(∇T)2〉, (5.1)

NuS − 1≈
〈τR0 (∇S)2〉

τR−1
0

. (5.2)
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FIGURE 6. (Colour online) The thermal and haline fluxes over time for a simulation with
Ri = 2.5, Pe = 2500 and ω/NBV = 0.98. The left axes shows the dissipative terms, and
the right axes, the instantaneous fluxes. Instantaneous fluxes in these simulations oscillate
rapidly and give little indication of time-averaged flux, and hence averages taken from the
instantaneous fluxes can result in substantial biases, depending on the method of averaging.
The dissipative terms, given by 〈(∇T)2〉 and 〈τR0 (∇S)2〉, can be shown to be equivalent
to the time-averaged instantaneous fluxes and are much more reliable for the purposes of
determining accurate averaged fluxes.

For typical Ri in the Arctic (Ri∼ 10) and for τ = 0.1, the typical steady-state fluxes
are small, of the same order as the molecular thermal fluxes (given by 〈(∇T)2〉 ∼ 1).
The thermal and haline buoyancy fluxes are shown in figure 7 in terms of the thermal
flux (a) and the ratio of the haline buoyancy flux to the thermal buoyancy flux (b)
– this quantity is the flux ratio, often denoted γ −1 (Radko 2003). It should be kept
in mind that these are the fluxes of the fundamental thermohaline-shear instability
and not that of any late-time behaviour, such as the development of layers. The
main feature apparent in these simulations is the increased fluxes for Ri < 1. Since
the system is approaching dynamic instability from shear, the fluxes increase as the
system transitions from the thermohaline-shear instability to the Kelvin–Helmholtz
instability. Also apparent in this regime is the increased haline flux, evidenced by
the flux ratio, γ −1, being larger than unity. In most double-diffusive systems, this
quantity is less than unity, indicating that the flux of density is up gradient, one of
the peculiar features of this phenomenon. However, these large flux ratios suggest
that double-diffusive convection is not the main source of mixing in this regime.
For Ri > 1, the near-resonant simulations have only slightly larger thermal fluxes
than the low-frequency cases. These increased fluxes likely result from the extreme
vertical oscillations induced by the forcing discussed in § 4.2. In the right-hand
plot of figure 7, the buoyancy flux ratio of these near-resonant simulations are also
correspondingly reduced as compared to the quasi-steady case.
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FIGURE 7. (Colour online) The non-dimensional turbulent thermal flux (measured using
the dissipative expression 〈(∇T)2〉) and the non-dimensional turbulent buoyancy flux
ratio (measured using the dissipative expression 〈τR0(∇S)2〉/〈(∇T)2〉). These quantities
are plotted against the Richardson number and the frequency of the forced waves as
a fraction of the buoyancy frequency. In (a), white circles indicate no flux, whereas
in (b), simulations with no turbulent flux are omitted. Simulations with Ri < 1 have
substantially larger fluxes than those with Ri > 1. In particular, these simulations have
flux ratios larger than 1, which indicates that the net density flux is down gradient.
The near-resonant simulations have slightly larger thermal fluxes than the equivalent
low-frequency simulations, but this effect appears small.

6. Diffusive layers

To investigate whether oscillating shear can induce staircase formation, we
performed several simulations in domains large enough to support a staircase. The
nature of staircases arising from steady shear was discussed at length in Radko (2016),
so the case of quasi-steady oscillation is not discussed here. Our single-frequency,
single-wavelength simulations typically develop into only one convective layer,
apparently limited by the domain height. To see the development of a complete
staircase, we repeated one of our simulations with Ri= 2.5, H= 50 and ω/NBV = 0.98
in a larger domain (Lz = 200) to allow for a number of convective layers to form.
From the single-frequency simulations from § 4, then, these values were chosen to
provide an example with strong growth. Because of the sharp interfaces of diffusive
staircases, an increased vertical resolution is needed for this case in order to mitigate
the Gibbs phenomenon (it is impractical to run at resolutions that would eliminate
this effect entirely); thus, the domain size of Lx = 800, Lz = 200 was resolved by
1024× 512 Fourier modes. The time evolution of this simulation is shown in figure 8.

