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(WHEN) DO LONG
AUTOREGRESSIONS ACCOUNT
FOR NEGLECTED CHANGES IN
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To construct forecasts for time series exhibiting breaks, the paper examines long
autoregressions, where the number of lags is growing with T , and possible breaks
are simply ignored. The paper shows that the OLS estimators are still elementwise
consistent for the true autoregressive coefficients when neglecting a break in mean,
but the sum of the estimators converges to unity. Thanks to this unit-root like be-
havior of the fitted model, the resulting conditional forecasts are consistent for the
true values. As long as the dynamic structure is invariant, the robustness property of
the forecasts holds a) under data-dependent lag length selection, b) for a piecewise
smoothly varying mean function, and c) under general autoregressive dynamics of
possibly infinite order including stationary long memory. Under breaks in the dy-
namic structure, however, estimators are asymptotically biased, and the forecasts
from long autoregressions are biased themselves even in the limit.

1. INTRODUCTION

The dynamic modeling and forecasting of economic and financial time series
under breaks in parameters are topics of long history and with recent interest in
econometrics; see e.g., the editorial by Timmermann and van Dijk (2013) to a spe-
cial issue in the Journal of Econometrics or the recent review articles by Clements
and Hendry (2011) and Rossi (2013). In particular, Phillips (1996) proposes
a forecasting framework that addresses both the issue of model selection and
“weeding out” data before a parameter change provided the latter is sufficiently
important (Phillips, 1996, p. 782). The present paper takes a different route and
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investigates the behavior of long autoregressions estimated by ordinary least
squares (OLS), where the number of lagged endogenous regressors is grow-
ing with the sample size, in the presence of ignored instability. The use of au-
toregressive (AR) models for forecasting purposes can be traced back at least
to Akaike (1969). Long autoregressions (LAR), or AR approximations, have
apparently been first discussed by Durbin (1960) for estimating ARMA models
in a two-stage procedure where the unobserved shocks are proxied by first-
stage LAR residuals in a feasible ARMA regression. For linear processes with
mild summability conditions for the Wold coefficients, Berk (1974) derives the
asymptotics of LAR-based spectral density estimators, Bhansali (1978) addresses
forecasting, and Gonçalves and Kilian (2007) study bootstrap-based inference.
Poskitt (2007, 2008) extends the analysis to long memory and noninvertible pro-
cesses. Finally, Wang, Bauwens, and Hsiao (2013) (WBH) open the floor for a
discussion of LAR under breaks.

Our paper contains two contributions with respect to LAR when the true model
is autoregressive and subject to structural changes, where the date or size of the
break is not estimated but simply ignored. First, we address the situation of an ig-
nored mean shift under constant dynamics. If the process is autoregressive of finite
order, the LAR forecast converges to the conditional mean as true forecast func-
tion (Proposition 1 and Corollary 1). In fact, this result continues to hold if the lag
length is not chosen deterministically but data-driven according to an information
criterion (Proposition 2). Further, Proposition 1 extends to more general condi-
tions: we allow for a mean function with several breaks under AR dynamics of
infinite order that may even display long memory. As long as the dynamic struc-
ture is invariant over time, the LAR forecast is unbiased for the conditional mean
asymptotically (Proposition 3). Second, we turn to the case of breaks in the au-
toregressive parameters. Here it turns out that the LAR forecasts are conditionally
biased in the limit and miss the true forecast function (Remark 3). We present
experimental evidence with growing sample sizes illustrating our theoretical
results.

The remainder of the paper is structured as follows. In the next section, we
specify the details of the model under breaks in parameters and discuss the the-
oretical statements by WBH. Section 3 deals, first, with the case of a mean shift
under constant finite-order dynamics, and, second, with a smoothly varying mean
function subject to eventual breaks under dynamics of infinite order and long
memory. Section 4 turns to instability in the dynamic structure. In the fifth sec-
tion, our asymptotic results are illustrated experimentally for a large variety of
finite sample sizes. Concluding remarks are offered in the last section, and the
mathematical proofs are collected in the Appendix.

Finally, a word on notation: ‖·‖ is the Euclidean vector norm, ‖a‖ = √
a′a,

as well as the corresponding induced matrix norm, ‖A‖ = max‖a‖=1 ‖Aa‖, �x�
denotes the integer part of a positive number x , probabilistic Landau symbols
op(·) and Op(·) have their usual meaning, ∼ denotes asymptotic equivalence of
two sequences, C stands for a generic constant whose value may change from
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occurrence to occurrence, and
p→ stands for convergence in probability as the

sample size T goes to infinity.

2. MODEL

We work with T observations of a univariate process {yt } with changing parame-
ters over time:

yt = mt +
{

x (1)
t , t = 1,2, . . . ,T1 = �τ T �

x (2)
t , t = T1 +1,T1 +2, . . . ,T

. (1)

In the most general case, {mt } is only assumed to be piecewise Hölder continuous;
see Assumption 4 below for details. The leading case, however, will be the one
by WBH where {mt } simply captures a mean-shift, allowing for changes in the
autoregressive dynamic at the same time:

yt =
{

μ1 + x (1)
t , t = 1, . . . ,T1 = �τ T �

μ2 + x (2)
t , t = T1 +1, , . . . ,T

, x (r)
t = A−1

r (L)εt =
∞∑

j=0

c(r)
j εt− j . (2)

To distinguish the two regimes, we use superscripts or subscripts r ∈ {1,2} with
break fraction τ ∈ (0,1). For

{
x (r)

t
}

to be weakly stationary, we maintain square
summability of the moving average expansion of the inverted autoregressive poly-
nomials Ar (L) defined in terms of the usual lag operator L:

∑∞
j=0

(
c(r)

j

)2
< ∞.

