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Abstract

In this paper, an orthogonal crossover artificial bee colony (OCABC) algorithm based on
orthogonal experimental design is presented and applied to infer the marine atmospheric
duct using the refractivity from clutter technique, and the radar sea clutter power is simulated
by the commonly used parabolic equation method. In order to test the accuracy of the
OCABC algorithm, the measured data and the simulated clutter power with different noise
levels are, respectively, utilized to estimate the evaporation duct and surface duct. The
estimation results obtained by the proposed algorithm are also compared with those of the
comprehensive learning particle swarm optimizer and the artificial bee colony algorithm com-
bined with opposition-based learning and global best search equation. The comparison results
demonstrate that the performance of proposed algorithm is better than those of the compared
algorithms for the marine atmospheric duct estimation.

Introduction

The lower atmospheric duct commonly encountered in marine boundary layer is an anomal-
ous electromagnetic environment, which is caused by small changes of the index of refraction
due to the sharp variation in the vertical atmospheric temperature and humidity above the sea
surface. Hence, the performance of the radar system and the communication system that are
designed to operate under standard atmospheric conditions with a typical slope of
0.118 M-units/s work in the non-standard environment may be greatly changed, such as
the maximum operation range, creation of radar holes where the radar is practically blind,
and strengthened sea surface clutter, etc [1, 2]. Clearly, accurate prediction of atmospheric
environment is crucial for evaluating the performance of both the radar and communication
systems in the marine environment.

Since the radar sea clutter is significantly changed by the atmospheric duct, in turn, radar
sea clutter contains useful information on atmospheric environment, which makes it possible
to determine refractivity from clutter (RFC) [3–5]. The RFC technique is widely used in the
field of atmospheric duct estimation, which has the advantages of simple devices and low
cost. Obviously, atmosphere duct estimation using RFC technique is an inverse problem,
and the optimization algorithm can exactly find the best refractivity profile among the candi-
date profiles according to the objective function defined by the observed and simulated clutter
power. The smaller the objective function value, the better match gets. The best refractivity
profile corresponds to the minimum objective function value, and vice versa.

Gerstoft et al. estimated the atmospheric refractivity from radar sea clutter observations and
provide the specific steps involved in RFC [4]. Karimian et al. provided the latest developments
in RFC and the area that needs further investigation [5]. Yardim et al. applied a Markov chain
Monte Carlo samplers to the estimation of the refractivity profile using radar clutter [6].
Vasudevan et al. utilized the recursive Bayesian estimation framework in the RFC [7].
Douvenot et al. adopted the least square support vector machine method to estimate the
refractivity profile of the surface duct based on a pregenerated database [8]. Yardim et al.
tracked the lower atmospheric refractivity with RFC [1]. Wang et al. employed the particle
swarm optimization algorithm to retrieve the evaporation duct height [9]. Zhao et al. intro-
duced the simulated annealing algorithm to study the atmospheric duct estimation problem
[10]. Zhang et al. introduced a four-parameter modified refractivity profile model for the evap-
oration duct estimation with RFC [11]. The artificial bee colony (ABC) algorithm [12, 13]
inspired by the intelligent foraging behavior of honey bee swarm is one of the most recently
proposed bio-inspired swarm intelligence algorithm, and it is applied to the electromagnetic
optimization problem [13] and atmospheric duct estimation [14, 15]. Yang employed the
ABC to the atmospheric duct estimation, and the results showed that the performance of
ABC is better than particle swarm optimizer according to the comparative analysis results
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[14]. Yang et al. proposed the ABC algorithm combined with
opposition-based learning and global best search equation
(OGABC) to improve the problems of the slow convergence
speed and sinking into local optima appear in the duct estimation
problem, and investigation results indicate that the OGABC
achieves good performance compared with the ABC and the
modified invasive weed optimization [15].

