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A Reality Check on Hardy–Weinberg

Alan E. Stark and Eugene Seneta
School of Mathematics and Statistics FO7, University of Sydney, Sydney, NSW, Australia

G. H. Hardy (1877–1947) and Wilhelm Weinberg (1862–1937) had very different lives, but in the minds of
geneticists, the two are inextricably linked through the ownership of an apparently simple law called the
Hardy–Weinberg law. We demonstrate that the simplicity is more apparent than real. Hardy derived
the well-known trio of frequencies {q2, 2pq, p2} with a concise demonstration, whereas for Weinberg it
was the prelude to an ingenious examination of the inheritance of twinning in man. Hardy’s recourse to
an identity relating to the distribution of types among offspring following random mating, rather than an
identity relating to the mating matrix, may be the reason why he did not realize that Hardy–Weinberg equi-
librium can be reached and sustained with non-random mating. The phrase ‘random mating’ always comes
up in reference to the law. The elusive nature of this phrase is part of the reason for the misunderstandings
that occur but also because, as we explain, mathematicians are able to use it in a different way from the
man-in-the-street. We question the unthinking appeal to random mating as a model and explanation of
the distribution of genotypes even when they are close to Hardy–Weinberg proportions. Such sustained
proportions are possible under non-random mating.

� Keywords: Hardy–Weinberg law, non-random mating, mating matrix, stationary genotype proportions,
Hardy–Weinberg proportions, Hardy’s identity

The Hardy–Weinberg law, named after Wilhelm Weinberg
(1862–1937) and Godfrey Harold Hardy (1877–1947), who
introduced it in the same year (Hardy, 1908; Weinberg,
1908), is included and explained in most genetics textbooks.
Weinberg was a prominent member of the German ‘school’
of genetics in the first third of the 20th century, which also
included Fritz Lenz and the mathematician Felix Bernstein
(Baur et al., 1931; Bernstein 1925). Kallmann (1938) and
Früh (1996) give accounts of Weinberg’s lifework (see also
Stark & Seneta, 2013). Crow (1999) contains a synthesis, and
also writes on the Hardy–Weinberg setting. Hardy spent
many years as a professor of mathematics at Cambridge
and Oxford Universities (Edwards, 2008; Fletcher, 1980).
Fletcher’s (1980) paper is the perspective of a mathematician
on the involvement of a pure mathematician (Hardy) in a
biological conundrum.

Several accounts have been given of how a geneticist,
Punnett, asked mathematician Hardy to explain how a dom-
inant trait would not eventually displace a recessive trait in
a population. This was a simple problem to Hardy, who
showed by straightforward algebra, which Diaconis (2002)
calls ‘back of the envelope calculation’, that by assuming
random mating (RM), genetic variability is maintained.
Hardy did not notice that the assumption ignores a deeper
mathematical fact, that variability is maintained by forms

of non-random mating (NRM). In the interests of com-
pleting the ‘story’, we explain how this is so. As discussed
below, Weinberg used the property of stability to explore
the question of a possible genetic basis for the occurrence
of twins in humans (Stark, 2006a).

Several aspects of the law require examination and we
follow the usual practice of abbreviating Hardy–Weinberg
to HW, Hardy–Weinberg proportions to HWP, and Hardy–
Weinberg equilibrium to HWE. By HWP, we shall mean the
trio of frequencies (proportions), of form {q2, 2p q, p 2}, for
the corresponding genotypes {AA, AB , BB}. In the tradi-
tional (RM) setting of the HW law, q is the frequency of the
first allele A and p that of the second B at an autosomal
locus, but we shall use the notion of HWP more generally
as defined. HWE relates to the connection between sets of
HWP over successive generations and the possibility or oth-
erwise, of their stationarity. We ignore the fact that there
are no clearly distinct generations in human populations.
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TABLE 1

Johannsen’s (1913, p. 486) Demonstration of Population
Stationarity

Relative frequency of AA, AB, BB under free crossing

Initial First Second
Zygote proportions generation F1 generation F2

a

BB p p2 (p2 + pq)2 = p2(p + q)2

AB 0 2pq 2(p2 + pq)(pq + q2)
= 2pq(p + q)2

AA q q2 (pq + q2)2 = q2(p + q)2

Note: ap + q = 1.