With the autoregressive polynomials Ar , one obtains from (2) for the respective
regimes

Ar (L)yt = Ar (1)μr + εt , Ar (L) = 1−
∞∑

j=1

a(r)
j L j ,

∞∑
j=1

(
a(r)

j

)2
< ∞ .

In general, for the process to have a bounded mean, it must hold Ar (1) =
1−∑∞

j=1 a(r)
j < ∞ if μr �= 0. Further, we maintain the assumption that the inno-

vations form a sequence of identically and independently distributed (i id) errors.

Assumption 1. The sequence {εt }t∈Z is i id
(
0,σ 2

)
with finite 4th-order

moments.

It is noteworthy that {yt } from (2) has no stationary autoregressive representa-
tion either in the case of a mean shift or in the presence of a break in the dynamics.
Filtering the process with any A∗(L) results in

A∗(L)yt =
{

A∗(1)μ1 + A∗(L)A−1
1 (L)εt , t ≤ T1

A∗(1)μ2 + A∗(L)A−1
2 (L)εt , t > T1

. (3)

Hence, A∗(L)yt = m + εt for all t if and only if A1 = A2 = A∗ and μ1 = μ2.
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When it comes to forecasting, we follow the proposal by WBH and do not
model the date or type of break. We simply ignore the possibility of breaks
and run instead a LAR of yt estimated by OLS: yt = m̂ +∑hT

j=1 âj,hT yt− j + ε̂t ,
t = hT +1, . . . ,T . With âhT denoting the vector of OLS estimators and yt−hT

=(
yt−1, . . . , yt−hT

)′, we write more compactly

yt = m̂ + â′
hT
yt−hT

+ ε̂t . (4)

In this setup, hT is a function of T such that hT → ∞ and hT /T → 0 at suitable
rates. In practice, one would either use some deterministic function of T or de-
termine hT in a data-driven manner, say using information criteria. The one step
ahead forecast function implied by the fitted model is then

ŷT (1) = m̂ + â′
hT
yT +1−hT

= m̂ +
hT∑
j=1

âj,hT yT +1− j , (5)

which is the natural choice given the adopted framework. At the same time, the
true forecast function is the conditional mean: yT (1) = E(yT +1|yT , yT −1, . . .).
Note that yT (1) will depend in general on all the parameters contained in μr and
Ar (L), r ∈ {1,2}, of the model, which is not known in practice.

The use of long autoregressions like in (4) has been advocated by WBH assum-
ing fractionally integrated noise in (2), i.e.

Ar (L) = (1− L)dr = 1−
∞∑

j=1

a(r)
j,d L j , |dr | <

1

2
, (6)

with a(r)
j,d = −π

(r)
j,d , where π

(r)
0,d = 1 and π

(r)
j,d = j−1−dr

j π
(r)
j−1,d with π

(r)
j,d ∼ j−dr −1

�(−dr )
,

j → ∞. For simplicity, we assume for now that μ1 = μ2 = 0. Wang et al. (2013,
Lemma 1) state that {yt } from (2) with (6) has a representation as a fractionally
integrated process without break,

(1− L)d∗
yt = εt , d∗ = λd1 + (1−λ)d2, λ ∈ [0,1] , (7)

where the apparent order of fractional integration d∗ is a convex combination of
d1 and d2, such that

(1− L)d∗
yt = yt −

∞∑
j=1

a(∗)
j yt− j = εt , (8)

with the autoregressive coefficients a(∗)
j taken from the expansion of (1 − L)d∗

.
This statement is not correct as can be seen from (3). In fact, differencing yt from
(2) under (6) results under μ1 = μ2 = 0 in

(1− L)d∗
yt =

{
(1− L)d∗−d1εt ∼ I (d1 −d∗), t ≤ T1

(1− L)d∗−d2εt ∼ I (d2 −d∗), t > T1
. (9)
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Hence, the process yt is I (d∗) only under d1 = d2 = d∗ (no break). In all other
cases, there exists no white noise sequence that, upon filtering with (1 − L)−d∗

,
recovers the yt series with breaks.

Wang et al. (2013, Thm. 1) address the behaviour of OLS estimators from (4).
In the model with break in the autoregressive parameters, the OLS estimators
cannot converge to true AR parameters simply because an AR representation as
in (8) does not exist. Hence, the question raised in the title of this paper comes
in naturally: in what situation do LAR actually account for neglected breaks in
parameters?

3. CHANGES IN THE MEAN

In this section, we focus on the case where A1(L) = A2(L) = A(L). With respect
to the mean function, we begin with the special case of (2) and then move on to the
more general model (1). Similarly, the first subsection is restricted to the situation
of a finite-order AR(p) process rendering itself to simpler interpretation, while
the second subsection contains the AR(∞) case and long memory. Further, we
first assume the number of endogenous regressors hT to grow deterministically
at a controlled rate, while a selection with an information criterion is addressed
subsequently.

3.1. AR(p) with Break in Mean

For polynomials A1(L) = A2(L) constant over time, the model in (2) reduces to
a stationary process except for the mean shift,

yt = mt + xt , (10)

where the deterministic mean function mt exhibits a jump. To simplify matters,
we assume a demeaned structural break mt ,

mt =
{

μ1 = − (1− τ)(m2 −m1) , t ≤ τT

μ2 = τ (m2 −m1) , t > τT
, (11)

and consequently, we do not have to allow for an intercept in the long autore-
gression (4) without loss of generality. In this subsection, the assumptions on the
stochastic component are as follows.

Assumption 2. The process {xt } is autoregressive of finite order p given by
A (L) xt = xt −∑p

j=1 aj xt− j = εt , t ∈ Z, where {εt } is from Assumption 1, and
A (z) has all roots outside the unit circle.

