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Abstract

High-order sub-harmonically injection-locked oscillators have recently been proposed for low
phase-noise frequency generation, with carrier-selection capabilities. Though excellent experi-
mental behavior has been demonstrated, the analysis/simulation of these circuits is demand-
ing, due to the high ratio between the oscillation frequency and the frequency of the input
source. This work provides an analysis methodology that covers the main aspects of the circuit
behavior, including the detection of the locking bands and the prediction of the phase-noise
spectral density. Initially, the oscillator in the presence of a multi-harmonic input source is
described with a reduced-order envelope-domain formulation, at the oscillation frequency,
based on an oscillator-admittance function extracted from harmonic-balance simulations.
This allows deriving an expression for the oscillation phase shift with respect to the input
source, and the average of this phase shift is shown to evolve continuously in the distinct syn-
chronization bands obtained when varying a tuning voltage. This property can be used to
detect the locking bands in circuit-level envelope-domain simulations, which, as shown
here, can be done through different Fourier decompositions and sampling rates. The phase
noise of the high-order sub-harmonic injection-locked oscillator under an arbitrary periodic
input waveform is investigated in detail. The frequency response to the noise sources is
described with a semi-analytical formulation, relying on the oscillator-admittance function
in injection-locked conditions. The input noise is derived from the timing jitter of the injec-
tion source and the phase-noise response is shown to exhibit a low-pass characteristic, which
initially follows the up-converted input noise and then the oscillator own noise sources.
A method is proposed to identify the key parameters of the derived phase-noise spectrum
from envelope-domain simulations. The various analysis methodologies have been applied
to a prototype at 2.7 GHz at the sub-harmonic order N = 30 which has been manufactured
and measured.

Introduction

The recent works [1–7] have demonstrated a novel frequency-synthesis methodology, based on
the high-order sub-harmonic injection-locking of a high-frequency oscillator, at a frequency fo,
by an independent source at a much lower frequency fin. In [1–3], the high ratio N between the
two frequencies (in the order of N = 30) is achieved by shaping the input sinusoidal signal into
a square signal that periodically switches on and off a high-frequency oscillator. This is used to
injection lock a second oscillator that selects the harmonic closest to its own free-running fre-
quency. The procedure has two advantages. On the one hand, as demonstrated in [4], the
phase-noise spectral density of the higher-frequency oscillator can be lower than the one
resulting from lower sub-harmonic ratios (due to the higher phase-noise of the required
input source). On the other hand, the availability of a high number of equally spaced spectral
lines enables a programmable carrier generation. Actually, the second injection-locked oscil-
lator in [1–3] enables the selection of one or another spectral line (with the frequency spacing
fo/N ) depending on its tuning voltage. The whole system has the advantage of low phase noise
in comparison with standard phase-locking methodologies [2, 4].

Successful experimental demonstrations of this promising frequency-synthesis method, as
well as several extensions of the new procedure, have been presented in [1–7]. However, the
realistic simulation of the high-order sub-harmonic injection-locked oscillator, required for
an accurate prediction of its behavior, is involved. In general, full time-domain simulations,
which often fail in the presence of distributed elements, are only possible with simplified mod-
els of the circuit components, as done in [1–3], where models of the Van der Pol type are used
to describe the transistor devices. In [1–3], an approximate analytical formulation in time-
domain is proposed, in which the synchronized states are detected through a comparison of
the oscillation amplitude and phase values at the beginning and end of each period of the
switching signal. On the other hand, though harmonic balance (HB) [8–12] can deal at present
with a high number of harmonic terms, in injection-locked oscillators it converges by default
to the non-oscillatory solution that generally coexists with the oscillatory one. In the non-
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oscillatory solution, the circuit just responds to the input forcing
in a non-autonomous manner [13–15]. To consider the self-
oscillation in commercial HB, one should impose the oscillation
condition using an auxiliary generator (AG) [13–15]. The AG
amplitude and its phase-shift with respect to the input source
are optimized to obtain a zero value of the AG total admittance
function. In the case of a sub-harmonic injection locking of a
high order N, the convergence of this optimization procedure is
demanding [15] due to the need of a high number NH of har-
monic terms, involving multiples of the high order N. For
instance, the consideration of three harmonic components of
the oscillation frequency fo, requires NH = 3N = 90.

This work is an extension of [15], presenting an envelope-
domain analysis [16–19] of the sub-harmonic injection-locked
oscillator is presented, using a Fourier-series description of the
circuit variables, with time-varying harmonic terms �Xk(t),
where k is the frequency index. This will require a proper initial-
ization of the oscillation frequency to avoid the system conver-
gence to a non-oscillatory steady-state solution [20]. As will be
shown, it is possible to choose different fundamental frequencies,
expressed as fo/P where P is an integer. For P > 1, the spectral lines
of the sub-harmonic regime are distributed among the harmonic
components kfo/P of the Fourier representation of the circuit vari-
ables. Then, even in injection-locked conditions, the harmonic
terms �Xk(t) will exhibit time variations due to the spectral lines
contained in the bandwidth about each harmonic frequency kfo/
P, so a criterion is needed for efficient detection of the synchron-
ization bands. In order to derive this criterion, a semi-analytical
formulation in the envelope-domain, based on an admittance-
type model of the oscillator circuit, will be initially considered.
An analytical expression will be derived, demonstrating that the
injection-locked states can be efficiently detected through the
averaging oscillator phase. In addition, the closed solution curves,
characteristic of the injection-locked operation [10–13], will be
obtained through an averaging of the envelope amplitude.