Although there are certain improvements on the ABC, there is
still room for seeking a balance between the exploration and
exploitation. This is because that both exploration and exploit-
ation are necessary for evolutionary algorithms, but the two
aspects contradict to each other [16]. Owing to the search equa-
tion in ABC is good at exploration but poor at exploitation, an
orthogonal crossover artificial bee colony (OCABC) algorithm
based on orthogonal experimental design (OED) is proposed by
incorporating the orthogonal crossover (OC) into ABC, which
makes use of the OC to improve the search ability. In addition,
a novel transmission vector, which will take part in the
OCABC, is given to take the advantage of the information of glo-
bal best solution to generate new candidate solutions with the
purpose of enhancing the poor exploitation in ABC.

The forward problem and inverse problem model

The parameterized environmental model

In this paper, we focus on the inversion of the evaporation duct
and surface duct estimation problem, and their refractivity pro-
files are shown in Fig. 1. Owing to the potential drawback of
one parameter log-linear profile in describing the evaporation
duct, the following four-parameter model is adopted [11]

M(z) = M0 + kz z ≤ z joint, (1)

M(z) = M0 + (k− 0.125r1)z joint+

0.125r1z + 0.125r1d ln
z joint + z0
z + z0

( )
z joint < z < d,

(2)

M(z) =M0 + (k− 0.125r1)z joint + 0.125(r1 − r2)d
+ 0.125r2z + 0.125d ln

(z joint + z0)r1
(d + z0)r1−r2 · (z + z0)r2

[ ]
z ≥ d,

(3)

where M0 is the base refractivity, k is the slope of the line, z is the
height above the sea surface, d is the evaporation duct height, z0 is
the roughness factor usually taken as 0.00015, zjoint represents the
specific height, ρ1 and ρ2 are the adjustment factors for the profile
less and greater than d, respectively. It is noted that ΔM represents
the evaporation duct strength, which is related to k by implicit
equation (4)

DM = (0.125r1 − k) d
1− 8k/r1

− z0

( )

+ 0.125r1d ln[(d + z0)(1− 8k/r1)/e/d].
(4)

Once equation (4) is solved for k, the zjoint can be easily
obtained by equation (5)

z joint = d
1− 8k/r1

− z0, k ≤ 0. (5)

Obviously, the four-parameter evaporation duct profile can be
obtained by equations (1)–(5) and determined by the parameter
vector m = (d,DM, r1, r2).

The surface duct can be represented by the four-parameter tri-
linear refractivity profile [1]

M(z) = M0+
c1z z , h1
c1h1 + c2(z − h1) h1 ≤ z ≤ h2
c1h1 + c2h2 + 0.118(z − h1 − h2) z . h2

⎧⎪⎨
⎪⎩ ,

(6)

where c1 and h1 are the slope and thickness of the base layer,
whereas c2 and h2 are the slope and thickness of the inversion
layer. The slope of the top layer is treated as a constant at 0.118
M-units/m. Similarly, the surface duct refractivity profile can be
described by the parameter vector m = (c1, c2, h1, h2).

The propagation model

The most commonly adopted method to calculate the over-the-
horizon propagation of electromagnetic wave in the atmospheric
duct is the split-step Fourier solution of parabolic equation due
to its stability and accuracy. If the initial field u(x0, z) is given,
the split-step Fourier solution is obtained by [17, 18]

u(x0 + Dx, z) = eik0DxM(m,z)10−6

F−1 e(iDx/2k0)p
2
F[u(x0, z)]

{ }
,

(7)

where k0 is the free-space wavenumber, M is the modified refrac-
tivity, m is the refractivity parameter vector used to describe the
refractivity profile of the atmospheric duct, p is the transform
variable, Δx is the distance interval, and F and F−1 are the
Fourier transform and inverse Fourier transform, respectively.

Correspondingly, the propagation loss L(x,m) and the radar
sea clutter power Pr

c(x,m) can be easily obtained by the following
equations [4, 8]

L(x,m) = 32.45+ 20 lg f

+ 20 lg x − 20 lg( ��
x

√
u(x, z)| |), (8)Fig. 1. The model of refractivity profile. (a) Four-parameter evaporation duct; (b) sur-

face duct.
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Pr
c(x,m) = −2L(x,m) + s◦ + 10 lg(x) + C, (9)

where f denotes the frequency in MHz, x is the propagation dis-
tance, u(x, z) represents the field distribution, σ° is the radar
cross-section, C is a constant.