Following Clements and Hendry (2006), the occurrence of a structural break is
not only a matter of the data generating process but also of the model employed.
If one manages to define a step dummy variable Dt indicating the break point
correctly and fits yt = μ1 +μ2 Dt + xt to the data from (10), the extended model
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with parameters μ1 and μ2 does not suffer from a structural break. Omitting the
dummy variable Dt , however, typically results in an omitted variable bias. We will
now show why and how the long autoregression overcomes this omitted variable
bias.

Let �hT = Cov
(
xt−hT

)
denote the hT th-order covariance matrix of {xt } where

xt−hT = (xt−1, . . . , xt−hT

)′; let also �hT = E
(
xt−hT xt

)
. For the data generating

process (DGP) in Assumption 2, it is known that the eigenvalues of �hT and �−1
hT

are bounded and bounded away from zero, such that∥∥�hT

∥∥= O (1) and
∥∥∥�−1

hT

∥∥∥= O (1) ; (12)

see the Fundamental theorem of Grenander and Szegö given for instance in
Brockwell and Davis (1991, Prop. 4.5.3). This will be used to establish the fol-
lowing result.

PROPOSITION 1. Let {yt } satisfy (10) with (11) and Assumption 2. Denote
the vector of true parameters inRhT by ahT = (a1, . . . ,ap,0, . . . ,0

)′
and consider

the vector of OLS estimators âhT from (4). Further, let

ãhT = ahT + μ̄2

1+ μ̄2ι′hT
�−1

hT
ιhT

�−1
hT
ιhT

(
1− ι′hT

ahT

)

where ιhT is an hT -vector of ones and μ̄2 = τ (1− τ)(μ2 −μ1)
2. If h−1

T +
hT T −κ → 0 for some κ ∈ (0, 1

4

]
, it holds as T → ∞ that∥∥âhT − ãhT

∥∥= op
(
h−1/2

T

)
.

Proof. See the Appendix. n

The rate restriction κ ≤ 1/4 is stricter than the one given by Berk (1974) for
obtaining consistent spectral density estimators and is due to the presence of a
break in the mean function not accounted for in the LAR. The intuition behind
the rate reduction is that elementwise negligible terms involving the ignored break
cumulate over âj,hT such that hT must be reduced in order to maintain the desired
first-order limiting behavior.

The sequence ãhT forms a triangular array, and ãj,hT changes for fixed j with
the sample size. The closeness of ãhT and ahT depends on the magnitude and the
timing of the jump through μ̄2, where the effect of the break point is symmetric
about 1/2. E.g., for the special case where {xt } is white noise we have for large hT

ãhT =
μ̄2

σ 2

1+ μ̄2

σ 2 hT

ιhT ≈ 1

hT
ιhT ,

where the larger the ratio μ̄/σ , the better the approximation. The particular case of
white noise with change in mean nicely illustrates the first-order limiting proper-
ties of âhT discussed in the following two remarks.
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Remark 1. The proposition implies elementwise convergence of the LAR OLS

estimators, âj,hT

p→ aj for each j ≤ p and âj,hT

p→ 0 for each p < j ≤ hT even
when ignoring breaks in the mean. This is because a) the row sums of �−1

hT

are bounded and b) �−1
hT

has eigenvalues bounded away from zero such that

ι′hT
�−1

hT
ιhT ∼ ChT . In fact, L2 convergence of the vector of OLS estimates to

the true parameters is also given, but at a lower rate:
∥∥âhT −ahT

∥∥ is of order

Op

(
h−1/2

T

)
but not op

(
h−1/2

T

)
. This is because

∥∥âhT −ahT

∥∥ ≤ ∥∥âhT − ãhT

∥∥+∥∥ãhT −ahT

∥∥ and
∥∥âhT − ãhT

∥∥≤ ∥∥âhT −ahT

∥∥+∥∥ãhT −ahT

∥∥ where

∥∥ãhT −ahT

∥∥= μ̄2
(
1− ι′hT

ahT

)
1+ μ̄2ι′hT

�−1
hT
ιhT

√
ι′hT

�−1
hT

�−1
hT
ιhT ∼ Ch−1/2

T .

Some algebra shows the bias term ãhT − ahT to behave as
1−ι′hT

ahT
hT

ιhT for
large hT .

Table 1 illustrates the convergence behavior of the LAR OLS estimators in a
preliminary Monte Carlo experiment. (The design is as follows: for each sample
size T ∈ {50,100,200,500,1,000,2,000}, we generate 25,000 replications of
standard normal i id series and add a centered mean component with a break
at τ = 1/2, i.e. μ1 = −1.25 and μ2 = 1.25; the fitted autoregression is of order
�4(T/100)0.25� and does not include an intercept.) We note that, for very small
T , the average estimates may appear to come from an I(d) process. But already for

TABLE 1. Mean and standard deviation (in parentheses) of LAR OLS estimators
for a white noise process with break in mean

T ¯̂a1
¯̂a2

¯̂a3
¯̂a4

¯̂a5
¯̂a6

¯̂a7
¯̂a8

∑
âj

50 0.334 0.230 0.215 – – – – – 0.778
(0.130) (0.153) (0.127) (0.065)

100 0.266 0.211 0.192 0.167 – – – – 0.836
(0.0970) (0.095) (0.102) (0.092) (0.037)

200 0.242 0.214 0.203 0.191 – – – – 0.849
(0.068) (0.064) (0.072) (0.064) (0.024)

500 0.192 0.179 0.175 0.167 0.167 – – – 0.881
(0.045) (0.043) (0.048) (0.045) ( 0.042) (0.012)