As with many other studies of diffusive layers (see in particular Radko 2016),
multiple convective layers show the tendency to merge into larger layers over time.
The simulation in figure 8 spontaneously develops into four weak layers after a
substantial amount (approximately 2000 non-dimensional units) of integration time.
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FIGURE 8. (Colour online) The instantaneous density field for a simulation with R−1
0 =2.0,

Ri= 2.5 and ω/NBV = 0.98 but with the domain spanning four shear wavelengths (n= 4).
(a,c,e) Show two profiles taken at x-positions designated in (b,d,f ), which contain the full
density field. (a,b) Are taken at t= 1997, (c,d) at t= 2601 and (e,f ) at t= 3815. In (a,b),
approximately four weak interfaces can be seen in the black density profile, which are
also apparent in the full field. As time progresses, the layers merge, progressing to (c,d),
which have only two layers. The density jump across these interfaces are much larger, and
the density is roughly uniform in the body of the layers. Additionally, it can be seen that
the shear has induced vertical deformations of these interfaces. Eventually, these merge
to a single layer spanning the entire domain in (e, f ), as is typical of vertically periodic
simulations of diffusive layers.

The interfaces between these layers slowly migrate toward one another until they
eventually merge completely. Since the density difference across the domain is fixed,
any layer mergers must therefore result in more extreme density variations across the
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FIGURE 9. (Colour online) This shows the density field and profiles of a stochastic shear
simulation with R−1

0 = 2.0, Ri= 2.0, and Pe= 6455 in the same style as for figure 8. The
figure is taken at t = 14 204. The time required to generate these layers is much longer
than for the case presented in figure 8, which is reasonable considering the growth rates
for these stochastic shear simulations are lower than those of the near-resonant cases from
the single-frequency simulations. Additionally, these simulations do not show the same
strong vertical oscillations as the near-resonant cases, which can be seen in the roughly
uniform layers in the full fields. This would suggest that the layers formed in nature are
more likely to be uniform in the presence of a full spectrum of shear.

interfaces, which more clearly delineate these boundaries. The interface oscillations
remain as large in amplitude as before the mergers; however, the increased layer
extent makes them appear of lesser significance to the overall dynamics. In this
way, oscillating shear modes with high frequencies can theoretically lead to the
development of convective layers that retain no dependence on the properties of the
initial shear. It is difficult to speculate on what mechanism would limit the layer
height in the Arctic, as our simulations show continuous merging until only a single
layer is present. As is mentioned in Radko (2005), one plausible mechanism would
be that layers could cease merging when the variation in density within convecting
layers reaches a critical value.

Layer development is also present in the stochastic simulations. We extended one
of these simulations (R−1

0 = 2.0, Ri= 2.0 and Pe= 6455) in space in the same manner
as for the single-frequency staircase simulation above to model the development
of diffusive layers, which can be seen in figure 9. The interfaces take much more
time to develop in the stochastic simulations as compared to the single-frequency
calculations, which is consistent with the slower growth rates measured from the
single-wavelength simulations. Though we do not see layer merging in this simulation,
we cannot preclude the possibility that these layers will eventually merge, as merging
time scales tend to be fairly long in these systems. Unlike in the single-frequency
case (figure 8), the interfaces in the stochastic case remain remarkably uniform across
a horizontal distance approximately 16 times the height of a single layer.

7. Discussion and conclusions
Simulations of time-dependent shear in a fluid stable to the formation of

double-diffusive instabilities have shown that three major regimes are possible for
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shear flows with Richardson numbers greater than unity. The first of these is the
‘quasi-steady’ regime, which occurs when the characteristic frequency of the shear is
comparable to or less than the diffusion time scale. This regime is characterized by
the typical thermohaline-shear instability, as outlined by Radko (2016). For higher
characteristic frequencies – those in the so-called ‘inhibited’ regime – such as those
near the inertial frequency of the Earth, there is insufficient time for the formation of
the static thermohaline-shear instability, and thus, no instability is present. However,
the highest frequencies, those near the buoyancy frequency and hence called ‘near
resonant’, are unstable in this framework due to the resonant oscillations induced by
the shear. The near-resonant regime derives its instability from synchronization of
free oscillations of Lagrangian particles and shear, leading to the same dynamics as
in the static thermohaline-shear instability. For internal waves in the ocean, there is
typically a full spectrum of frequencies varying from the inertial frequency to the
buoyancy frequency, which places most feasible observations between the inhibited
and near-resonant regimes described here. Any shear present in the ocean with slow
oscillations (three orders of magnitude lower than the buoyancy frequency) are instead
well described by the quasi-steady regime.