The objective function

To estimate the parameter vector m, the following least squares
objective function is used [4]

fobj(m) = eTe, (10)

e=Pobs
c − Pr

c(m) −T̂, (11)

T̂=�Pobs
c − �Pr

c(m), (12)

where Pobs
c and Pr

c(m) stand for the observed and received clutter
power at different ranges, and the bar stands for the mean across
the elements.

Basic ABC algorithm

The ABC algorithm proposed by Karaboga and Basturk [12] is a
relatively new swarm optimization algorithm, which simulates the
foraging behavior of honey bee swarm. In ABC, a colony contains
three types of bees: employed bees, onlooker bees, and scouts. The
employed bees find the food sources and share the valuable infor-
mation with onlooker bees. The onlooker bees in the hive need to
choose the excellent food sources according to the information
gathered by the employed bees. A food source is abandoned by
the employed bee when its quality cannot be improved through
a predetermined condition, and the employed bee becomes a
scout. Then, the corresponding food source is randomly replaced
by a new food source in the vicinity of the hive.

In ABC, a food source position stands for a possible solution of
the optimization problem and the nectar amount of each food
source represents the corresponding fitness. In ABC, first half of
the colony is treated as the employed bees and the second half
is called the onlookers, and the number of the employed bees
or the onlookers is equal to the number of food source in the
colony.

In the initialization phase, ABC generates a randomly distrib-
uted initial population. Each initial solution Xi = [xi,1, xi,2,…, xi,D]
is given by

xi,j = xmin,j + rand(0, 1)(xmax,j − xmin,j), (13)

where i = 1, 2,…, SN, j = 1, 2,…,D, SN is the number of the solutions
and D is the dimension of the optimization problem; rand(0, 1)
represents a uniformly distributed random number in the range
(0, 1), xmin,j and xmax,j are the lower and upper bounds of the
jth dimension, respectively.

In the employed bee phase, a new candidate solution Vi is gen-
erated by the old one Xi according to the following equation

vi,j = xi,j + fi,j(xi,j − xk,j), (14)

where j∈ {1, 2, …, SN} and k∈ {1, 2, …, SN} are randomly cho-
sen indices and satisfy i≠ k, fi,j is a uniform random number in
the range (− 1, 1).

In the onlooker phase, the food source is selected according to
the probability value pi related to the employed bees

pi = fiti∑SN
j=1 fitj

, (15)

where fiti is the fitness value of the solution i. In addition, the cho-
sen food source position is updated by equation (14) to produce a
new candidate food source. A greedy selection method is utilized
to choose the better food source between the old and the new one
in the employed bee phase and the onlooker bee phase.

In the scout phase, if a food source cannot be improved further
through a predetermined parameter, called limit, it is abandoned
and should be replaced by a new food source using equation (13).
Then, the corresponding employed bee becomes a scout.

THE OCABC algorithm

The performance of evolutionary algorithms can be greatly
improved by the OC since OED may be a powerful tool to dis-
cover the useful information from each food source’s previous
search experiences and utilize the valuable information to find
an excellent candidate solution [19–23]. In the following, an
improved ABC named OCABC is proposed based on OED.

Orthogonal experimental design

The orthogonal array (OA) is the core in the OED. With the help
of an OA, the best combination may be obtained by testing a
small number of well-representative experimental cases. Let
LM(Q

N) stands for an OA with N factors and Q levels per factor,
and L represents the OA and M is the number of combinations of
levels. The estimation problem in this paper is a four-parameter
inverse problem, so the L9(3

4) OA [19–23] is suitable

L9(34) =

1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

In L9(3
4), there are four factors, three levels per factor and nine

combinations of levels. Each row in L9(3
4) denotes a combination

of levels, namely, a test. The OA in equation (16) has four col-
umns, meaning that it is suitable for the estimation problem
with at most four-parameter.