1,000 0.142 0.136 0.133 0.128 0.126 0.124 0.124 – 0.913
(0.032) (0.031) (0.031) (0.034) ( 0.032) (0.031) (0.030) (0.007)

2,000 0.123 0.120 0.118 0.115 0.114 0.112 0.112 0.111 0.924
(0.023) (0.022) (0.022) (0.021) ( 0.023) (0.023) (0.022) (0.021) (0.004)

Note: The innovations are independent standard normal. The break is located in the middle of the sample and is of
size μ2 −μ1 = 2.5. The figures are computed as mean and standard deviation over 25,000 Monte Carlo replications.
The model order is deterministic, �4(T/100)0.25�.
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T = 500, they are fairly close to 1/hT as predicted by Remark 1, and the differ-
ence is reduced further with larger T . In fact, for any of the studied sample sizes,
the first autoregressive estimator â1,hT is practically equal to 1/hT , and only for
j > 2 does one observe some downward bias in âj,hT . Furthermore, it can be seen
that all autoregressive estimates tend to become smaller on average as T increases,
but apparently more slowly than the respective standard deviations, illustrating the
difference between the true parameter values and the centering sequence ãhT . The
sum of the autoregressive estimators also gets closer to unity as T grows.

Hence the dynamics of the process are in a sense recovered in spite of not
accounting for breaks in the mean. But this is only half of the story. The remark
does not explain why the neglected mean shift would not affect the forecasts,
which should after all be centered at the post-break mean. The following remark
sheds light on this issue.

Remark 2. Because of ι′hT
�−1

hT
ιhT → ∞ one obtains

hT∑
j=1

ãj,hT = ι′hT
ahT + μ̄2ι′hT

�−1
hT
ιhT

1+ μ̄2ι′hT
�−1

hT
ιhT

(
1− ι′hT

ahT

)
= ι′hT

ahT + (1+o (1))
(
1− ι′hT

ahT

)
→ 1

since 1 − ι′hT
ahT is bounded thanks to the stability of {xt }. In other words, the

fitted LAR seemingly have a unit root in that the sum of its coefficients is unity in
the limit, which washes out the change in mean when forecasting by effectively
differencing it away. This convergence is nicely illustrated in Table 1, see the last
column.

We now take a more rigorous look at the long autoregressive forecast function
and show it to be consistent for the true one, given by

yT (1) = E(yT +1|yT , yT −1, . . .) = μ2 +x′
T +1−hT

ahT .

We have the following result.

COROLLARY 1. Under the assumptions of Proposition 1, it holds that
ŷT (1) = yT (1)+op(1) as T → ∞.

Proof. See the Appendix. n

The date and size of an eventual break are unknown in practice and have to
be estimated. Such estimates may be quite imprecise leading to deteriorated fore-
casts. Pesaran and Timmermann (2007) showed that the use of pre-break data may
improve forecasts without specifying the break for the forecast exercise. Corol-
lary 1 shows indeed that a long autoregression, ignoring possible breaks results
in consistent forecasts (as long as the break is restricted to the mean function and
does not affect the dynamics, see Remark 3 below).
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Also, changes in the mean may also occur at the beginning or the end of the
sample. In terms of parameter estimation, they are asymptotically negligible, yet a
break occurring at the end of the sample is forecast-relevant. But if there is another
break in the data, one for which the asymptotics of Proposition 1 is relevant, the
pseudo unit-root behavior of the fitted LAR would also take care of the break at
the end of the sample.

Finally, it would be interesting to compare the procedure studied here with
some more generic robust forecasting approaches. Robustness to breaks (assum-
ing that one is not modeling and timing them explicitly) can be achieved by
resorting to adaptively downweighting data such that only relevant periods serve
for setting up the desired forecast. E.g., Giraitis, Kapetanios, and Price (2013)
work with flexible weighted averages of past values and show that picking the
corresponding bandwidth parameter in real time via cross-validation allows for
robustification against breaks: essentially, the procedure uses the whole past be-
fore the break and gradually increases the weights attached to postbreak data until
prebreak data do not matter. In comparison, with the fitted autoregressive coeffi-
cients adding up to unity in the limit, ŷT (1) is ultimately a weighted average as
well, in fact it is a local weighted average since pT = o(T ), though not an adaptive
one as the one studied in Giraitis et al. (2013).

Summing up, Proposition 1 offers practitioners a safety net when working in an
environment where changes in the mean are not excluded a priori. In applied work,
however, it is customary to choose the model order using data-driven methods like
the Akaike information criterion. Therefore, we address its behavior next.

PROPOSITION 2. Let AI C (
) denote Akaike’s information criterion com-
puted from a fitted OLS autoregression of order 
,

yt =

∑

j=1

âj,
yt− j + ε̂t , 1 ≤ 
 ≤ hT .

Under the assumptions of Proposition 1, it holds for μ1 �= μ2 that

argmin
1≤
≤hT

AI C (
)
p→ ∞ as T → ∞.

Proof. See the Appendix. n

From Proposition 2, we learn that the model order selected by Akaike’s in-
formation criterion satisfies the theoretical rate restrictions on the maximal lag
length hT required by Proposition 1. Hence, the statements of Proposition 1 and
Corollary 1 continue to hold when the lag order is determined by AIC.

