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Formation regimes of vortex rings in thermals
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The development of laminar thermals and the formation of buoyant vortex rings
in thermals are studied by performing direct numerical simulations. The formation
number of buoyant vortex rings in thermals is also analysed. We find that the
development of thermals can be classified into three modes: the starting vortex ring
dominated mode; the mode with the occurrence of a secondary vortex ring with
breakup; and the mode with the occurrence of a secondary vortex ring without
breakup. For the latter two modes, owing to the stretching of the thermal cap, the
fluid at the leading edge rolls up, and a secondary vortex ring occurs, grows and
replaces the starting vortex ring. The boundary of non-occurrence and occurrence of
the secondary vortex ring is determined in a space of Richardson number (Ri)
and injection duration (ti). The final mode occurs only in a small region. For
Ri < 0.6, the secondary vortex ring does not occur even for very long injection
duration. The effective Rayleigh number (Ram) is proposed to accommodate the
cases Ri > 0.7 and ti < 5, with Ram larger than the critical value (approximates to
1.95× 105) for the occurrence of the secondary vortex ring. The formation number of
buoyant vortex rings in thermals is beyond the universal formation number of 4 for
non-buoyant vortex rings, and increases with the increase of the Richardson number
and the injection duration. The switching between the thermal modes by changing
the Richardson number and the injection duration has no significant effect on the
value of the formation number.

Key words: plumes/thermals, vortex dynamics

1. Introduction
In convective heat transfer problems, the most fundamental phenomenon is the

motion of buoyant convection from point sources in a stationary fluid. The buoyant
convection from point sources has been classified into two main groups: plumes
(continuous injection of heat) and thermals (release of heat over a short period of
time). Thermals are important in practical applications such as heat transfer from
a heated flat plate to a fluid (Sparrow, Husar & Goldstein 1970), convection in ice
formation (Tankin & Farhadien 1971) and convection in gas absorption in pools of
liquid (Thompson 1970).

† Email addresses for correspondence: xpzhou08@hust.edu.cn, yangyangxu91@hust.edu.cn
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The dynamics of turbulent thermals occurring for large Rayleigh numbers has
been previously studied (Taylor 1946; Batchelor 1954). Laminar thermals for small
Rayleigh numbers have also attracted much attention from researchers since the 1970s.
Shlien (1976), based on experiments, divided the formation of laminar thermals into
six stages: heat conduction stage, constant acceleration stage, plume stage, transition to
thermal behaviour, similarity stage and diffusion stage. The laminar thermals can form
isolated buoyant vortex rings during their development and grow into mushroom-like
structures. Shlien & Brosh (1979) experimentally studied the distributions of velocity
and vorticity of laminar thermals and found that the ratio of the circulation to the
buoyancy force is constant. Shlien & Thompson (1975) studied the shape evolution of
laminar thermal caps, and the geometric similarity was analysed. The thermal vortex
ring was found to be very stable, and its general character was not affected by small
disturbances to the ambient fluid.

The vortex ring has been considered as a basic element of many flows such as
the flows generated through jets, plume flows and thermal flows. The formation of
vortex rings has been studied widely. Gharib, Rambod & Shariff (1998) experimentally
studied the formation of vortex rings generated through impulsively started jets. They
observed two distinct states, each being dependent on the formation time (defined as
the stroke ratio). For a short formation time, almost all of the discharged fluid was
finally absorbed into the vortex ring leaving no trailing jet. For a long formation time,
the formed leading vortex ring was finally disconnected from the following trailing
jet when the pinch-off process was complete. The formation number was defined as
the critical formation time corresponding to the transition between the two states and
was observed to be approximately 4. The formation number was also proposed to be
determined by determining the completion of the pinch-off process. Mohseni & Gharib
(1998) developed a theoretical model to predict the formation number.