Orthogonal crossover

The OC is first introduced by Leung and Wang, and it works on
two parent solutions r = (r1, . . . , rD) and t = (t1, . . . , tD). Thus,
the corresponding solution range is defined by [20]

l = [min(r1, t1),min(r2, t2), . . . ,min(rD, tD)], (17)

International Journal of Microwave and Wireless Technologies 439

https://doi.org/10.1017/S1759078718000247 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078718000247


u = [max(r1, t1),max(r2, t2), . . . ,max(rD, tD)]. (18)

Evidently, the solution range for xi is [li, ui] = [min (ri, ti), max
(ri, ti)]. Now, we quantize the i

th dimension of (l, u) into Q levels

li,j = li + j− 1
Q− 1

(ui − li) j = 1, . . . ,Q. (19)

The solution range defined by r and t will have QD points after
quantization since each factor has Q possible values. Here, we
take the L9(3

4) OA mentioned above as an example to explain
the advantages of OED. Although it has 34 feasible solutions
after quantization, only nine high-quality representative points
that scattered uniformly over the solution range are tested to
reduce the amount of computation and choose the best
individual.

The OC operator based on OED is a powerful search tool,
which is employed to find a promising candidate solution by
combining the information of Xi and Ti. In this paper, the vector
Xi is randomly selected from the current population and Ti is a
transmission vector.

In order to enhance the poor exploitation ability of ABC and
make a balance between the exploration and exploitation ability, a
novel transmission vector Ti is constructed via the following
equation

Ti = Xbest + rand(0, 1) · (Xr1 − Xr2), (20)

where Xbest is the global best solution, the subscripts r1 and r2 are
different indices uniformly randomly selected from (1, SN) and
satisfy r1≠ r2≠ i. In equation (20), rand(0, 1) is used to add
more variation to the optimization process, and Xbest is employed
to improve the poor exploitation ability in ABC.

It should be noted that the computation cost will rapidly
increase from SN to SN × (M + 1) at the employed bee stage if
the OC operator is applied to each food source Xi. Hence, it is
unwise to perform the OC operator on each pair of Xi and Ti at
each generation. In this paper, the OC is executed five times at
each generation to reduce the computation cost and improve
the performance of the algorithm.

The procedures of OCABC

Since the search equation of ABC is good at exploration but poor
at exploitation, the improved ABC named OCABC algorithm
based on OC is proposed. The OC is used to discover the good
information from Xi and Ti to produce an excellent candidate
solution Vi, and the information of global best solution in the
transmission vector can strengthen the exploitation ability and
accelerate convergence. The main steps of OCABC are summar-
ized below:

Step 1 Set the parameters and initialize the population;
Step 2 Randomly choose a small number of indices from

(1, SN) to form a index vector o, where SN is the number of
food sources;

Step 3 At the employed bee stage
Step 3.1
If i is not equal to one of the elements in the index vector o
Step 3.1.1 Generate a candidate food source Vi by the search

equation (14) in ABC;
Else

Step 3.1.2 Generate a vector To(k) by equation (20) and a suit-
able LM(Q

N) OA;
Step 3.1.3 Perform the OC operator on To(k) and Xo(k) to pro-

duce M tested candidate food sources Zj(1≤ j≤M) according to
the OA generated in Step 3.1.2;

Step 3.1.4 Evaluate each of the tested candidate food source
Zj(1≤ j≤M) and find the best candidate food source Zb, namely,
the Vo(k);

Step 3.2 Select the better food source between Xi and Vo(k);
End
Step 4 At the onlooker bee stage
Step 4.1 Update the position of food sources;
Step 4.2 Select the better food source again.
Step 5 Memorize the best solution so far.
Step 6 At the scout stage
The food source is replaced by a new random solution when

the trial counter exceeds the limit.
Step 7 Repeat Step 2 to Step 6 until a terminating condition is

reached.