The interaction of model selection and estimation is illustrated in Table 2,
which replicates Table 1 with the added twist of selecting the model order via
AIC (the maximal model order is chosen as �4(T/100)0.25�). The results are vir-
tually the same for the two tables, which indicate that the maximal model order
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TABLE 2. Mean and standard deviation (in parentheses) of LAR OLS estimators
for a white noise process with break in mean and model selection via AIC

T ¯̂a1
¯̂a2

¯̂a3
¯̂a4

¯̂a5
¯̂a6

¯̂a7
¯̂a8

∑
âj

50 0.359 0.242 0.156 – – – – – 0.756
(0.143) (0.166) (0.164) (0.084)

100 0.278 0.223 0.197 0.129 – – – – 0.827
(0.099) (0.105) (0.111) (0.122) (0.043)

200 0.244 0.216 0.205 0.183 – – – – 0.848
(0.069) (0.067) (0.073) (0.080) (0.025)

500 0.192 0.180 0.175 0.168 0.166 – – – 0.881
(0.044) (0.042) (0.048) (0.044) (0.043) (0.013)

1,000 0.143 0.136 0.133 0.128 0.126 0.124 0.124 – 0.913
(0.032) (0.032) (0.030) (0.034) (0.032) (0.031) (0.031) (0.007)

2,000 0.123 0.119 0.117 0.115 0.114 0.112 0.112 0.111 0.924
(0.023) (0.022) (0.022) (0.021) (0.024) (0.023) (0.022) (0.022) (0.004)

Note: The maximal model order given by �4(T/100)0.25�. Coefficients not selected are treated as zeros in computing
the averages. For further details see Table 1.

is chosen in most of the cases, and that information criteria are a reliable tool for
practitioners in this framework.

3.2. Extensions

We now extend the model (10) from Proposition 1 in two directions. First, we
step beyond the AR process of finite order from Assumption 2 and allow for
AR(∞) with or without long memory. Second, we replace (11) and consider a
more general mean function as indicated in (1). We will find that results analogous
to Proposition 1 with Remark 2 hold true under much more general conditions,
and the robustness property from Corollary 1 carries over.

Assumption 3. For 0 ≤ d < 1/2, the stationary process {xt } is given by
(1− L)d xt = B (L)εt where {εt } obeys Assumption 1. The coefficients of
B (L) = ∑∞

j=0 bj L j with b0 = 1 satisfy
∑∞

j=0

∣∣bj
∣∣ < ∞,

∑∞
j=0 bj �= 0, and

j1−dbj → 0 as j → ∞.

The stationary process {xt } has a Wold representation where the coefficients are
given by convolution: xt = (1− L)−d B (L)εt . The usual expansion of (1− L)−d

results in coefficients with the decay rate jd−1 that is characteristic for frac-
tional integration. For the long memory case d > 0, we adopt from Hassler and
Kokoszka (2010, Prop. 2.1) the assumption j1−dbj → 0 on B(L), which is nec-
essary and sufficient for the hyperbolic rate jd−1 to carry over from the filter
(1− L)−d to the Wold coefficients of {xt }. For d = 0, {xt } is simply integrated of
order 0.

Now, we turn to the mean process. There is in fact no a priori reason to assume
just one single break in (11); we may allow, more generally, for several such
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discontinuities. Moreover, {mt } does not have to be constant between two breaks;
we only require continuity between two break times, more precisely only Hölder
continuity of some order α. For a function ν (·) on (a,b), we hence assume

sup
a<s<t<b

|ν(t)−ν(s)|
|t − s|α < ∞ for suitable α ∈ (0,1] .

Assumption 4. The mean process {mt } is given by mt = ν(t/T ), where ν (·)
is piecewise Hölder continuous on [0,1] such that the discontinuities are interior
points of [0,1]. Further, we assume

∫ 1
0 ν (s)ds = 0, and let μ̄2 = ∫ 1

0 ν2 (s)ds.

This assumption encompasses, in addition to sudden breaks, a slowly evolving
trend or a random level model. For instance, a Wiener process possesses the path-
wise property from Assumption 4 for any 0 < α < 1/2 so ν(s) ≡ W (s) is allowed
for. The simplifying condition

∫
ν (s)ds = 0 implies that the process is demeaned.

Hence, we consider again a LAR without an intercept without loss of generality.

PROPOSITION 3. Consider {yt } from (10) with {xt } from Assumption 3, and
{mt } satisfies Assumption 4 with 1/4 < α ≤ 1. Then, for hT such that h−1

T +
hT T −κ → 0 for some 0 < κ < min

{
α

2+α+4d ; 1−2d
4+8d

}
, it follows that

∥∥âhT − ãhT

∥∥= op

(
h−1/2

T

)
as T → ∞, where with μ̄2 from Assumption 4 one defines

ãhT = �−1
hT

�hT + μ̄2

1+ μ̄2ι′hT
�−1

hT
ιhT

�−1
hT
ιhT

(
1− ι′hT

�−1
hT

�hT

)
.

Proof. See the Appendix. n

In the AR(p) case, �−1
hT

�hT gives the true autoregressive coefficients for any

hT ≥ p. This does not hold anymore in the AR(∞) case: rather, �−1
hT

�hT gives
the coefficients of the best linear predictor of xt given xt−hT = (xt−1, . . . , xt−hT )′.

The choice of κ is more limited than in Proposition 1. On the one hand, the
presence of long memory imposes κ < 1−2d

4+8d . Analogously, this is stricter than the
rate derived for the case without breaks (Poskitt, 2007). The additional restriction
κ < α

2+α+4d is influenced by the smoothness (or rather roughness) condition on
the mean function ν; it is not binding, for instance, when ν satisfies a Lipschitz
condition, i.e., when α = 1. This additional restriction for κ depends on the local
properties of ν, which may not be easily estimated, but one can always pick it
conservatively as αmin

3+4d for some αmin > 1/4 that one is prepared to accept. The
“worst-case” scenario would be κ < 1/20 for a lower bound of 1/4 for α and a
conservative d = 1/2. But when d is close to 1/2, it is rather 1−2d

4+8d that is binding:

for d > 1/3, 1−2d
4+8d < 1

20 . A logarithmic rate for hT satisfies both.
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In spite of the restrictions on the maximal model order hT caused by the gener-
ality of the DGP considered in Proposition 3, Corollary 1 continues to hold. The
true one-step ahead conditional forecast at the end of the sample is now given by

yT (1) = E(yT +1|yT , yT −1, . . .) = mT +
∞∑

j=1

aj xT +1− j .