This formation number of approximately 4 is universal for the majority of vortex
rings. However, some changes in flow conditions can lead to different values of
the formation number. Mohseni, Ran & Colonius (2001) proposed applying a
non-conservative force of long duration to delay of vortex ring pinch-off. Dabiri
& Gharib (2004) used an imposed bulk counterflow for delay of vortex ring
pinch-off by approximately 10 %. Dabiri & Gharib (2005) found that the formation
number could increase to approximately 8, if the nozzle exit diameter is changed
instantaneously during the formation of the vortex ring. Krueger, Dabiri & Gharib
(2006) experimentally studied the formation number of vortex rings formed in uniform
background co-flow. When the velocity of the co-flow is higher than 50 % of the jet
velocity, the vortex ring occurs very early, almost as soon as the co-flow is initiated.

Buoyancy produced by the density difference between the vortex ring and the
ambient fluid can change the flow dynamics and influence the vortex ring pinch-off
and the formation number. The vorticity in the core of buoyant vortex rings is
comprised of the vorticity relevant to the vortices rolled up into the core and the
baroclinic vorticity generated owing to the density gradients (Bond & Johari 2010).
Shusser & Gharib (2000) developed a model for vortex ring formation in a buoyant
starting plume, and based on Lundgren, Yao & Mansour’s (1992) time scale, the
formation number reached 4.73. Pottebaum & Gharib (2004) experimentally studied
the pinch-off process in a buoyant starting plume and the formation number was
between 4.4 and 4.9. They suggested that pinch-off is a general component of the
vortex ring formation process for various generation mechanisms. Wang et al. (2009)
performed large eddy simulations to reproduce buoyant starting jets in conditions
ranging from pure jet to lazy plume. They found that the buoyant formation number
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of a buoyant starting jet increases with larger Richardson number, and is beyond
8 for Ri = 0.5 and Re = 2500. While, for negatively buoyant starting jets, the
formation number is lowered with the increase of negative buoyancy (Marugán-Cruz,
Rodríguez-Rodríguez & Martínez-Bazán 2013; Gao & Yu 2016).

Bond & Johari (2005) experimentally investigated the effect of the aspect ratios of
cylindrical tubes ranging from 2 to 8 on the thermal development for different values
of the initial Richardson number from 0.6 to 1.6. They observed an interesting flow
phenomenon for cylindrical tubes of aspect ratio 6 that the fluid at the leading edge
rolled up into a secondary ring-like structure and the starting vortex was effectively
replaced. The occurring regimes and conditions of the interesting phenomenon are still
unknown. No further research on the phenomenon has been reported. An interesting
question is whether the new vortex structure leads to the changes of the vortex ring
pinch-off and the formation number. In this paper, three-dimensional direct numerical
simulations of laminar thermals are performed for different Richardson numbers and
different injection durations, the formation regimes and conditions of the vortex rings
and the formation number are studied. Finally, the effects of the Richardson number
and the injection duration on the formation number are analysed.

2. Methods
We perform direct numerical simulations of laminar thermals reproducing the

piston–cylinder arrangement. Figure 1 shows a sketch of the computational domain
of the thermal flow and the boundary conditions. Thermal fluid with a temperature
T0 flows at a velocity U0 through a small circular orifice with the diameter D into
a homogeneous and stationary ambient fluid with the temperature Tamb over a short
period of time t∗i . The use of the three-dimensional model is to observe whether
the thermals remain axisymmetric or not before and during the pinch-off process of
vortex rings in all cases.

We non-dimensionalize all the parameters as follows:

x= x∗/D, y= y∗/D, z= z∗/D, t= t∗U0/D, p= p∗/(ρU2
0),

u= u∗/U0, v = v∗/U0, w=w∗/U0, θ = (T∗ − Tamb)/1T,

}
(2.1)

where (u, v, w) is the dimensionless velocity in Cartesian coordinates (x, y, z), p is
the dimensionless pressure, t is the dimensionless time and θ is the dimensionless
temperature. The temperature difference between the injected thermal fluid and the
ambient fluid is 1T = T0 − Tamb.