Misunderstandings arise because of the ways in which
the phrase ‘RM’ and its alternative ‘NRM’ are used
in the literature. Mathematicians and geneticists devise
models — that is, mathematical constructs — as an aid
to thought in exploring the properties of the models, with
a view to planning experiments or making observations for
tests of validity. In setting up a model, it is easy to propose
RM as one of the assumptions; for example, to specify what
proportion of couplings occurs between genotypes AA and
BB . One simply says that this is the product of the frequen-
cies of types AA and BB . But it is a step too far to project
this to an actual population where it is hardly possible for
such a state to apply — this would assume that mates would
be chosen in the way that winners in a lottery are chosen.
However, there are many instances in the literature of such
facile thinking. It is very tempting to say, because a set of
genotype frequencies are not significantly different from
HWP, that mates are chosen randomly.

The standard textbook treatment, such as in Hartl and
Jones (2006), is to show that, starting from any distribution
of genotype frequencies, that is of {AA, AB , BB}, HWP
{q2, 2p q, p 2} are achieved in one round of RM. It follows
that if RM is continued, the same HWP will be maintained.
We show later that other mating regimes achieve the same
outcomes. The reason why this is important is that ‘pure’
RM is a highly restrictive assumption and the other models
allow some relaxation of the conditions and perhaps help
to explain why empirical data often contain distributions
(sets of frequencies) close to HWP.

Li’s (1955) somewhat older textbook treats HW early
and extensively. In fact, the outside hardcover’s geometric
design is motivated by a HW property. We shall use some
of Li’s (1955) clear treatment in the sequel.

Table 1, which comes from Johannsen (1913), gives a
concise derivation of the HW law in a form that avoids
the misleading statements of some presentations. The no-
tation has been modified slightly to conform to that used
here.

We do not attempt to give a comprehensive overview
of the HW law, which has been done in capable fashion
with much useful advice by Mayo (2008). Our aim is to
present what in some quarters may be seen as a contrary

view, synthesizing much of the past work on NRM and HW
by one of the present authors.

We show that Hardy’s recourse to an identity relating
to the distribution of types among offspring following RM,
rather than an identity relating to the mating matrix, may be
the reason why he did not realize that HWE can be reached
and sustained with NRM. Others, such as Diaconis (2002),
were similarly misled.

The sections that follow give, first, the standard deriva-
tion of the HW law, although in more modern format that
clearly reveals the stages in the derivation. This permits gen-
eralization to incorporate NRM. Then follow sections on a
numerical example of NRM leading to HWP, and a model of
NRM sustaining HWP; a general model sustaining HWPs;
whether it matters that HWP can be sustained by NRM; test-
ing for HWP; and whether RM is virtual rather than real.
Finally, some closing remarks are followed by references.

Deriving HWP and Properties of the Sta-
tionary State
Taking account of sex, there are nine mating combinations,
to go from the parental to offspring generation, as identified
by the matrix:⎡

⎣ AA × AA AA × AB AA × BB
AB × AA AB × AB AB × BB
BB × AA BB × AB BB × BB

⎤
⎦ .

The mating frequencies are summarized by the matrix:

C =
⎡
⎣ f 00 f 01 f 02

f 10 f 11 f 12

f 20 f 21 f 22

⎤
⎦ . (1)

A ‘child’ who has one of the three types arises from
each coupling and the aggregate of children form the new
generation, later to become parents, in their turn.

Below, we impose the condition that C is symmetric,
ensuring that males and females have the same frequen-
cies, which are denoted by the vector {f 0, f 1, f 2}. These are
obtained by summing the rows and columns of C.

The typical introduction to the HW model uses a tabular
presentation of the kind taken from Johannsen (1913) and
shown in Table 1. This can be streamlined with the use of
some basic matrix algebra (Stark & Seneta, 2012). We feel
that it is useful in clarifying key elements of the HW law,
although we recognize that the approach will not please all
tastes. The whole aim is to go from a parental distribution
of genotype frequencies to the offspring distribution. First,
we rearrange the elements of mating matrix C in a vector
of nine elements:

U′ = {f 00, f 01, f 02, f 10, f 11, f 12, f 20, f 21, f 22}, (2)

where U′ denotes the transpose of U, that is, putting the
column vector U in row form.
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Next, we need the matrix that defines the zygotic output
from the respective mating pairs:

M =
⎡
⎣ 1 1/2 0 1/2 1/4 0 0 0 0

0 1/2 1 1/2 1/2 1/2 1 1/2 0
0 0 0 0 1/4 1/2 0 1/2 1

⎤
⎦ .