We then have the following

COROLLARY 2. Under the assumptions of Proposition 3, it holds that
ŷT (1) = yT (1)+op(1) as T → ∞.

Proof. See the Appendix. n

We hold it for obvious that the model order selected with AIC would go to
infinity irrespective of the variations in the mean when the stochastic component
is AR(∞), so we do not explicitly formulate the result analogous to Proposition 2
here.

4. BREAKS IN THE AUTOREGRESSIVE COEFFICIENTS

As a special case of (2) we now consider the situation of breaks in the dynamic
structure,

yt =
{

x (1)
t = A−1

1 (L)εt , t ≤ τT

x (2)
t = A−1

2 (L)εt , t > τT
, (13)

under the simplifying assumption of a constant mean equal to zero. Since it will
turn out that in this simplest case the LAR does not yield a valid forecast function,
this will be all the more true for more complicated structures. For the same reason,
we assume the AR polynomials to be of finite order and need not examine the
AR(∞) case.

The true forecast function is based on A2, i.e., yT (1) = ∑p
j=1 a(2)

j yT +1− j .
Again, the break is ignored and a long autoregression of order hT is fitted, in-
tending to use it for forecasting, see (5), but without intercept. The process from
(13) is nonstationary and does not have a Wold representation. Still, we may ex-
amine the first-order asymptotics of the OLS estimators like before, in order to
subsequently analyze the forecast function.

PROPOSITION 4. Let {yt } be from (13) and
{

x (r)
t

}
, r = 1,2, satisfy Assump-

tion 2 each, with true parameter vectors a(r)
hT

=
(

a(r)
1 , . . . ,a(r)

p ,0, . . . ,0
)′

. Define

āhT =
(

IhT + 1− τ

τ
�−1

hT ,1�hT ,2

)−1(
a

(1)
hT

+ 1− τ

τ
�−1

hT ,1�hT ,2a
(2)
hT

)
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where �hT ,r denotes the regime-specific covariance matrix of xt−hT for r = 1,2.
If h−1

T +hT T −κ → 0 for some κ ∈ (0,1/4
]
, it holds as T → ∞ that

∥∥âhT − āhT

∥∥=
op

(
h−1/2

T

)
.

Proof. Analogous to the proof of Proposition 1 and omitted. n

We no longer have any kind of convergence to a(2)
hT

. We stress this fact and the
consequences for forecasting in the following remark.

Remark 3. Consider for simplicity the case p = 1 where in the first regime
a(1)

1 �= 0, while the postbreak regime is characterized by white noise, i.e., a(2)
1 = 0.

Then

āhT =
(

IhT + 1− τ

τ
�−1

hT ,1

)−1

a
(1)
hT

where a(1)
hT

= (a(1)
1 ,0, . . . ,0

)′ and �−1
hT ,1 is correspondingly a positive definite

band matrix, so IhT + 1−τ
τ �−1

hT ,1 has eigenvalues bounded and bounded away

from zero. Thus āhT must be nonzero since it equals a(1)
1 times the first row of(

IhT + 1−τ
τ �−1

hT ,1

)−1
; and since this inverse exists, its first row is nonzero. But

the required limit for a correct forecast is, at the end of the sample, the true vector
a

(2)
hT

= (0,0, . . . ,0)′. This shows that ŷT (1) is biased for the conditional forecast
yT (1) even asymptotically.

It may be of interest to add some intuition to Proposition 4. The first regime
of the sample (which should be irrelevant for forecasting at the end of the second
one) has an effect on the estimator, weighted by τ . This parallels the situation
where some process of interest has no break but is superimposed by disturbances
with own dynamics. To become precise, let yt = (1− τ) A−1

2 ε
(2)
t + τ A−1

1 ε
(1)
t ,

where
{
ε
(1)
t

}
is independent of

{
ε
(2)
t

}
. Then for any fixed autoregressive order

p̄, the limit of the OLS autoregressive estimators for yt is given by

(
τ� p̄,1 + (1− τ)� p̄,2

)−1 (
τ� p̄,1 + (1− τ)� p̄,2

)
with � p̄,r and � p̄,r as implied by the lag polynomials Ar , r = 1,2. Of course one
encounters the typical errors in variables effect. Note that the limit under errors
in variables is essentially the same expression as the one derived in Proposition 4.
An analogous result can be shown to hold when the order is p̄ = hT → ∞. Hence,
ignoring changes in the dynamics when running a LAR amounts to estimating un-
der measurement errors and forecasting the signal component using the estimated
dynamics of signal with noise.
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5. SIMULATION EVIDENCE

In order to assess the finite-sample relevance of our limiting results, we conduct
a Monte Carlo analysis examining four particular situations. First, {yt } exhibits a
break in the mean but has otherwise homogenous AR(1) dynamics. Second, {yt }
is fractionally integrated noise of order d having a break in the mean. Third, {yt }
is a zero-mean AR(1) process with a break in the autoregressive parameter, and
fourth, {yt } has a constant mean zero with fractionally integrated noise subject to
a break in the integration order d.

For all four scenarios, we examine series of length T ∈ {50,100,200,
500,1,000,2,000

}
with a burn-in period of 100 observations that are discarded.