In the solution of the sub-harmonic injection-locked oscillator,
there will be a high number of spectral lines at multiples of the
low injection-locking frequency fin. This can be achieved through
pulse forming plus oscillator switching, as in [1–3], or using of
a multi-harmonic input source, as in this work. As proposed in
[1–3], the selection of a particular spectral line can be carried
out connecting the oscillator output to a second oscillator circuit
(in the same frequency order) with frequency tuning capabilities.
The injection-locking (at the fundamental frequency) of this
second oscillator enables the selection of one or another spectral
line by varying its tuning voltage. Here, this frequency selection
by means of injection locking will be analytically investigated con-
sidering an oscillator injected with multiple closely spaced input
tones.

The phase-noise analysis of the high-order sub-harmonic
injection-locked oscillator will be addressed here for the first
time to our knowledge. This analysis is demanding, since, as sta-
ted, the HB analysis will fail to converge in most cases due to the
need to fulfil the oscillation condition under a high number of
harmonic terms. On the other hand, a Monte-Carlo phase-noise
analysis in the envelope domain is virtually impossible, due to the
presence of two widely separated time scales, one associated with
the noise perturbation and the other one accounting for the band-
width about each harmonic term. Even for P =N, the integration
time step required to obtain convergence to the oscillatory solu-
tion will generally be much smaller than the total simulation
time needed to account for the effect of the noise sources. Here

the phase noise will be studied in two different manners. First,
the phase-noise spectrum will be analytically derived from a per-
turbation analysis at the oscillation frequency, relying on an
admittance-type model [21] of the oscillator circuit in its
injection-locked steady state. This formulation will allow an
understanding of the frequency response of the sub-harmonic
injection-locked oscillator with respect to the input-source noise
and its own noise sources. Then, a procedure to identify the key
parameters defining the spectrum shape from circuit-level
envelope-transient simulations will be proposed. The whole meth-
odology will be applied to a sub-harmonic injection-locked oscil-
lator at the order N = 30, which has been manufactured and
measured.

The paper is organized as follows. In the section “Oscillator
injected by multiple input tones”, the response of an oscillator
driven by multiple periodic tones with a small frequency spacing
will be presented. In the section “Sub-harmonic injection-locked
operation”, the envelope-domain analysis of a sub-harmonic
injection-locked oscillator under a high order N will be described.
The section “Phase noise” presents the derivation of the phase-
noise spectrum in the frequency domain, as well as a procedure
to identify the parameters that define this spectrum through
envelope-transient simulations.

Oscillator injected by multiple input tones

In this section, the case of an oscillator injected with multiple
input tones about the oscillation frequency will be studied [15],
which is conceptually simpler than the one of sub-harmonic
injection-locked oscillators under a high order N, considered in
the section “Sub-harmonic injection-locked operation”. This will
allow an understanding of the oscillator behavior when driven
by multiple tones and an evaluation of its frequency-selection
capabilities. A criterion will be derived to determine the locking
ranges about each input tone when a parameter is varied, which
will be extended in the section “Sub-harmonic injection-locked
operation” to the sub-harmonic injection-locked oscillator.

Analytical formulation

A set of input tones will be introduced into the oscillator circuit, at
the frequencies ω1, ω2,…, ωK, assumed to be closely spaced about
the original free-running oscillation frequency ωo. When varying
a suitably chosen tuning parameter η, the oscillator should be
able to lock to each of the different input frequencies ωk. To get
analytical insight, the oscillator will be described at its fundamental
frequency, in terms of its current-to-voltage ratio Y(V,ω,η) at a par-
ticular observation node [22–26], where V and ω are the excitation
amplitude and frequency. This admittance function will be the
current-to-voltage ration of an AG connected at the observation
node in the HB simulation of the oscillator circuit. In the absence
of the input signals, at its free-running solution, the oscillator fulfils
the following two-tier equation system [11]:

Y(Vo, vo, ho) = 0

�H(�X′, V , v, ho) = 0,
(1)

where �H represents the HB system that constitutes the inner tier
and Vo and ωo, are the free-running amplitude and frequency at
ηo. Note that the phase origin has been arbitrarily taken at the
observation node Vej0 and the vector �X ′ contains all the state

696 Silvia Hernández et al.

https://doi.org/10.1017/S1759078720000768 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078720000768


variables except Vej0. The above system can be solved through opti-
mization of V and ω in order to fulfil the goal Y = 0.

Now, the effect of the input source will be considered. Injection-
locking to the particular input tone ωq, belonging to the set of input
tones ω1, ω2,…,ωK, will be assumed. The oscillator will be formu-
lated in the envelope domain at the carrier frequency ωq. Thus,
the node voltage will be expressed as (Vo + DV(t))ejf(t)ejvqt ,
where ΔV(t) is the time-varying increment of the voltage amplitude
with respect to the free-running value Vo and f(t) is the time-
varying phase, in the presence of the input sources. Applying
Kirchoff’s laws at the observation node one obtains the following
system:

Y(Vo + DV(t), ho + Dh, vo + Dvq + s/j)(Vo + DV(t))e jf(t)

=
∑
k

Ik exp j(Dvk,qt), Dvk,q = vk − vq, (2)

where Δωq = ωq− ωoand s is a complex frequency increment and Ik
is the equivalent complex current associated with each input signal.
Note that Δωk,q is the offset frequency of each input tone k≠ q with
respect to ωq. Under a small input power and small frequency
spacing between the input tones, the function Y can be expressed
in a first-order Taylor series expansion about Vo, ωo, and ηo
[21,22]. Taking into account that s acts as a time differentiator,
one obtains:

YVDV(t)+ YhDh+ Yv(Dvq + ḟ(t)− jDV̇(t)/Vo)