The fluid flow and heat transfer for the thermals are described using the three-
dimensional incompressible Navier–Stokes equations in Cartesian coordinates with the
Boussinesq approximation, which can be expressed in the dimensionless form of

∇ · u= 0, (2.2)
∂u
∂t
+ u · ∇u=−∇p+

1
Re
∇

2u+ Riθey, (2.3)

∂θ

∂t
+ u · θ =

1
Pr · Re

∇
2θ, (2.4)

where u= (ux, uy, uz) and ey is the unit vector (0,1,0). The dimensionless parameters
are defined as follows: Reynolds number Re=U0D/ν, Prandtl number Pr= ν/α and
Richardson number Ri = gβD1T/U2

0 , where β is the volumetric thermal expansion
coefficient of the fluid.
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FIGURE 1. Sketch of the computational domain of a thermal flow and the boundary
conditions.

The velocity in the y direction and the temperature at the circular orifice are
considered to be uniform. The forcing conditions are written as

u= 0, v = 1, w= 0, θ = 1, t 6 ti, x2
+ z2 < 0.25,

u= 0, v = 0, w= 0, θ = 0, t> ti, x2
+ z2 < 0.25,

u= 0, v = 0, w= 0, θ = 0, x2
+ z2 > 0.25,

 (2.5)

where ti is the dimensionless injection duration of the thermal fluid given by
ti = t∗i U0/D. No-slip velocity boundary conditions are employed at the sides of
the computational domain

u= 0, v = 0, w= 0, θ = 0. (2.6a−d)

The boundary conditions at the exit at y= 60 are

∂u
∂y
= 0,

∂v

∂y
= 0,

∂w
∂y
= 0,

∂θ

∂y
= 0. (2.7a−d)

The above equations and the initial and boundary conditions are solved with the
open-source code Gerris, which implements a multilevel Poisson solver and adaptive
quad/octree spatial discretization using a finite-volume approach (Popinet 2003, 2009).
A second-order accurate upwind scheme is utilized to discretize the advection terms.
The Crank–Nicholson discretization of the viscous terms is implemented, which
is formally second-order accurate and unconditionally stable (Popinet 2009). The
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dynamic adaptive refinement of the mesh is conducted according to different physical
criteria.

In this paper, two refinement criteria are simultaneously used: one criterion based
on the local value of the vorticity, and another based on the gradient of temperature.
Each cell without any child cells will be refined once the vorticity criterion

|∇× u|∆
max(|u|)

> δ1, (2.8)

or the temperature gradient criterion

|∇θ |∆> δ2, (2.9)

is satisfied, where ∆ is the dimensionless side length of the cell, and the thresholds
δ1 and δ2 are set to 0.01 and 0.001 respectively in this paper.

In Gerris, the mesh refinement process starts from the initial root cells, and the
refinement level of an initial root cell is 0. To refine once is to divide each cell into
four child cells in two dimensions or eight in three dimensions, and simultaneously
the refinement level of the child cells is equal to that of their parent cell plus 1. Keep
refining the cell tree until the refinement level of the minimum cell is equal to the
maximum Lmax. We specify the dimensionless side length of an initial root cell as
20, and set the minimum refinement level (implemented regardless of the refinement
criteria) to 6. The grid independence analysis is performed for different maximum
refinement levels of Lmax= 9, 10 and 11 for the thermals with Ri= 4 and ti= 2.5. The
results for Lmax= 10 are very close to those for Lmax= 11, so the maximum refinement
level of Lmax = 10 is chosen in the following simulations. In this case, the minimum
dimensionless size of the grids is equal to 20/210 (≈0.02).