The shocks εt are standard normal independent white noise, and the results rely on
25,000 replications for each parameter constellation. The lag length of the LAR
is chosen by Akaike’s information criterion, AIC, with a maximum order given by
�4(T/100)0.25�. We report a) the in-sample residual variance averaged over the
25,000 replications, and b) the variance over 25,000 replications of the difference
between the fitted forecast function ŷT (1) and the true forecast function yT (1).
Both are reported here, since the residual variance averages over the entire series,
whereas the difference between the forecast functions, although only relevant at
the end of the sample, quantifies the optimality loss of the forecast, and this is the
relevant figure for practitioners.

The simulated data generating processes are as follows for the four scenarios.

1. For the AR(1) process with a break in the mean, we simulate with an autore-
gressive parameter a1 ∈ {0,0.3,0.5,0.7,0.95}. The break fraction is taken to
be τ = 1/2, and the magnitude of the break is either small, μ2 −μ1 = 0.2, or
large, μ2 −μ1 = 2.5; the mean function is centered according to (11).

2. For Scenario 2, we use the same setup as in Scenario 1 for the discontinuity
in the mean function, but {yt } has fractionally integrated noise with d ∈
{0,0.1,0.2,0.3,0.4} for the purely stochastic component.

3. Third, for the AR(1) process with a break in the autoregressive parameter,
we have τ = 0.3 or τ = 0.7; the autoregressive dynamics breaks from a(1)

1 ∈
{0,0.3,0.5,0.7,0.95} for the prebreak sample to independent white noise
(a(2)

1 = 0) for the postbreak period.
4. Finally, for the fractionally integrated process with break in d but not in

the mean, we have the setup analogous to that of Scenario 3, with d1 ∈
{0,0.1,0.2,0.3,0.4} before the break and independent white noise (d2 = 0)
thereafter.

The results for the four scenarios are as follows.

1. Scenario 1; see Figure 1. For a small break in mean (μ2 − μ1 = 0.2),
the in-sample residual variance is close to the theoretical one (σ 2 = 1), at
least for larger sample sizes, while at the same time, the Monte Carlo vari-
ance of ŷT (1)− yT (1) is close to zero, which illustrates Proposition 1 and
Corollary 1, respectively. For a larger break in mean (μ2 − μ1 = 2.5), the
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FIGURE 1. Average of residual variance (left), and variance of difference between true and
LAR forecast (right) for AR(1) processes with break in mean.

correspondence between the experimental and the asymptotic values is not
quite so close, and it takes some larger sample to kick in. The larger a1, the
faster the convergence.

2. Scenario 2; see Figure 2. For the I (d) case, the results are quite similar:
For a small break in mean, the in-sample residual variance and variance
of ŷT (1) − yT (1) are close to what we expect from Proposition 1 and
Corollary 1, respectively. With larger breaks in mean, the correspondence
is not so close. All in all the graphs very much resemble the ones under
Scenario 1. Compared to scenario 1, the size of d is of minor importance.
In particular, the variance of the differences between the forecasts is close
to zero. This confirms the favorable performance of LAR reported by WBH
and shows that it extends to larger sample sizes if the parameter break is
restricted to the mean.
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FIGURE 2. Average of residual variance (left), and variance of difference between true and
LAR forecast (right) for I (d) processes with break in mean.

3. Scenario 3; see Figure 3. For a(1)
1 = a(2)

1 = 0 (no break in dynamics), the in-
sample residual variance and the difference between true forecast and LAR
forecast converge to 1 and 0, respectively. For a(1)

1 �= 0, we know that this is
no longer the case (see Proposition 4), which is well illustrated by our ex-
perimental evidence. Depending on the size of the AR parameter, the Monte
Carlo means and variances converge to different levels: the larger the break,
the stronger the bias. (E.g. for a(1)

1 = 0.95, the effect is “off the scale”.) In
particular, when it comes to forecasting (graphs on the right), we observe
that a late break fraction (τ = 0.7) induces a stronger bias than an earlier one
(τ = 0.3), which is quite intuitive.

4. Scenario 4. To save space, we do not present the corresponding figures that
are available upon request: Under long memory, the results from Scenario 3
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FIGURE 3. Average of residual variance (left), and variance of difference between true and
LAR forecast (right) for AR(1) processes with break in dynamics.

are essentially reproduced; although, interestingly, the deviations from the
theoretical values 1 and 0, respectively, are not as strong as in Figure 3. Still,
it is expected that accounting for the break in persistence would improve the
forecast performance; see Heinen, Sibbertsen, and Kruse (2009) for experi-
mental evidence.

6. CONCLUDING REMARKS

The paper considered the use of long autoregressions for forecasting processes,
subject to structural change. A theoretical analysis showed that ignored breaks
in the mean, or slowly varying mean functions, are automatically accounted for
in the limit. The fitted long autoregression seemingly has a unit root, thus im-
plicitly differencing breaks away, while the dynamics are recovered, such that the
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resulting conditional forecasts converge to the true forecast function. The result
holds under infinite-order autoregressive dynamics including long memory. Fur-
thermore, it was shown that long autoregressions do not possess this nice property
when the changes are in the dynamics rather than in the mean. The Monte Carlo
experiments confirmed the theoretical findings, illustrating the use and misuse of
long autoregressions in practice.
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APPENDIX

Before proceeding to the proofs of the propositions, we provide an auxiliary result.