Results and discussion

In the following, the OCABC is applied to the atmospheric duct
estimation problem with the RFC technique, and the results of
OCABC are compared with those of the comprehensive learning
particle swarm optimizer (CLPSO) [24] and the OGABC [15].
Firstly, the measured data collected in East China Sea [9] are uti-
lized to test the accuracy of the OCABC. Especially, the most
common used one-parameter log-linear refractivity model is
replaced by the four-parameter one [11] owing to its potential
drawback in describing the evaporation duct environment.
That is to say, the four characteristic parameters in the vector
m = (d,DM, r1, r2) of evaporation duct need to be estimated.
The parameter settings for OCABC in the evaporation duct esti-
mation are presented as follows: the population size is 60, the
number of food sources is 30, the parameter limit is 25, the OC
is executed five times at each generation, the maximum number
of function evaluations (FEs) is 6000 in each run for a fair com-
parison, the L9(3

4) OA is adopted, and the estimated profile is
obtained with averagely 10 independent runs. In addition, the
radar system parameters are identical to Ref. [9].

Figure 2 shows the comparison of the estimated refractivity
profiles obtained by CLPSO, OGABC, and OCABC with the

Fig. 2. The comparison of the estimated refractivity profiles with the measured one.
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measured one. It can be observed from Fig. 2 that the estimation
profile obtained by the OCABC matches well with the measured
one compared with the CLPSO and OGABC.

Then, we apply the OCABC to the surface duct estimation
with the simulated radar clutter power obtained by the split-step
Fourier solution of parabolic equation to further test the stability
and accuracy. As you know, the surface duct is commonly repre-
sented by the four-parameter refractivity profile, namely, the four
characteristic parameters m = (c1, c2, h1, h2) of surface duct also
need to be estimated. The search range of surface duct is defined
by: 0≤ c1≤ 0.25, − 3.5≤ c2≤−1.0, 25.0≤ h1≤ 50.0, 10.0≤ h2≤

30.0. In simulations, the radar works at a frequency of 10 GHz,
antenna height of 7 m, power of 91.4 dBm, antenna gain of
52.8 dB, 600 m range bin, beam width of 0.7°, and HH polariza-
tion (Horizontal transmit and Horizontal receive). Besides, the
radar clutter power simulated by the profile vector
m = (0.13,−2.5, 40, 20) is treated as the observed radar clutter
power. The Gaussian noise with zero mean is taken into account
in the simulated radar clutter power to add the fluctuation to it,
and the standard deviation denotes the noise level. The most par-
ameter settings used in OCABC for the surface duct estimation
are the same as those given above except for the number of itera-
tions which is 120 and all the estimation results are obtained
based on 30 independent runs for each algorithm. Owing to the
execution times of OC is of crucial importance to the perform-
ance of OCABC. Thus, we will explain how to determine the exe-
cution times of OC in the following.

Figure 3 gives the comparison of the convergence progresses
with different execution times of OC in the case of without noise.
It can be seen that the convergence speed is significantly improved
with the increasing number of the execution times of OC, and the
difference of the convergence progresses between three and five
times is not clear. However, the convergence progress with five
times is slightly faster than that of the three times. For this reason,
the OC is executed five times at each generation.

To study the convergence performance of the proposed
OCABC, the convergence progresses of OCABC are compared
with those of the CLPSO and OGABC, and their convergence
progresses are plotted in Fig. 4. We can see from Fig. 4 that

Fig. 4. The comparison of the convergence progresses of CLPSO, OGABC, and OCABC regarding the iterations for the same noise level. (a) 0 dB; (b) 1 dB; (c) 2 dB;
(d) 3 dB.

Fig. 3. The convergence progresses with different execution times of OC.

International Journal of Microwave and Wireless Technologies 441

https://doi.org/10.1017/S1759078718000247 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078718000247


OCABC is noticeably faster than CLPSO and OGABC for any
noise level. In addition, the OCABC can reach the lowest or the
same mean minimum fitness value at a high convergence speed.

This may be due to the fact that the global best solution in the
transmission vector equation not only strengthen the exploitation
ability but also accelerate convergence, and the OC operator can

Fig. 5. The comparison of the convergence curves of CLPSO, OGABC, and OCABC regarding the function evaluations with the same noise level. (a) 0 dB; (b) 1 dB; (c)
2 dB; (d) 3 dB.

Fig. 6. The comparison of the histograms of CLPSO, OGABC, and OCABC with the noise level of 0 dB.
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extract useful information from their previous search experiences
to produce a better candidate solution.