We refer to M as ‘Mendel’s coefficients of heredity’.
The composition of the offspring generation is simply

T ′ = (MU)′:

T ′ =
{

f 00 + f 01 + f 10

2
+ f 11

4
,

f 01

2
+ f 02

+ f 10 + f 11 + f 12

2
+ f 20 + f 21

2
,

f 11

4

+ f 12 + f 21

2
+ f 22

}′
. (3)

If additionally to the conditions of symmetry and sum
of all elements unity of C, we assume that

f 11 = 4f 02, (4)

we see from (3) that T ′ = {f 0, f 1, f 2}, that is, stationarity
is present, with initial genotypic frequencies preserved.

The usual introduction to HWE takes a form of which
the following is a matrix version:

Suppose the initial population has frequencies {f0, f1, f2},
then RM is expressed by

C0 =

⎡
⎢⎣

(f0)2 f0f1 f0f2

f1f0 (f1)2 f1f2

f2f0 f2f1 (f2)2

⎤
⎥⎦ ,

which, in vector form, is

U′ = {(f0)2, f0f1, f0f2, f1f0, (f1)2, f1f2, f2f0, f2f1, (f2)2}.

Then, applying T ′ = (MU)′, yields

T ′ =
{(

f0 + 1

2
f1

)2

, 2

(
f0 + 1

2
f1

) (
f2 + 1

2
f1

)
,

(
f2 + 1

2
f1

)2
}′

and, putting this in terms of gene frequencies,

q = f0 + 1

2
f1; p = f2 + 1

2
f1

gives the HWP

T ′ = {q2, 2pq, p2}′. (5)

If RM is continued, the mating matrix is

C =

⎡
⎢⎣

(q2)2 2pq3 p2q2

2pq3 4p2q2 2p3q

p2q2 2p3q p4

⎤
⎥⎦ . (6)

The frequencies among offspring from (6) are

{q2(q2 + 2pq + p2), 2pq(q2 + 2pq + p2),

p2(q2 + 2pq + p2)},
that is HWP, since (q2 + 2pq + p2) = (q + p)2 = 1.

We note that, in addition to having all non-negative el-
ements summing to 1 and symmetry, C in (6) also has the
critical property f 11 = 4f 02, that is (4), which ensures that
the frequencies {f0, f1, f2} are maintained, and specifically
in HW form (5).

Thus, starting from an arbitrary initial distribution of
genotype proportions, stationary genotype proportions are
achieved after one generation of mating, through applica-
tion of two successive mating matrices C0 and C.

A general result can be achieved by taking an arbitrary
initial genotypic distribution {f0, f1, f2}, and then choosing
any C0 = {fij } whose row and column sums are {f0, f1, f2}
to produce, using (3) after one round of mating, genotypic
frequencies {f0, f1, f2}. Now choose C = {fij } to have its row
and column sums {f0, f1, f2}, and additionally to satisfy (4),
that is, f11 = 4f02. Thus, stationary genotype frequencies
are achieved after one round of mating. These are not nec-
essarily in HWP form.

In deriving the HW law, Hardy (1908) pointed out that
if the initial parental frequencies satisfy the relation:

(f 1)2 = 4f 0f 2, (7)

then equilibrium frequencies will have been attained under
RM even after the first round of mating. Clearly, the HWP
(5) satisfy (7).

However, we see that any genotype structure T ′ =
{f 0, f 1, f 2} satisfying (7) is already in HWP, since HWP
can be expressed as {f 0, 2

√
f 0f 2, f 2} if we write f0 = q2

and f2 = p2, where p = 1−q, whether mating is RM or not.
We remind the reader that p and q will not necessarily de-
note gene frequencies in HWP of genotypes. In the case of
RM, they will denote gene frequencies; and in this case (6)
reveals that (4) holds as well as (7).

HWP may describe equilibrium genotype frequencies,
when (4) holds, even under NRM, as we shall show in the
following sections.