Unlike the case of static shear, this resonant instability is more prominent at
higher Péclet numbers, which serves to make this process even more likely to be
of major importance in the development of high-latitude staircases. This is seen for
both single-frequency simulations and those simulating a spectrum of shear, and
one of the key results of this study is the possibility that high-frequency shear
components can excite the thermohaline-shear instability even in the presence of
stronger low-frequency shear modes. This suggests that resonant excitation of the
thermohaline-shear instability may be important in the Arctic despite the weak velocity
amplitudes of waves near the buoyancy frequency. As the wavelength increases, the
shear more closely resembles a linear shear, which we find to be a more effective
profile for driving instability than the sinusoidal shear profiles considered here.
Therefore, we propose that similar simulations in the future should be performed
using linear shear, which would require a substantially different model. Clearly more
studies of this nature are needed to confirm the prevalence of such instability in the
Arctic.

Our high Pe, high Ri simulations demonstrate the development of nearly horizontal
layers if near-resonant waves are present. We see these formations both in cases with
single-frequency waves and with simulated wave spectra, and thus the disrupting
effects of intermediate wave frequencies cannot completely quench the growth of
this near-resonant instability. Simulations that span multiple wavelengths of the shear
show that layers initially forming with extents matching the shear wavelength can
eventually merge. Such merged layers tend to be much more coherent than their
predecessors. This has important consequences for generating large-scale, horizontally
uniform diffusive layers.

One caveat of this work remains that oscillations near the buoyancy frequency
tend to be inclined, and such work is relegated to future publications. Additionally,
the effects of time-dependent shear superimposed on a static shear have not been
considered. Note that the initial stratification arises from slow, steady currents from
the North Atlantic. It is not clear what the interaction of these time-dependent shear
results would be with the static shear results of Radko (2016), and so studying
this interaction would also make for interesting future work. Nevertheless, we have
identified a plausible explanation for how staircases can develop for representative
oceanographic parameters at high latitudes. As with any study of convection, these
processes must be studied in depth in full three-dimensional simulations, which are
currently underway.
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Appendix A.
We perform a linear stability analysis to identify the regions of parameter space of

interest. The background flow of the system takes the form of (2.14). By transforming
to a moving reference frame with vertical velocity of (ωH/2π) (i.e. t′= t, x′= x, y′= y
and z′ = z − ωtH/2π), the background shear remains stationary, which will greatly
simplify our later analysis. The background flow is thus ubg (z′)=U0 sin ((2πz′/H))êx
in this new reference frame.

The governing equations in the new primed coordinate system are given by the
following:

∇
′
· u= 0, (A 1)

1
Pr

(
∂

∂t′
u−

ωH
2π

∂

∂z′
u+

(
ubg
(
z′
)
+ u
)
· ∇
′
(
ubg
(
z′
)
+ u
))

=−∇
′p+ (T − S) êz +∇

′2u, (A 2)
∂

∂t′
T −

ωH
2π

∂

∂z′
T +

(
ubg
(
z′
)
+ u
)
· ∇
′T −w=∇′2T, (A 3)

∂

∂t′
S−

ωH
2π

∂

∂z′
S+

(
ubg
(
z′
)
+ u
)
· ∇
′S− R−1

0 w= τ∇′2S. (A 4)

The background component of the divergence vanishes exactly.
Assuming solutions of the form

u
v
w
p
S
T

= eλt
′
+i(kxx′+kyy′+kzz′)

N∑
j=−N


uj
vj
wj
pj
Sj
Tj

 eij(2π/H)z′, (A 5)

and ignoring all terms of quadratic or higher order, we can express (A 1)–(A 4) in
matrix form as

A
(
kx, ky, kz, Pr, τ , R0, Ri, Pe, ω

)


uN
vN
wN
pN
SN
TN
· · ·


= λB



uN
vN
wN
pN
SN
TN
· · ·


, (A 6)
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where B is a diagonal matrix with the pj associated elements equal to zero and all
other elements equal to unity. In our numerical simulations, the fastest growing mode
is seen to have the same periodicity as the shear, so the Floquet factor, kz, is assumed
to be zero. This can trivially be converted into a more traditional eigenvalue problem
if A is non-singular by multiplying by A−1, yielding an equation with matrix A−1B
and eigenvalues 1/λ. To identify the fastest growing mode of these simulations, we
numerically find the eigenmode of matrix A−1B which has the largest finite real part
of λ, across all values of kx and ky. Typical calculations use N= 40, but if the growth
rate calculated with N = 30 varies from the original calculation by more than 0.1%,
increasing values of N are used until the solution converges to within this threshold.
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