=
∑
k

Ik
Vo

exp j(−f(t)+ Dvk,qt), (3)

where YV, Yη, and Yω are the derivatives of Y with respect to V, η,
and ω, calculated at the free-running steady-state oscillation Vo, ωo,
and ηo. These derivatives are obtained by means of the same AG
used for the calculation of the free-running oscillation [10]. In
that simulation, the AG operates at the unknown oscillation fre-
quency ωo, with the amplitude Vo, agreeing with the first harmonic
of the node voltage. The AG must fulfill the oscillation condition Y
(Vo,ωo) = 0, which is solved through optimization in commercial
HB software. Once the free-running solution has been determined,
the derivatives of the admittance function are calculated through
finite differences [13] (Fig. 1). The derivative YV with respect to
the amplitude is calculated by considering the increments Vo ±
ΔV, while the frequency is kept at ωo. The frequency derivative
Yω is calculated by considering the increments ωo ± Δω, while the
amplitude is kept at Vo. The derivative Yη with respect to the par-
ameter is calculated by considering the increments ηo ± Δη, while
the AG amplitude and frequency are kept at Vo, ωo.

Solving (3) for Dvq + ḟ(t) one obtains:

Dvq + ḟ(t) =

−|Yh| sinavhDh+∑
k
|Ik|
Vo

sin (−f(t)+ Dvk,qt + fk − av)

|Yv| sinavv
,

(4)

where |Ik| and fk are the magnitude and phase of the input tones,
αvω = ang(Yω)−ang(YV), αvη = ang(Yη)−ang(YV), and αv = ang
(YV). Note that (4) describes the circuit response in both locked

and unlocked conditions. When the oscillator is locked to ωq,
the phase f(t) in (4) can be represented in a Fourier series at
K−1 frequencies Δω1,q, …, ΔωK,q, so one can express f(t) = fo

+Фmix(t), where fo is a constant value and Фmix(t) has zero aver-
age: <Фmix(t) = 0>. Taking this into account, to detect the locking
bands, one will introduce the expression f(t) =fo +Фmix(t) into
(4) and perform an averaging:

Dvq+Ḟmix(t)
〈 〉=|Iq|

Vo

sin(−fo−Fmix(t)−av)
〈 〉

|Yv|sinavv

−|Yh|sinavh

|Yv|sinavv
Dh+

∑
k=q

|Ik|
Vo

sin(−fo−Fmix(t)+Dvk,qt+fk−av)

〈 〉

|Yv|sinavv
.

(5)

Since Δωq is kept at a constant value, the average phase shift fo

will vary with the tuning parameter Δη. Under small amplitudes
|Ik|, Фmix(t) can be neglected in the first term on the right-hand
side of (3). As the amplitudes |Ik| decrease, the above equation
approaches:

Dvq =
|Iq|
Vo

sin (− fo − av)
|Yv| sinavv

− |Yh| sinavh

|Yv| sinavv
Dh. (6)

One can also solve (3) in terms of the increment of the voltage
amplitude ΔV(t). Because the frequency reference is ωq, the volt-
age amplitude at this frequency is Vo + ΔV(t). Thus, the amplitude
at the tone ωq at which the oscillator is injection-locked is
enhanced by the self-oscillation and will be higher than that of
the rest of the spectral lines. Solving for the increment ΔV(t)
and averaging, one obtains:

DV(t)〈 〉 =
|Iq|
Vo

sin (av + fo +Fmix(t))
〈 〉

|YV | sinavv
− |Yh| sinahv

|YV | sinavv
Dh

+

∑
k

|Ik|
Vo

sin (av − fo −Fmix(t)+ fk − Dvk,qt)

〈 〉
|YV | sinavv

,

(7)

where αω = ang(Yω), αηω = ang(Yω)−ang(Yη), and DV̇(t) has been
neglected. Taking into account the relationship between the

Fig. 1. Calculation of the derivatives of the oscillator nonlinear-admittance function
through finite differences in harmonic balance, using an auxiliary generator.
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average phase shift fo and Δη, the average of the amplitude incre-
ment 〈ΔV(t)〉should approach an ellipsoidal curve versus Δη in
the locking band. However, due to the presence of two turning
points in the closed curve, only one section of this curve will be
stable. Note that the turning points are local/global bifurcations
[27, 28] at which a quasi-periodic solution is generated from a
zero-frequency shift, in a manner analogous to the generation
of a limit cycle in a saddle-node bifurcation [27, 28].

Application to a FET-based oscillator

The above analysis has been applied to the voltage-controlled
oscillator in Fig. 2. It is based on the transistor ATF-34143 and
is tuned with the varactor SMV1235. It is able to oscillate in
the frequency band 2.7–2.78 GHz. The input tones will be gener-
ated with the Agilent E4438C ESG Vector Signal Generator and
are equally spaced by default. In order to generate as many
tones as possible, the spacing Δf = 16MHz is chosen, enabling
six input tones, between 2.7 and 2.78 GHz (case (i) in Fig. 2).
Initially, synchronization at ωq/(2π) = 2.7 GHz is assumed. First,
the results obtained through the integration of (3) and with
circuit-level envelope transient simulations [20] (using ωq as the
only fundamental frequency, as in (3)) have been compared.
The spectrum obtained under injection-locked conditions for a
multitone input signal in the two cases is shown in Fig. 3. As
can be seen, there is an excellent agreement that demonstrates
the validity of (3).