The number of grids and the computational cost increase greatly with time due to
the implementation of the adaptive mesh refinement method. For example, for Ri= 1.5
and ti= 3, the total numbers of grid points are 0.817 million at t= 0, 4.094 million at
t= 7 and 5.783 million at t= 9, respectively. Twelve cores are used for computation
in every case. The CPU times (on a single CPU 2.3 GHz 64 bit Intel Xeon processor)
are 13.3 h from t= 0 to t= 7, and 21.4 CPU hours from t= 0 to t= 9, respectively.
Figure 2 is an exploded view of the temperature front of θ = 0.05 at t= 4 for Ri= 2
and ti = 2. It is seen from this figure that our findings do not suffer from spurious
numerical dispersion and the ringing effects along fine interfaces.

3. Development of thermal cap and buoyant vortex rings
In this paper, the Richardson number and the injection duration are changed and

the Reynolds number and the Prandtl number are kept constant: Re = 100 and
Pr= 7. The computational cases are presented in table 1. We run our simulations in
non-dimensional coordinates. A ballpark estimate of some of the physical parameters
for Ri = 1 is presented for comparison with the experimental parameters based on
an assumption of the use of water as the experimental fluid: D = 0.95 cm and
U0 = 1.969 cm s−1.

Figure 3 shows the shape evolution of the thermal caps for t6 6 for the two typical
cases: case I (Ri= 1.5, ti= 2) and case II (Ri= 1.5, ti= 3). In this figure, the thermal
cap is formed after the fluid is injected inward and then stretches in the direction of
flow due to the buoyant acceleration. Since the injection duration for case II is longer,
the cap for case II is obviously longer than that for case I at t= 6, but the diameters
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z
y

x

FIGURE 2. An exploded view of the temperature front of θ = 0.05 at t = 4 for Ri = 2
and ti = 2.

Ri ti Ri ti

0.6 6, 7, 8, 9, 10 2.5 2
0.7 6, 7, 8, 9, 10 3 1, 1.25, 1.5, 1.75, 2
0.8 4, 5, 6, 7 3.5 2
0.85 7 4 0.8, 1, 1.25, 1.5, 2
0.88 6 5 0.6, 0.8, 1, 1.1
1 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6 6 0.4, 0.6, 0.8, 1
1.5 2, 2.25, 2.5, 3 7 0.3, 0.5, 0.7, 0.9
2 1.5, 1.75, 2, 2.25 8 0.2, 0.5, 0.7, 0.8

TABLE 1. Richardson numbers and fluid injection durations for the computational cases.

of the caps for the two cases are nearly equal. This indicates that the thermal cap can
be altered by the injection duration when developing over enough time.

For longer injection duration, the quantity of heat of the thermal is larger, and the
length-to-diameter ratio of the cap is larger, meaning it is easier to cause a change of
the thermal cap structure when the cap continues stretching. As shown in figure 4(a),
at t= 7 for case II, the rim of the cap starts to bend inward. At t=8.5, the fluid at the
leading edge rolls up into a secondary vortex ring structure and the starting vortex ring
is effectively replaced. The observation agrees well with the phenomenon observed in
Bond & Johari’s (2005) experiments. In figure 4(a), only a part of the thermal fluid in
the starting vortex rolls up into the secondary vortex ring structure and, at t= 15, the
starting vortex has been broken up into two parts. Larger Richardson number causes
larger buoyancy, which also makes it easier to induce a change of the thermal cap
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2.5
t = 2 t = 3 t = 4 t = 5 t = 6

0

-2.5

x d2

0(b) 1

2.5
t = 2 t = 3 t = 4 t = 5 t = 6

0

-2.5

x d1

0(a) 1

FIGURE 3. Shape evolution of the thermal caps represented by the temperature contour
plots in the longitudinal section of z = 0 for t 6 6 for two typical cases: (a) Ri = 1.5,
ti = 2; (b) Ri= 1.5, ti = 3.

structure. A typical case III (Ri= 2, ti = 2) with larger Richardson number than case
I is shown in figure 4(b). The overall character of the behaviour of the thermal cap
is similar to the case II, but one apparent difference is that nearly all thermal fluid in
the starting vortex rolls up into the secondary vortex ring structure.