Equation (4) is a condition for stationarity over time
of genotype frequencies, while (7) just describes genotype
frequencies in HWP. Under RM, (4) and (7) coincide.

To summarize: RM implies HWP (and then (4) and (7)
hold), but it is not true that HWP imply RM (even though
(4) and (7) hold).

The invalid but still ubiquitous belief that stationary
HWP imply RM has developed and hardened since Hardy’s
(1908) paper, which toward its end has the misleading state-
ment: ‘Hypotheses other than that of purely random mat-
ing will give different results . . .’ (p. 49). This has morphed,
for example, in Cavalli-Sforza and Bodmer (1971) into ‘If
the probabilities of a given mating are different from those
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expected under random mating, the expected frequencies
of genotypes do not follow the Hardy–Weinberg law’ (p.
537).

Our aim in this article is to demonstrate that station-
ary HWP over time do not imply RM, and indeed, more
realistically, may quite plausibly result from NRM.

Example of an NRM Path to HW Form and
HWE With NRM
The textbooks show how HWP are reached in one round
of RM. Stark (2006b, 2007) shows that HWP can be pro-
duced from an arbitrary parental population with a single
round of NRM. For example, mating matrix C0 in (8),
converted to U by (2), and then applied by T = MU gives
HWP {0.16,0.48,0.36} with q = 0.4, from parental popu-
lation {0.2,0.4,0.4}:

C0 =
⎡
⎣ 0.09 0.02 0.09

0.02 0.20 0.18
0.09 0.18 0.13

⎤
⎦ . (8)

The next point that we want to stress is that (5) can be
sustained by NRM, if the mating regime satisfies (4). This
allows considerable scope to choose C. For example, taking
q = 0.4 to give HWP {0.16, 0.48, 0.36}, put f00 = 0.0352
(supposing q ≤ 1/2), then f01 can be chosen arbitrarily,
using the single remaining degree of freedom available, say,
f01 = 0.0576. Then, f02 = f0 − (f00 + f01) = 0.0672, f10 =
f01, by symmetry, f11 = 4f02 from (4), f12 = f1 − (f10 + f11),
f20 = f02, and f21 = f12 by symmetry, and f22 = f2 − (f20 +
f21), as shown in the following NRM matrix:

C =
⎡
⎣ 0.0352 0.0576 0.0672

0.0576 0.2688 0.1536
0.0672 0.1536 0.1392

⎤
⎦ ,

which has parental and offspring frequencies {.16, .48, .36}
while the RM matrix with the same population frequencies
is

C =
⎡
⎣ 0.0256 0.0768 0.0576

0.0768 0.2304 0.1728
0.0576 0.1728 0.1296

⎤
⎦ .

Finally, notice that the NRM mating matrix

C =
⎡
⎣ 0.0256 0.0576 0.0768

0.0576 0.3072 0.1152
0.0768 0.1152 0.1680

⎤
⎦

satisfies (4), maintains the same HWP, and has f00 = (f0)2 =
0.0256 as in the RM matrix. Thus, this NRM matrix for these
same HWP is only a small deviation from the RM matrix,
suggesting that RM is an excessively idealized context for
HWP.

The main point that emerges from this and the previous
section is that appeal to identity (4), which relates to the
mating matrix, rather than to identity (7), which relates to

the distribution among offspring following RM, reveals the
fact that HWE can be sustained by NRM.

The preceding section shows how a mating system em-
bodied in (4) maintains a stationary state and a population
in HW form is just one such state. Mating regimes with
particular characteristics can be set up to conform with this
structure.

A Generator of HWP With NRM
We start by assuming that the population is in HW form
and take (Stark, 2005) the mating matrix (1) to be

f ij = f i f j [1 + �eiej ], (i = 0, 1, 2; j = 0, 1, 2), (9)

where

{ei} =
{−p

q
, 1,

−q

p

}
.

Note that f 11 = (f 1)2(1 + �) = 4p 2q2(1 + �) and f 02 =
f 0f 2(1 + �) = p 2q2(1 + �) and so satisfies (4), so that
HWP are maintained, but mating is NRM unless � = 0.
In (9), � can be any point in the interval (−q2/p 2, q/p ),
provided, without loss of generality, that q ≤ 1/2 (Stark,
2005).