Figure 4(a) presents the phase shift −f(t) (without averaging)
for three different values of the tuning voltage η = VD, within the
synchronization band. In agreement with (4), after a transient, the
phase exhibits a periodic variation about a constant value −fo,
which changes with the tuning voltage VD. Note that the oscillator
will get locked to a different input tone when varying VD. To
obtain the synchronization bandwidth about each input tone
ω1, ω2,…,ωK, one should change the reference frequency of the
analysis. Otherwise there will be an additional ramp function
(ωq−ωk)t in Фmix(t). The synchronization band is obtained repre-
senting the average of −f(t) versus VD, as shown in Fig. 4(b).
This analysis of the synchronization band requires a sufficiently
large time offset to ensure that the circuit is in steady state at
each VD step. The apparent discontinuities in the diagram of
Fig. 4(b) are because the fundamental frequency of the envelope-
domain analysis, ωq, is, as stated, alternatively set to each of the

input frequencies. The synchronization bands are easily distin-
guished (in solid line), since, in agreement with (6),〈− f(t)〉 =
−fo varies continuously in each band, with an excursion of

Fig. 2. FET-based (ATF-34143) oscillator at fo = 2.7 GHz. The frequency is tuned with the varactor diode SMV1235. (a) Schematic, showing the two different kinds of
input signal considered in this work: (i) six input tones equally spaced between 2.7 and 2.78 GHz and (ii) a rectangular signal with 1 Vpp, 25% duty cycle and
frequency 90 MHz. The dc-block capacitance is suppressed in this second case. (b) Photograph.

Fig. 3. Spectrum obtained through (3) and with envelope transient for the spectral-
line power Pin =−33 dBm and frequency spacing Δf = 16 MHz.

Fig. 4. Behavior under six input lines, between 2.7 and 2.78 GHz, with Δf = 16 MHz. (a)
Time variation of the phase shift for three VD values, within the first synchronization
band ( f1 = 2.7 GHz). (b) Average value of ‒f(t) versus VD.
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slightly less than 180°, corresponding to the stable solutions. This
excursion is not centered about fo = 0° because αv is different
from zero. The three bands in Fig. 4(b) correspond to synchron-
ization at f1 = 2.7 GHz, f2 = 2.716 GHz, and f3 = 2.732 GHz.

Figure 5 presents the variation average amplitude 〈ΔV(t)〉 in
the same intervals of tuning voltage VD considered in Fig. 4.
The same three locking bands are detected, distinguished by the
ellipsoidal variation of 〈ΔV(t)〉 versus VD. Only the stable upper
half of the ellipsoidal synchronization curves is obtained in the
envelope-domain analysis. Note that the circuit becomes unlocked
at the turning points of each curve.

The capability of the oscillator to discriminate a particular tone
can be evaluated from the spectrum of the oscillation signal, with-
out changing the fundamental frequency, kept at ωq. The frequen-
cies the spectral line with larger output power and its neighboring
spectral lines are identified and traced versus VD (Fig. 6(a)). The
circuit is synchronized where these frequency components remain
constant when varying this parameter. Note that outside the syn-
chronization band, mixing effects give rise to a significant variation
of the dominant spectral component and its neighbors. In Fig. 6(b)
the output power at the frequencies of the input tones is traced ver-
sus VD, which allows evaluating the frequency-selection capability.
The boundaries of the synchronization bands are easily detected by
the fast variation of the spectrum frequencies, after the occurrence
of each local/global bifurcation [10, 27, 28]. The bandwidths slowly
decrease when moving away from the oscillator free-running fre-
quency (2.7 GHz).

Figure 7 presents the measurement results. Figure 7(a) shows
the six input tones, with Δf = 16MHz. Figure 7(b) presents an
unlocked spectrum for VD = 0.28 V. Figures 7(c) and 7(d) present
the spectrum for VD = 0.8 V (synchronization to f2), and VD =
2.85 V (to f5). We attribute the differences to inaccuracies and dis-
persion in the lumped-component models.

Sub-harmonic injection-locked operation

In this section, the case of a sub-harmonically injection-locked
oscillator by an input signal of fundamental frequency fin will
be considered. This analysis is more demanding than the one in
the section “Oscillator injected by multiple input tones”, since
the subsynchronization is a nonlinear phenomenon and the rele-
vant spectral lines, resulting from the input signal, plus frequency
multiplication/mixing effects, cover the entire frequency band-
width from DC to the oscillation frequency and its harmonic
terms. When expressing the state variables in a Fourier basis at
the fundamental frequency fo =Nfin, the system integration
requires a small-time step Δt, able to capture the large bandwidth
going from dc to approximately fo/2. As a compromise, one can
use a basis having fo/P as fundamental frequency, where the inte-
ger P fulfils P≤N. The analysis can be carried out representing
the circuit variables in a Fourier series

∑
k Xk(t) exp (jkvo/P),

where P is a positive integer.
A schematic representation of the Fourier basis is shown in

Fig. 8. For P =N, the harmonic components �Xk(t) should take
constant values in the locked steady state. Despite the high num-
ber of harmonic terms, the complexity will be smaller than in a
HB simulation. This is because the oscillation is easily initialized
by just connecting an AG at the oscillation frequency at the initial
time only [20, 29]. The amplitude of this generator can be the
same obtained in free-running conditions, Vo. For P <N, there
will be several spectral lines of the injection-locked solution
about each harmonic term. The integration time step of the

envelope-transient system must be small enough to properly sam-
ple the frequency components located in the bandwidth [−ωo/
(2P), ωo/(2P)] associated with �Xk(t), at the central frequency

Fig. 5. Behavior under six input lines, between 2.7 and 2.78 GHz, with Δf = 16 MHz.
Average value of ΔV(t) versus VD, which approaches the upper half of an ellipse in
each synchronization band.

Fig. 6. Behavior under six input lines, between 2.7 and 2.78 GHz, with Δf = 16 MHz.
Detection of synchronization bands from the analysis of the solution spectrum. (a)
Frequencies of the spectral line with larger output power and its neighboring spectral
lines, traced versus VD. (b) Output power at the frequencies of the input tones.