During the development of the thermal caps, a longer injection duration and a larger
Richardson number lead to two new modes of thermals: the mode with the occurrence
of the secondary vortex ring without breakup, and the mode with the occurrence of
the secondary vortex ring with breakup. Case I is a case of the starting vortex ring
dominated mode. The features and differences of the three modes will be discussed
in detail using the vorticity isolines during the development of thermals over a very
long time.

Figure 5 illustrates the growth of buoyant vortex rings and eventual pinch-off for
the three typical thermal modes. As shown in figure 5(a), for the typical case I,
the vortical structures at t = 6, 8, 12, 18 and 24 are axisymmetric. At t = 12, the
buoyant vortex ring is clearly separated from the trailing shear layer, implying that
the vortex ring pinch-off has been completed. With further development, the diameter
of pinched off vortex ring becomes larger, and the vorticity of trailing shear layer
becomes smaller due to the diffusion effect.

Compared to the typical case I, the vortical structure for the typical case III is more
slender, as shown in figure 5(b). At t= 8, a new vortex structure is formed. The new
vortex as the leading vortex gradually absorbs the circulation from the starting vortex.
With the vortex rising, the starting vortex is engulfed by the leading vortex at t= 12
and the resulting vortical structure becomes stable. The pinch-off of the buoyant vortex
ring has been completed at t= 18. Compared to case I, the pinch-off is found to occur
later. The delay of pinch-off is possibly attributed to the reconstruction of the vortical
structure.

The overall character of the restructuring behaviour of the vortical structure for the
typical case II is similar to the typical case III. Different from case III, the vortical
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20(b)

y

15

10

5

0
t = 7 t = 7.5 t = 8 t = 8.5 t = 9 t = 15

0 1

20(a)

y

15

10

5

0
t = 7 t = 7.5 t = 8 t = 8.5 t = 9 t = 15

0 1

Break up

Rolling-up
Rolling-up

FIGURE 4. Shape evolution of the thermal caps represented by the temperature contour
plots for t> 7 for two typical cases: (a) Ri= 1.5, ti= 3; (b) Ri= 2, ti= 2. The temperature
contour plots in the longitudinal section of z = 0 are at t = 7, 7.5, 8, 8.5, 9 and 15 in
sequence.

structure has been broken up into two parts, and the vortex ring pinch-off has been
completed, at t = 24 as shown in figure 5(c). The distance between the core of the
new vortex and the core of the starting vortex is larger. This determines that, with the
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FIGURE 5. Vorticity isolines in the longitudinal section of z= 0 at t= 6, 8, 12, 18 and 24
for the three typical thermal cap modes. (a) Ri= 1.5, ti= 2; (b) Ri= 2, ti= 2; (c) Ri= 1.5,
ti = 3. The vorticities of the isolines are respectively equal to ±80 %, ±60 %, ±40 %,
±20 % and ±4 % of the maximum vorticity in the flow field.

thermal development, only a part of the vorticity of the starting vortex is absorbed
by the leading vortex and the remaining vorticity is disconnected from the vorticity
field of the pinched off vortex ring. The pinch-off of the buoyant vortex ring is
delayed compared to the typical cases I and III, because it takes the longest time to
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101100

Ri

101

100

10-1

ti

FIGURE 6. Boundary between non-occurrence and occurrence of the secondary vortex ring
in a (Ri, ti) space for Re = 100 and Pr = 7. Red squares represent the non-occurrence
of the secondary vortex ring (NSVR), and the blue line white triangles represent the
occurrence of the secondary vortex ring (OSVR) without breakup and green triangles
represent the OSVR with breakup. Black solid line is the boundary line of NSVR and
OSVR. The other seven computational cases in table 1 used in figure 8 are a little far
from the boundary and therefore are not included here.

complete the complex reconstruction process of the vortical structure. With the further
development of the thermal, the remaining vorticity also becomes disconnected from
the trailing shear layer below. Analysis of instability is beyond the scope of this
paper.