A General Mating Model That Maintains
Genetic Variability
In this model, mating frequencies are specified by
⎡
⎢⎣ q2 − s − t Gp q + t Fp q − Gp q + s

Gp q + t 4s 2p q − 2Fp q − Gp q − 4s − t

Fp q − Gp q + s 2p q − 2Fp q − Gp q − 4s − t p 2 − 2p q + 2Fp q + 2Gp q + 3s + t

⎤
⎥⎦ .

(10)

In (10), we make use of the fact that any trio of genotypic
frequencies can be expressed in terms of a gene frequency
q and a deviation from HWP, here either F or G . First,
choose s and t positive, and large enough to make all entries
of (10) positive. Summing the elements of (10) by rows and
columns shows that the parental genotypic frequencies are:

f 0 = q2 + Fp q, f 1 = 2 p q − 2Fp q, f 2 = p 2 + Fp q.

The distribution of genotypes among offspring is, ac-
cording to (3):

g 0 = f 00 + f 01 + f 11/4, g 1 = f 01 + 2f 02 + f 11/2 + f 21,

g 2 = f 22 + f 21 + f 11/4,

that is,

g 0 = q2 + Gp q, g 1 = 2p q − 2Gp q, g 2 = p 2 + Gp q.

Having chosen q and F to define the composition of the
initial population, thus a judicious choice of parameters
s and t can be made to produce the composition of the
next generation defined by the same q and arbitrary G .
In particular, HWP can be produced in the distribution
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of offspring by taking G = 0, by NRM, if required (Stark,
2007).

Another model that produces HWP among offspring
from an arbitrary parental population is given by Stark
(2006b).

NRM Maintaining HWP: Does It Matter?
The best-known early instance of an NRM mating model is
due to Li (1988), whose mating matrix is

C̈ =
⎡
⎣ q4 + a 2p q3 − a − b p 2q2 + b

2p q3 − a − b 4p 2q2 + 4b 2p 3q + a − 3b
p 2q2 + b 2p 3q + a − 3b p 4 − a + 2b

⎤
⎦ .

(11)

Note that the population specified by (11) is in HWE, since
(4) is satisfied. Stark (2006b) followed up on this NRM
direction by producing a model, which shows that HWP
can be produced in a single round of NRM.

Weinberg (1908) in his original paper used the RM ver-
sion of the mating matrix (11), that is, the case where a = b
= 0, in looking for detectable genetic influence on the rate
of twinning in humans, comparing two models, dominant
and recessive inheritance. Stark (2006a), in the final section
of his paper, describes Weinberg’s procedure and generalizes
it using (11), to make the calculated hypothetical twinning
rates depend on the values of a, b. Weinberg’s procedure
consists in comparing the hypothetical with the observed
twinning rates, so the assumption of NRM will explicitly
affect such a comparison.

In this sense, Weinberg’s (1908) original paper provides
a positive response to the question in the above subsection
heading.

Bulmer (1970) is an indispensable source of information
on, and analysis of, the inheritance of twinning in man and
devotes a whole chapter to it. He says: ‘The first, and the
most extensive, data on this subject were obtained by Wein-
berg from family registers in Stuttgart at the beginning of
this century’ (Bulmer, 1970, p. 114). Bulmer has citations
to Weinberg’s research, published in 1901, 1909, and 1928.
Curiously, he does not refer anywhere to Weinberg’s cele-
brated paper of 1908, mentioned above. But in the main, he
agrees with Weinberg’s conclusions about the inheritance
of twinning.

Do Statistical Procedures Test for RM or
for HWP?
Test criteria for ‘RM’ are usually based on a random sample
of size of counts, say {n0, n1, n2}, n in all, of the respective
genotypes {AA, AB , BB}. In reality, such criteria merely
test the hypothesis that the structure of the population in
genotypic equilibrium has genotypic structure in HWP:
{q2, 2p q, p 2}, where p = 1 − q, for some q, 0 < q < 1.

Thus, consistency of data with hypothesis does not pre-
clude NRM, as our above discussion shows.