Fig. 7. Measurement results. (a) Input tones. (b) Unlocked spectrum for VD = 0.28 V. (c)
Synchronization to f2 for VD = 1.69 V. (d) f4 for VD = 2.85 V.
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kωo/P. Although the allocation of the harmonic components of
ωo/N is not unique, all the possible arrangements of these compo-
nents will fulfil the envelope-domain system at each time value,
producing the same time-domain signal when gathered in the
Fourier series.

For better insight, a reduced-order formulation from a single
observation node will be considered. Setting the fundamental fre-
quency to ωo/P, one can express the outer-tier envelope-transient
system is:

G(V0(t), Ṽ1(t), . . . , ṼP(t), s/j)Vo(t) =
∑B/2
k=1

Ik exp j(vkt),

Y1(V0(t), Ṽ1(t), . . . , ṼP(t), vo/P + s/j)Ṽ1(t)

=
∑B+B/2

k=1+B/2

Ik exp j(Dv1,kt), Dv1,k = vk − vo/P

..

.

Yp(V0(t), Ṽ1(t), . . . , ṼP(t), pvo/P + s/j)Ṽp(t)

=
∑1+pB+B/2

k=1+(p−1)B+B/2

Ik exp j(Dv p,kt), Dv p,k = vk − pvo/P

..

.

YP(V0(t), Ṽ1(t), . . . , ṼP(t), vo + s/j)ṼP(t)

=
∑M

k=1+(P−1)B+B/2

Ik exp j(DvP,kt), DvP,k = vk − vo, (8)

where Ṽp(t) indicates phasors. In (8), the integer B/2 is the num-
ber of spectral lines at each side of the p-th sub-harmonic compo-
nent, pfo/P, where p = 1, …, P. Thus, the total number of spectral
lines is given by M = B/2 + PB. The frequency-domain models of
the distributed components must be valid in the whole bandwidth
of each harmonic component. For a higher P, the integration time
step can, in principle, be increased as PΔt. Note that the equation
at each harmonic p is analogous to the one in (2). The phasors

Ṽp(t), with the phases fp(t) =fo,p +Фmix,p(t), will exhibit a
slower time variation for a higher P. In the limit situation P =
N, the phasors Ṽp will be constant in the synchronization band.
For P <N, the components �Xk(t) will be periodic in the locked
steady state, with this time variation being due to the neighboring
equally spaced spectral lines.

Unlike the envelope-domain equations (3)–(7), based on a lin-
earization of the admittance function about the free-running solu-
tion, (8) will not be numerically resolved. In (3)–(7) the oscillator
behaves linearly with respect to the K input sources, with frequen-
cies located about the free-running one. In contrast, in (8) the
oscillator will (generally) behave nonlinearly with respect to the
input source at a much lower frequency. The input source plus
the device nonlinearity must be able to generate a harmonic signal
at the oscillation frequency, able to injection lock the oscillation.
In principle, the admittance at each harmonic frequency p
depends on all the harmonic voltages at the observation node,
so the extraction of these admittance functions is virtually impos-
sible. The purpose of equation (8) is to illustrate the various pos-
sible ways to partition the spectrum when analyzing the
high-order sub-harmonic injection-locked oscillator with the
envelope-transient method and their impact on the integration
time step.

To obtain the sub-harmonic injection locking, a rectangular
signal, at a frequency fo/N, is injected into the high-frequency
oscillator, as shown in Fig. 2, case (ii). The rectangular signal
contains a high number of harmonic terms of fo/N, which facil-
itates the sub-harmonic injection locking. Note that this is dif-
ferent from the synthesis method in [1–3]. In those works, a
large multiplication factor is achieved by shaping the input
sinusoidal signal (at low frequency), into a square signal. The
shaped signal periodically switches on and off a high-frequency
oscillator, suitably tuned to maximize the power at the desired
harmonic terms. The resulting signal is used to injection lock
a second oscillator, which enables the selection of one or another
spectral line.

Here a rectangular signal is introduced into the oscillator of
Fig. 2. The signal has a frequency 90MHz, amplitude 1 Vpp,
and duty-cycle of 25%. One must note that although the oscilla-
tion frequency of this prototype (2.7 GHz) is lower than the one
in [1–3], the frequency ratio is the same N = 30, so the analysis
complexity must be similar. The circuit has been analyzed with
circuit-level envelope transient, following the criteria in (8), and
using an AG at fo, connected to the circuit at the initial time
only to initialize the oscillation, as shown in [20]. Figure 9 pre-
sents the spectrum at fout = 30 × 90MHzfor P = 1, 4, 6, which pre-
dicts a synchronized behavior. Only the central spectral lines can
agree since for P > 1 part of the spectrum corresponds to terms
P-1 and P + 1. For P = 1 the integration time step is 0.05 ns,
whereas for P = 6 it is 0.3 ns. The analysis has been validated
through an independent HB analysis (superimposed). This costly
HB analysis has been carried out providing the amplitude and
phase of the central spectral line, obtained with envelope transi-
ent, to an AG at fout = 30 × 90 MHz. With P = 6, the time variation
is more regular, since less spectral lines contribute to this vari-
ation at each harmonic term. Thus, the synchronization bands
can be determined with higher accuracy.