Furthermore, the optimization mechanism of the algorithms
seems to be different; all the algorithms are further verified by
the same maximum number of FEs 12000 in each run for a fair
comparison, and the convergence curves are obtained based on
a randomly selected run due to the number of FEs of each iter-
ation is changed randomly during the optimization process, and
the other parameters of algorithms for the surface duct estimation
are consistent with those given above.

The comparison of the convergence curves of CLPSO,
OGABC, and OCABC with respect to the number of FEs is pre-
sented in Fig. 5. From the results, it is obvious that the conver-
gence speed of OCABC is still much better than those of the
other two algorithms, and the OCABC can achieve best fitness
value and overcome the disadvantage of trapping into local
optima.

A further comparative analysis of the accuracy and stability
based on 30 independent runs for the surface duct estimation
are provided in the subsequent section. Figures 6–9 exhibit the

Fig. 7. The comparison of the histograms of CLPSO, OGABC, and OCABC with the noise level of 1 dB.

Fig. 8. The comparison of the histograms of CLPSO, OGABC, and OCABC with the noise level of 2 dB.
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comparison of the histograms of the estimation results obtained
by CLPSO, OGABC, and OCABC with the same noise level,
where the red lines represent the position of real parameter of sur-
face duct. It can be observed that the accuracy and stability of
OCABC and OGABC are much higher than that of CLPSO in
all cases. Both of the OCABC and OGABC almost obtain the
same results in the case of without noise. Although the local
optima appear in OGABC with the increasing of the noise level,
the OCABC still perform well on accuracy and stability. This is
caused by the fact that the OC not only can improve the poor
exploitation ability of ABC but also make a balance between the
exploration ability and exploitation ability, which help ABC to
jump out of the local optima.

The corresponding statistical analysis are given in Table 1, and
the best results in Table 1 are marked in boldface. It can be clearly
observed that the estimation results of OCABC for different noise
level are superior to those of CLPSO and OGABC regarding the
mean squared error (MSE) defined in Ref. [25], which also quan-
titatively indicate that the accuracy and stability of OCABC are
better than those of CLPSO and OGABC.

Conclusion

Owing to the search equation in ABC is good at exploration but
poor at exploitation, an improved ABC algorithm named OCABC
based on OED is presented by incorporating the OC and a novel

Fig. 9. The comparison of the histograms of CLPSO, OGABC, and OCABC with the noise level of 3 dB.

Table 1. The comparison of the statistical results of CLPSO, OGABC, and OCABC

Noise level Algorithm
MSE

c1 c2 h1 h2

0 dB CLPSO 5.74 × 10−4 0.0050 0.32030 15.398

OGABC 6.90 × 10−7 7.315 × 10−6 4.784 × 10−4 0.0011

OCABC 1.52 × 10−12 1.10 × 10−11 2.03 × 10−10 1.06 × 10−9

1 dB CLPSO 8.863 × 10−4 0.0065 0.4200 4.3214

OGABC 2.453 × 10−4 0.0045 0.2836 0.3068

OCABC 1.026 × 10−6 2.938 × 10−6 2.282 × 10−4 0.0012

2 dB CLPSO 6.257 × 10−4 0.0059 0.3801 9.4880

OGABC 4.579 × 10−4 0.0066 0.4360 0.3391

OCABC 4.174 × 10−6 2.88 × 10−5 0.0018 0.0076

3 dB CLPSO 6.909 × 10−4 0.0088 0.5588 5.5452

OGABC 4.834 × 10−4 0.0077 0.5165 0.1654

OCABC 6.789 × 10−6 4.58 × 10−5 0.0032 0.0142
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transmission vector into ABC. In OCABC, the global best solu-
tion in the transmission vector can not only strengthen the
exploitation ability but also accelerate convergence, and the OC
operator can extract useful information from their previous search
experiences to produce an excellent candidate solution. The mea-
sured and simulated clutter power are utilized to validate the
accuracy and effectiveness of the proposed OCABC. The com-
parative results demonstrate that the performance of the
OCABC is superior to that of CLPSO and OGABC for the atmos-
pheric duct estimation.
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