We justify our statement about test criteria by adapt-
ing the presentation of the standard genetic textbook test
procedure presented in Li (1955, Chapter 2, Section 1). At
the heart of this test is that each of the n individually cho-
sen individuals for the sample will fall into one of three
classes, according to genotype, with the numbers in the
three classes being {n0, n1, n2}. The joint distribution of the
numbers {n0, n1, n2} is multinomial with probabilities of
falling into the respective classes being {p 0, p 1, p 2}. Under
the null hypothesis being tested, the probabilities of falling
into the respective classes are {p 0, p 1, p 2} = {q2, 2p q, p 2}.

Here, q is unknown and must be estimated from the
data. Asymptotic hypothesis testing theory dictates that we
substitute the maximum likelihood estimator q̂ (calculated
from the sample) of q into {q2, 2p q, p 2}, to enable us to
calculate the expected values corresponding to each class
assuming the null hypothesis is true.

The likelihood function for which the maximizing value
of q is to be found is

L (q) = (q2)n0 (2q(1 − q))n1 ((1 − q)2)n2 .

Setting

d ln L (q)

dq
= 0

gives the optimizing solution for q as

q̂ = n0 + n1

2

n

since n0 + n1 + n2 = n. The test statistic is then

�2 =
(

(n0 − n′
0)2

n′
0

+ (n1 − n′
1)2

n′
1

+ (n2 − n′
2)2

n′
2

)
,

which has approximately a �2 distribution (if n is large),
with one degree of freedom as Li (1955, p. 12) explains.
Here, n′

0 = nq̂2, n′
1 = n(2q̂(1 − q̂)), and n′

2 = n(1 − q̂)2 are
the (estimated) expected values under the null hypothesis.

The illusion that the test is one for RM arises since q̂ is the
proportion of A alleles in the sample, so q2 is to be estimated
by q̂2. This gives the impression that the mating probabilities
come about from random union of gametes. But the nature
of q̂ is just a mathematical artifact, and cannot be used to
infer such a causal reason for the structure {q2, 2p q, p 2} of
genotype frequencies in the population.

It is thus one thing to say that such and such data are
not significantly different from HWP but quite another to
extend this to the conclusion that the relevant population
is practising RM.

The above test, a slight variant of Karl Pearson’s �2 good-
ness of fit test, is asymptotic: that is, it is a large sample size
test, and so needs n to be large.

786 TWIN RESEARCH AND HUMAN GENETICS

https://doi.org/10.1017/thg.2013.40 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2013.40


Hardy–Weinberg Reality

Haldane (1954) based his own ‘exact test’, that is, for not
necessarily large n, on the characteristic of HWE expressed
by the identity, in our notation:

(f 1)2 − 4f 0f 2 = 0,

which is just (7). That is, he again just expresses HWP in
the population as his hypothesis, and his test is for this null
hypothesis.

By a complex calculation, Haldane shows that the quan-
tity 4n0n2 − n1(n1 − 1) has expectation zero leading to a
test criterion D , which he calls a measure of divergence,
defined by

D = 4n0n2 − n1(n1 − 1).

To test D , he needs its sampling variance, which after
more calculation he finds to be

var(D) = 2h(h − 1)k(k − 1)

2n − 3
,

where h = 2n0 + n1 and k = n1 + 2n2, which are 2n times
the respective observed gene frequencies.

The argument gets even more complicated when it comes
to using D and its variance in practical settings. Haldane
gives an example using data from a population of the scarlet
tiger moth Panaxia dominula; n0 is the number of the ho-
mozygous type dominula, n1 the number of the heterozy-
gote medionigra, and n2 the number of the homozygous
bimacula. Haldane concludes ‘. . . there is no evidence for a
systematic tendency . . . from random mating’ (p. 634).

Mayo (2008) gives a wide-ranging discussion of applica-
tions of the HW principle, such as Haldane’s example.

So, Is Random Mating Virtual Rather Than
Real?
We are clearly inclined to answer in the affirmative to the
question posed by the heading of this section, despite state-
ments like the following by Hartl and Jones (2006, p. 503),
taken from their introduction to the Hardy–Weinberg law:

When a local population undergoes random mating,
it means that organisms in the local population form
mating pairs independently of genotype. Each type of
mating pair is formed as often as would be expected by
chance encounters. Random mating is by far the most
prevalent mating system for most species . . . .

They acknowledge that this cannot be true of self-fertilizing
plants.