In this particular case (N = 30), it was possible to perform a
HB simulation. Figure 10 presents the solution of the circuit
in Fig. 2 when driven with a rectangular waveform of Vpeak =
1 V, frequency fin = 90MHz and duty cycle 25%. The spectrum

Fig. 8. Envelope-domain analysis of the high-order sub-harmonic injection-locked
oscillator. (a) and (b) Different choices of the fundamental frequency fo/P in the
Fourier-series representation of the circuit variables.
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in Fig. 10(a) was obtained with default HB. The power of the
spectral lines about the oscillation frequency (2.7 GHz) is well
below that of the original free-running oscillation (7.75 dBm).
Figure 10(b) presents the spectrum obtained with an AG, oper-
ating at Nfin, through the optimization of its amplitude V and
phase f, in order to fulfill: Y(V,f) = 0. As can be seen, there is
a spectral line with a much higher output power, which corre-
sponds to the injection-locked oscillation. If the solution
obtained through AG optimization is stored in an ASCII file
and using it in default HB as an initial condition, the resulting
spectrum is overlapped, which validates the accuracy of the
AG-based procedure. By sweeping the phase f and optimizing
V and VD in order to fulfill: Y(V,VD) = 0, it was possible to
trace the synchronization curve versus VD through AG optimiza-
tion in HB [10], which took approximately 3 h. The resulting
closed synchronization curve (bounded by the two turning
points corresponding to local/global bifurcations) is shown in
Fig. 11(a). Experimental points are superimposed. The envelope-
domain analysis is computationally more efficient. Figures 11(b)
and 11(c) present the analysis of the synchronization band with
the averaging method when considering P = 6. Figure 11(b) pre-
sents the variation of the average value of P-th harmonic com-
ponent of the output voltage, 〈fP(t)〉 = fo,P, versus VD. which
enables the detection of the locking band. Figure 11(c) presents
the result of averaging the amplitude of P-th harmonic compo-
nent of the output voltage, denoted as 〈VP(t)〉 = Vo,P. The
envelope-domain integration only provides the upper (stable)
section of the synchronization curve. There is an excellent agree-
ment with the HB predictions, though the computation time is
four times shorter. Note that the comparison with HB should
be performed in terms of the tuning-voltage interval with the
locked operation. This is determined by the two turning points
of the ellipsoidal curve, in the case of HB simulations, and the
slope discontinuity, in the case of envelope-transient simula-
tions. As can be seen, the locked-operation interval is the
same as the two simulation methods.

Note that it was not possible to obtain any HB convergence
when changing VD in order to select a different spectral line,
for instance, N + 1 and N + 2. This could be easily achieved
with the envelope-transient method, as shown in Figs 12(a) to
12(c), where three different spectral lines, corresponding to N =
30, N + 1 and N + 2, are selected by varying VD. Finally, the out-
put of the subsynchronized oscillator has been connected to an
analogous voltage-controlled oscillator to increase the frequency
selectivity. To initialize the two individual oscillations an AG is
connected to each circuit at the initial time only. The simulated
spectra are shown in Figs 13(a) and 13(b). The ratio between

the selected spectral line and the highest-power neighboring
line is in the order of 30 dB. Figure 13(b) presents the experimen-
tal results. Similar to Fig. 7, there is a deviation in the tuning vol-
tages, attributed to the device models.

Fig. 9. Injection locking by a pulsed signal at 90 MHz. Output spectrum at fout = 30 ×
90 MHz when considering P = 1, 4, 6. HB results are superimposed.

Fig. 10. HB analysis of the circuit in Fig. 2 under a rectangular input signal of Vpeak = 1
V, frequency 90 MHz and duty cycle 25%. (a) Without AG. The oscillation is not
excited. (b) With an AG, after fulfilment of the optimization condition Y(V,f) = 0.
The injection-locked oscillation is clearly visible. When storing the solution obtained
through AG optimization in an ASCII file and using it in default HB as an initial con-
dition, the resulting spectrum is overlapped, which validates the accuracy of the
AG-based procedure.

Fig. 11. Locking band at N = 30. (a) Synchronization curve, versus VD, obtained with
HB. Experimental points are superimposed. (b) Envelope-domain analysis with P = 6.
Evolution of the phase average 〈fP(t)〉 =fo,P versus VD. (c) Evolution of the amplitude
average 〈VP(t)〉 = Vo,P versus VD.
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Phase noise

The phase-noise analysis of the sub-harmonic injection-locked
oscillator at a high order N is challenging. This is because, in
most cases, the only way to obtain the steady-state solution is
through an envelope-domain analysis using the criteria discussed
in the section “Sub-harmonic injection -ocked operation”. Then,
one faces the problem of two different time scales, in addition
to the harmonic frequencies, kfo/P considered in the Fourier-
series representation of the circuit variables. One of the additional
time scales is slow because it is associated with the noise pertur-
bations. The other one is faster, and depends on the P value
selected in (6), which determines the bandwidth about each spec-
tral line in the Fourier-series representation of the circuit vari-
ables. Two cases will be considered here, P =N, for which the
harmonic components of the Fourier series considered in (6)
take constant values, and P <N for which the harmonic compo-
nents are time-varying. The case P =N will be addressed by
means of a two-tier HB analysis, with the admittance function
of the injection-locked oscillator at fo =Nfin constituting the
outer tier. This will allow an understanding of the phase-noise
response of the high-order sub-harmonic injection-locked oscilla-
tor to the noise sources. In the case P <N the key parameters
determining the phase-noise response will be identified from
envelope-domain simulations through a numerical procedure.