As previously mentioned, the structure of the thermal cap is related to the
Richardson number Ri and the injection duration ti. The development modes of
the thermal cap are effectively determined by these two parameters. The boundary
of non-occurrence and occurrence of the secondary vortex ring is determined in a
(Ri, ti) space and shown in figure 6. The region for the regime with the occurrence
of the secondary vortex ring without breakup is very narrow, which is considered
as a transition state. For Ri < 0.6, even when ti increases to 10, the thermals are
still dominated by the starting vortex ring. This is reasonable, because thermal flow
with very small Richardson number and very long injection duration approximates
a starting plume and the cap structure is stable. The behaviour of laminar thermals
can be described by the effective Rayleigh number: Ram = gβQ/(ρcαν), where the
total heat injected is given by Q = cρU0t∗i 1TπD2/4, where c is the specific heat
capacity (Shlien 1976). The effective Rayleigh number can be further written as:
Ram = (π/4)Re2PrRiti. The effective Rayleigh number may be considered as a ratio
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of the buoyancy effects to viscous and diffusive effects (Shlien 1976). Larger effective
Rayleigh number than the critical value can lead to the occurrence of the secondary
vortex ring. The critical effective Rayleigh number approximating to 1.95 × 105,
corresponding to the oblique straight line segment of the boundary in figure 6 for the
occurrence of the secondary vortex ring, is only suitable for Ri> 0.7 and ti < 5.

4. Determination of formation number of buoyant vortex rings
The circulation of a vortex ring of thermals originates from two sources, i.e. the

initial circulation Γ0 and the buoyancy-induced circulation ΓB. The characteristic time
scale required for a buoyant jet to travel a distance of one diameter from an orifice
or nozzle in combination of the initial momentum and buoyancy fluxes (Wang et al.
2009) is used here:

t̂=
D√

U2
0 + 2gD1ρ/ρ

, (4.1)

where 1ρ is the density difference between the ambient fluid and the vortex ring given
by 1ρ = ρamb − ρ. For the Boussinesq approximation, the relationship is obtained as
1ρ/ρ = β1T . In this case, the above equation can be rewritten as

t̂=
D/U0
√

1+ 2Ri
. (4.2)

The formation time is obtained as (Wang et al. 2009)

τ = t∗/t̂= t ·
√

1+ 2Ri. (4.3)

We estimate the formation number of the vortex ring of thermals by using Gharib
et al.’s (1998) method based on (4.3). The formation number for the vortex ring of
thermals is determined as F = τ(Γt = Γvr,p), where the formation time corresponds
to the value of the total circulation Γt, which is equal to the vortex ring circulation
Γvr,p when the pinch-off ends. The vortex ring circulation based on the completion
of pinch-off of the head vortex ring is first determined, and then the formation time
corresponding to the total circulation being equal to the vortex ring circulation is
obtained as the formation number. We take the typical case III as an example to
determine the formation number of 6, as shown in figure 7(a). This formation number
is beyond the universal formation number of 4 for non-buoyant vortex rings. This is
attributed to the buoyant effect. Identification of the boundary of the vortex ring has
a certain influence on the total circulation, the vortex circulation and the vortex ring
pinch-off time. The cutoff percentage determines the boundary of the vortex ring. The
increase of the cutoff percentage leads to an increase of circulation of the pinched off
vortex ring and a small increase of the formation number, as shown in figure 7(b).