Our preceding discussion requires a comment on the
biological significance of the condition (4), which appears
in our examples of NRM systems in which, nevertheless,
HWE is maintained. This condition on the mating matrix
is required for the stationarity of genotypic frequencies over
time, whether these frequencies are in HWP or not. It always
holds under RM, in which case it is just an expression of

HWP. Experimental verification of (4) and HWE would
therefore not preclude RM.

The biological issue is, rather: how, under HWE of ob-
served genotypes (established, say, by the test in our previ-
ous section), can one test for NRM? Given the HWP, so (7)
is satisfied, and observed mating frequencies fij, a test could
be devised for the null hypothesis H0: fij = fifj, i,j = 0,1,2,
that is, that mating is random. If on the basis of the ob-
served mating frequencies, H0 is rejected, we would have
evidence in support of HWE being maintained by NRM. In
the event, we would expect both (4) and (7) to hold.

The key issue here is the availability of experimental
observations on mating frequencies, fij.

Some small progress in this practical direction has been
made.

Leach and Mayo (2005) point out that in some forest
trees there appears to be quite a high level of inbreeding,
which nonetheless might yield HWE. Neel et al. (1964) and
Fraser et al. (1969) have discussed the remarkable pres-
ence of HWE in situations where populations contravene
the usual postulates under which equilibrium might be ex-
pected.

Sebro et al. (2010) acknowledge right from the start that
a population that they are studying may be structured. They
set up the following model: ‘Consider a stratified popula-
tion comprised of G separate subpopulations, where G , as
well as the actual members of each subpopulation, are un-
known . . . . We assume that there is random mating and
HWE within each subpopulation, but no mating between
subpopulations’ (p. 674). The first part of the title of their
paper is ‘Testing for non-random mating’. Having found ev-
idence of ‘ancestrally related positive assortative mating’, the
final sentence of the abstract says: ‘This non-random mat-
ing likely affects genetic structure seen more generally in
the North American population of European descent today,
and decreases the rate of decay of linkage disequilibrium for
ancestrally informative markers’ (p. 674).

The analysis of Sebro et al. requires that they calculate the
mating-type frequencies [our italics] in the presence of pop-
ulation stratification. They develop a method and suggest
that it is simpler than that of Yasuda (1968). Stark (2008)
gives mating frequencies for a model that has similar charac-
teristics to that of Sebro et al., but like Yasuda’s, involves third
and fourth moments of the distribution of gene frequencies
over the structured population, so is rather complicated.
The lesson from the paper of Sebro et al. is that researchers
may have to ‘bite the bullet’ of population stratification
if they want to make realistic analyses. Differences in gene
frequencies, sometimes quite large, over ethnic groups, have
been reported many times.

Closing Remarks
Identities (4) and (7) have been shown to be crucial to the
understanding of HWE. Experience has shown that HWP
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are a satisfactory basis for interpretation in many situa-
tions, but there is less justification for appeal to RM as an
explanation.

Various experts have written more generally about HW.
Weir (1996) states ‘neutrality is one of the sufficient con-
ditions for HWE, but not a necessary condition. Li (1988)
showed that HWE proportions can also be found for vari-
ous non-random mating situations’ (p. 276). He does not
pursue this further.

What seems to us as nearly a metaphor for our intentions
is from Orr (1966):

We evolutionists have a long track record of prefer-
ring fancy over simple theories, dating from our infa-
mous reluctance to surrender GALTON in the face of
Mendelism. Surely something as déclassé as 3:1 ratios
was not to be preferred to GALTON’s sophisticated and
seductive mathematics. (p. 1333)

But we leave the last word to Mayo (2008):

Li (1988), followed and elaborated by Stark (2006a,
2006b), showed that panmixia is not the only breed-
ing structure that can yield HW proportions, so that
panmixia is a sufficient but not a necessary condition
for HWE. However, no natural population is known
to manifest the other possible breeding structures so
that it appears unlikely that they need to be consid-
ered in data collection and analysis. HWE continues
to be an important starting point for any population
analysis. This will indeed be true even when what is
being analyzed is something that must initially disrupt
the regularity of the meiotic processes that provide the
basis for HWE . . . . (p. 253)

We leave it to the reader to judge.
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