Case P = N

For P = N the sub-harmonic injection-locked oscillator will be
described with an outer-tier admittance function Y extracted
from HB simulations. This admittance function is similar to the
one considered in the section “Oscillator injected by multiple
input tones”. However, the circuit is now in injection-locked
conditions with respect to the sub-harmonic source, at the high
sub-harmonic order N. Thus, the function Y depends on the
observation node amplitude V and phase f, since the oscillation
frequency is determined by the input source frequency and fulfils
fo =Nfin. Thus, the synchronized solution will fulfil the following
two-tier equation system:

Y(Vs, fs) = 0

�H(�X′, Vs, fs) = 0

vo = Nvin

, (9)

where �H represents the HB system that constitutes the inner tier,
Vs and ωs are, respectively, the amplitude and phase of the
steady-state solution and the vector �X′contains all the state vari-
ables except the voltage at the observation node Vejf and its com-
plex conjugate. The above system can be solved through the
optimization of V and f in order to fulfil the goal Y = 0

For the noise analysis, two different contributions will be consid-
ered: the noise from the input source and the circuit own noise
sources. Regarding the input source, the phase noise will be much
larger than the amplitude noise, so the latter will be neglected.
On the other hand, the circuit noise will be modeled with an
equivalent noise-current generator at the observation node in(t).
The spectral density of this equivalent noise-current source |
IN(Ω)|

2is fitted with the oscillator in free-running conditions, in
order to obtain the same phase-noise spectral density as with the
entire set of circuit noise sources. The fitting is carried out in

Fig. 12. Oscillator locking to different spectral lines of the input source by tuning
VD. (a) Locking to f1 = 2.7 GHz (N = 30). (b) Locking to f2 = 2.79 GHz (N + 1). (c) Locking
to f3 = 2.88 GHz (N + 2).

Fig. 13. Increase of the frequency selectivity through the use of a second oscillator.
(a) Simulations. (b) Measurements.
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circuit-level HB, using the conversion-matrix approach [30–32].
The result is shown in Fig. 14. Note that in injection-locked condi-
tions, one can expect the oscillator to follow the phase noise of the
input source (usually growing as Ω3 when approaching this carrier)
up to a certain (relatively high) offset frequency, above which the
impact of flicker noise will usually be negligible. Thus, the fitting
can be limited to the effect of the white noise sources.

The phase noise contribution of the input source (with arbi-
trary waveform) will be obtained from the jitter τ(t) of this source
[33, 34]. One must take into account that a time translation τ of
the input signal gives rise to an identical time translation of the
oscillator solution, which does not affect the value the admittance
function Y(Vs, fs), depending only on the phase shift with respect
to the input source. However, the time translation will modify the
absolute node phase, which is increased as f +Nωinτ. Thus, the
jitter of the input source will give rise to the phase perturbation
Nψ(t) =Nωinτ(t) at the oscillation frequency. Because there are
also noise contributions coming from the oscillator circuit [mod-
eled with the equivalent source in(t)], the total phase perturbation
of the voltage at the observation node will be ΔfT(t) =Nωinτ(t) +
Δf(t)where Δf(t) is a small increment with respect to the
steady-state phase fo due to the noise perturbations. On the
other hand, the node amplitude, under the influence of τ(t) and
in(t) becomes Vs + ΔV(t).

In the presence of the noise perturbations the outer-tier system
at Nωin can be obtained by performing a first-order Taylor series
expansion of the total node admittance Y about the particular
steady-state synchronized solution, Vs, fs, and ωs, which provides:

[YVDV(t)+ YfDf(t)− jYvs](Vs + DV(t))e j(Nvint(t)+Df(t))

= IN (t), (10)

where s acts like a time differentiator and the subindexes stand for
derivatives of Y with respect to the corresponding variables V, f
and ω, and IN(t)is the envelope of the current-noise source in(t)
about Nωs. After the time differentiation, one obtains the follow-
ing equation:

YVDV(t)+ Yv (Nvinṫ(t)+ Dḟ(t))− j
DV̇(t)

Vs + DV(t)

( )

+ YfDf(t) = IN (t)
Vs

, (11)

where the subindexes indicate the quantity with respect to which
the admittance function is differentiated. The derivatives
YV , Yv, Yf are calculated at the steady-state synchronized solution
through finite differences in HB, following the procedure
described in [13, 21].

Next, the complex equation (8) is split into real and imagin-
ary parts and the Fourier transform is applied in the slowly
varying time scale of the noise perturbations, with associated
frequency Ω. Solving for ΔfT(Ω) = Δf(Ω) + Nψ(Ω) and multi-
plying by the adjoint, the phase-noise spectral density [21] is
given by:

|DfT (V)|2 = |YV × Yf|2N2|c(V)|2 + 2|YV |2(|IN |2/V2
s )

|YV × Yf|2 + |YV × Yv|2V2

= |Yf|2sin2aVfN2|c(V)|2 + 2(|IN |2/V2
s )

|Yf|2sin2aVf + |Yv|2sin2aVvV
2 , (12)

where higher-order terms in Ω have been neglected and the
complex-number products of the form a × bare real and are defined
as: a× b = Re(a)Im(b)− Re(b)Im(a) = |a||b| sin (/b−/a). In
turn, the angles in the third term are defined as aab = /b−/a.
To derive the above expression, it has been taken into account
that the real and imaginary parts of the equivalent noise source
�IN are uncorrelated and the input noise is uncorrelated with the
oscillator noise. Dividing the numerator and denominator by
|YV × Yf|2, one obtains:

|DfT (V)|2 = N2|c(V)|2 + (1/(|Yf|2sin2aVf))2(|IN |2/V2
s )

1+ ((|Yv|2sin2aVv)/(|Yf|2sin2aVf))V
2 ,

(13)

which can be rewritten as:

|DfT (V)|2 = N2|c(V)|2 + Ap(|IN |2/V2
s )

1+ (V2/v2
3dB)

, (14)

where the following parameters have been introduced:

Ap = 2

|Yf|2sin2aVf
, v3dB = |Yf|sin(aVf)

|Yv|(sinaVv)
. (15)

As gathered from (14), the injection-locked oscillator exhibits a
low-pass response with respect to the input phase noise and its
own noise sources, with a 3 dB cut-off frequency ω3dB. As
shown in (15), the corner frequency ω3dB will be, in principle,
smaller for a higher quality factor of the oscillator (larger |Yv|)
and larger for a higher |Yf|, implying a higher sensitivity to the
input source and thus a larger locking range. Note, however,
that the angles αVf, αVω can be very relevant.