In order to illustrate the effect of the thermal modes on the formation number, we
plot the pinched off vortex ring circulations and the formation numbers for different
values of injection duration and Richardson number, as shown in figure 8. Longer
injection duration can lead to increases of Γ0 and ΓB, and increases of the pinched
off vortex ring circulation and the formation number (figure 8a). Larger Richardson
number causes an increase of buoyancy-induced circulation ΓB, which results in
larger pinched off vortex ring circulation and a small increase of the formation
number (figure 8b). As shown in figure 6, when ti is beyond the boundary value
between 3.25 and 3.5 for Ri= 1, or when Ri is beyond the boundary value between
1.5 and 2 for ti = 2, the secondary vortex ring will occur for the thermal. However,
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FIGURE 7. (a) Evolution of the total circulation and the vortex circulation and (b) the
circulation of the pinched off vortex ring and the formation number (F) for different cutoff
percentages (Ri= 2, ti = 2). In (a), the formation time for pinch-off is τ = 33.5.

7654
ti

321

10(a)

8

6

4

2

Vo
rte

x 
rin

g 
ci

rc
ul

at
io

n 8

6

4

432
Ri

1

10(b)

8

6

4

2

8

6

4

Fo
rm

at
io

n 
nu

m
be

r
FIGURE 8. Effects of (a) the injection duration and (b) the Richardson number on the
pinched off vortex ring circulation and the formation number. In (a), the Richardson
number is kept constant: Ri= 1, the injection duration varies from 2 to 6 at an interval
of 0.5 and the formation number increases from 5.4 to 7.8. In (b), the injection duration
is kept constant: ti = 2, the Richardson number varies from 1 to 4 at an interval of 0.5
and the formation number increases from 5.4 to 6.4.

the switching of the thermal modes is not found from figure 8 to cause an abrupt
change of the formation number. This is because the cessation of absorption of
the fluid of the trailing jet into the head vortex ring is mainly determined by the
circulation requirement of the head vortex ring, which is nearly independent of the
thermal mode and the trailing jet.

5. Conclusions
In this paper, the formation regimes and flow stability of vortex rings in thermals

are studied numerically for Re= 100 and Pr= 7. The formation number of the vortex
rings in thermals is then analysed. The following conclusions are drawn.
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(a) Three thermal modes are observed: the starting vortex ring dominated mode, the
mode with the occurrence of the secondary vortex ring with breakup and the mode
with the occurrence of the secondary vortex ring without breakup. The thermal caps
in all the three modes stretch in the flow direction due to the buoyant acceleration.
When the cap is stretched long enough, the fluid at the leading edge will roll up
into the secondary vortex ring structure and the cap is restructured. If only a part of
vorticity of the starting vortex is absorbed by the leading vortex (i.e. the new vortex),
the rolling-up will be accompanied by the breakup of the vortical structure into two
parts. Or else, the starting vortex will be engulfed by the leading vortex. Whether the
vortical structure breaks up may be determined by the distance between the core of
new vortex and the core of starting vortex.

(b) The boundary of non-occurrence and occurrence of the secondary vortex ring in
a (Ri, ti) space is determined. The region for the occurrence of the secondary vortex
ring without breakup is very narrow. For Ri< 0.6, the secondary vortex ring does not
occur even for very long injection duration. The effective Rayleigh number (Ram) is
proposed to accommodate the cases Ri > 0.7 and ti < 5, with the effective Rayleigh
number larger than the critical value (approximates to 1.95× 105) for the occurrence
of the secondary vortex ring.

(c) In the effect of the reconstruction of the vortical structure due to the occurrence
of the secondary vortex ring, the vortex ring pinch-off is delayed. The delay of vortex
ring pinch-off is the most serious for the mode with the occurrence of the secondary
vortex ring with breakup.

(d) The formation number of buoyant vortex rings is beyond the universal formation
number of 4 for non-buoyant vortex rings. The formation number increases rapidly
with longer injection duration and increases slowly with larger Richardson number.
Although changing the formation process of the vortex rings, the switching of the
thermal modes due to the occurrence of the secondary vortex ring has little influence
on the formation number.
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