For small offset frequency, the phase noise follows N2|ψ(Ω)|2,
as derived from the jitter τ(t) of the input signal. The effect of the
circuit noise sources is determined by Ap|IN |2/V2

s . If
Ap|IN |2/V2

s . N2|c(V)|2 from a certain Ω <Ω3B, before decaying
−20 dB/dec.

The predictions of the semi-analytical expression (14) have
been compared with a phase-noise analysis of the sub-harmonic
injection-locked oscillator at N = 30, performed in HB, with the

Fig. 14. Fitting the spectral density of the original free-running oscillator with a single
equivalent current source of spectral density |IN(Ω)|2. The fitting is carried out in
circuit-level HB, using the conversion-matrix approach.
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conversion-matrix approach [30–32]. The results of this compari-
son, in the presence of the equivalent white-noise source in(t), are
shown in Fig. 15. The curves providing the phase-noise spectral
density obtained with the two methods are overlapped.
Remember that the spectral density of the white-noise source |
IN|

2 was fitted in the standalone free-running oscillator. The cor-
ner frequency is f3 dB≅ 1.5 MHz.

For the prediction of the whole spectrum, the phase noise of
the rectangular input source at the fundamental frequency (90
MHz) has been experimentally characterized, using the R&S
FSWP8 – Phase Noise Analyzer, and introduced in (14).
Figure 16 presents a comparison of the predictions from (14)
with the experimental measurement of the oscillator phase at
Nfin. Note that there is an excellent agreement since the two
curves are nearly superimposed. At the lower offset frequencies,
the phase noise is 20log(30) higher than the one at the lower har-
monic frequency of the input source, included in the figure. The
phase-noise spectrum in free-running conditions is also shown
for comparison. The spectrum of the injection-locked oscillator
follows the input-noise source up to its corner frequency f3 dB≅
1.5 MHz. Up to this frequency, there is a negligible effect of the
circuit own noise sources. At low-frequency offset, there is an
improvement of more than 30 dB. To obtain a lower spectral
density at higher offset frequencies an input source with lower
phase noise should be used.

Case P≤ N

For P <N the quantities Ap/V2
s and Ω3 dB, will be identified from

envelope-domain simulations through a numerical procedure. To
obtain the frequency response of the oscillator phase with respect
to the equivalent noise source |IN|

2, this noise source will be
replaced with a deterministic tone at the frequency Ω. Then, a
two-tone envelope-domain analysis will be carried out, using
the frequency basis (ω1 = ωo/P, ω2 =Ω). Then, for each Ω, the
phase shift will be calculated from the voltage spectrum at the
observation node [21], doing:

Df(Nvin +V) = V∗(Nvin −V)e jfs − V(Nvin +V)e−jfs

2V(Nvin)
. (16)

To obtain the voltage components in the above expression, the
time-varying harmonic components resulting from the envelope-

domain analysis can be processed to provide:

V(Nvin +V) = XP,1(t)
〈 〉

, V(Nvin −V)

= XP,−1(t)
〈 〉

, V(Nvin) = XP,0(t)
〈 〉 , (17)

where the operator 〈 〉 applies an averaging in the period Tin = 1/
fin and Xk,l(t) is the harmonic component corresponding to the
frequency kω1 + lω2. Note that the time-varying nature of the har-
monics Xk,l(t) is due to the presence of frequency components at
multiples of the injection frequency fin, which are removed by the
operator 〈 〉. Sweeping Ω and tracing |Δf(Nωin +Ω)|2 versus Ω
one obtains a frequency response from which one can identify
the two quantities Ap/V2

s and Ω3 dB. Once these quantities are
available, one can obtain the phase-noise spectrum through (17).

Conclusion

A methodology for the analysis of sub-harmonically injection-
locked oscillators under a high order N has been presented.
This analysis is involved since harmonic-balance will not be
applicable in most cases due to the need to fulfil the injection-
locked oscillation condition under a high number of harmonic
terms. Instead, an envelope-domain analysis has been proposed
here. The procedure has been initially derived and tested in the
case of an oscillator injected by a number of closely spaced
input tones. In these conditions, the oscillator is described with
the aid of a semi-analytical formulation, based on the modeling
of this oscillator with an outer-tier admittance function extracted
from harmonic-balance simulations. The locking bands about
each of the input tones, obtained when sweeping a tuning voltage,
can be efficiently predicted by averaging the phase of the inte-
grated solution. This procedure has been extended to the more
demanding case of a sub-harmonic injection-locked oscillator,
simulated through a circuit-level envelope transient. The phase
noise of the sub-harmonic injection-locked oscillator has been
analyzed with a semi-analytical formulation, based on an admit-
tance model of the oscillator circuit in injection-locked condi-
tions. The effect of the phase noise of an arbitrary periodic

Fig. 15. Comparison of the results of the semi-analytical expression (14) and the
conversion-matrix approach when only white-noise sources are considered. Note
that the spectral density of the white-noise source |IN|

2 was fitted in the standalone
free-running oscillation.

Fig. 16. Comparison of the predictions from (14) with the experimental measurement
of the oscillator phase at Nfin. At the lower offset frequencies, the phase noise is 20log
(30) higher than the one at the lower harmonic frequency of the input source,
included in the figure. The phase-noise spectrum in free-running conditions is also
shown for comparison.
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input waveform has been derived from its associated timing jitter.
The analytical expression for the phase-noise spectral density
shows that the injection-locked oscillator exhibits a low-pass
response with respect to the noise sources. It initially follows N
times the phase noise of the fundamental frequency of the
input-source and then follows its own input noise sources. The
procedure has been illustrated with a practical FET-based sub-
harmonic-injection-locked oscillator at the order N = 30.
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