LEMMA A.1. Let {mt } satisfy Assumption 4 with 1/4 < α ≤ 1, and mt−
 =(
mt−1, . . . ,mt−


)′ for some 1 ≤ 
 ≤ hT . Further, let xt = C (L)εt , C(L) =∑∞
j=0 cj L j ,

with {εt } from Assumption 1. The sequence {cj } with c0 = 1 is either absolutely summable

or cj ∼ C jd−1 for 0 < d < 1/2 as j → ∞. Then, as T,hT → ∞ and hT ≤ CT κ for some
κ < 1/3,

1. sup1≤
≤hT

∥∥∥ 1
T
∑T

t=
+1mt−
m
′
t−
 − μ̄2ι
ι

′



∥∥∥= O

(
h1+α

T
T α

)
and

2. sup1≤
≤hT

∥∥∥ 1
T
∑T

t=
+1mt−
x
′
t−


∥∥∥= Op

(
hT

T
1
2 −d

)
when cj ∼ C jd−1 for 0 < d <

1/2 or sup1≤
≤hT

∥∥∥ 1
T
∑T

t=
+1mt−
x
′
t−


∥∥∥= Op

(
hT

T 1/2

)
when

∑
j≥0
∣∣cj
∣∣< ∞.

Proof. For convenience, we subsume the case of absolutely summable {cj } under the
case d = 0 in what follows.

To prove the first item, it suffices to show that

sup
1≤
≤hT

max
1≤ j,k≤


∣∣∣∣∣∣
1

T

T∑
t=
+1

mt− j mt−k − μ̄2

∣∣∣∣∣∣= O

(
hα

T
T α

)
. (A.1)

Now, for all 1 ≤ j,k ≤ 
 ≤ hT ,

1

T

T∑
t=
+1

∣∣∣m2
t −mt− j mt−k

∣∣∣≤ C

(



T

)α

≤ C

(
hT

T

)α

(A.2)

thanks to the piecewise Hölder continuity of ν: while its jump discontinuities may generate
nonvanishing differences between m2

t and mt− j mt−k , there is a finite number thereof and

their effect is of order O
( 1

T

)
in the l.h.s. of (A.2) and thus negligible compared with

( hT
T

)α .
In the second step, we note that

1

T

T∑
t=
+1

m2
t →

∫ 1

0
ν2 (s)ds = μ̄2,

where the maximum difference (over 1 ≤ 
 ≤ hT ) between the average and the integral

is of order O
(

max
{

1
T α ; 


T

})
, thanks to the Hölder condition on ν and the fact that 0 ≤

1
T
∑


t=1 m2
t ≤ 


T (again, the number of discontinuities is finite and their effect negligible,
and mt is bounded on [0,1]). Summing up, Equation (A.1) holds and the desired result
follows immediately.

To prove the second item, we treat ν as if it was uniformly Hölder continuous of order
α, since the finite number of jumps in ν has negligible influence; see above.

Now, the used matrix norm is bounded by the square root of the product of the maxi-
mum row-sum and maximum column-sum norms. The sum of the absolute values of the
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elements on row k of the matrix of interest 1
T
∑T

t=
+1mt−
x
′
t−
 is


∑
j=1

∣∣∣∣∣∣
1

T

T∑
t=
+1

mt−k xt− j

∣∣∣∣∣∣≤

∑

j=1

∣∣∣∣∣∣
1

T

T∑
t=
+1

mt− j xt− j

∣∣∣∣∣∣
+


∑
j=1

∣∣∣∣∣∣
1

T

T∑
t=
+1

(
mt−k −mt− j

)
xt− j

∣∣∣∣∣∣ . (A.3)

For the first term on the r.h.s. of (A.3), we have with the usual convention that
∑n

m = 0
when m > n that


∑
j=1

∣∣∣∣∣∣
1

T

T∑
t=
+1

mt− j xt− j

∣∣∣∣∣∣≤

∑

j=1

∣∣∣∣∣∣
1

T

T∑
t=2

mt−1xt−1

∣∣∣∣∣∣
+


∑
j=1

∣∣∣∣∣∣
1

T


− j+1∑
t=2

mt−1xt−1

∣∣∣∣∣∣+

∑

j=1

∣∣∣∣∣∣
1

T

T∑
t=T − j+2

mt−1xt−1

∣∣∣∣∣∣ ;
note that neither of the three terms on the r.h.s. of the above inequality depends on k,
and thus their sum gives an upper bound for the maximum over k of the first term on
the r.h.s. of (A.3). Analyzing the behavior of these three terms one by one, note that the
variance of 1

T
∑T

t=2 mt−1xt−1 – average not depending on 
 – is easily checked to be

O
(
T 2d−1) thanks to the boundedness of mt and the O

(
j2d−1) behavior of the j th-order

autocovariance of xt for 0 < d < 1/2 (or absolute summability for d = 0). At the same time,

hT∑
j=1

∣∣∣∣∣∣
1

T

hT − j+1∑
t=2

mt−1xt−1

∣∣∣∣∣∣≤
max1≤t≤T

∣∣mt−1
∣∣

T

hT∑
j=1

hT − j+1∑
t=2

∣∣xt−1
∣∣

≤ C



T


∑
t=2

∣∣xt−1
∣∣≤ C

hT

T

hT∑
t=2

∣∣xt−1
∣∣

for all 1 ≤ 
 ≤ hT , such that

E

⎛
⎝ sup

1≤
≤hT

hT∑
j=1

∣∣∣∣∣∣
1

T

hT − j+1∑
t=2

mt−1xt−1

∣∣∣∣∣∣
⎞
⎠≤ C

h2
T

T
.

Analogously,

E

⎛
⎝ sup

1≤
≤hT


∑
j=1

∣∣∣∣∣∣
1

T

T∑
t=T − j+2

mt−1xt−1

∣∣∣∣∣∣
⎞
⎠≤ C

h2
T

T
.

With Chebyschev’s and Markov’s inequalities, we thus have uniformly for 1 ≤ 
 ≤ hT

max
1≤k≤



∑
j=1

∣∣∣∣∣∣
1

T

T∑
t=
+1

mt− j xt− j

∣∣∣∣∣∣= Op

(
max

{
h2

T
T

; hT

T 1/2−d

})
= Op

(
hT

T 1/2−d

)
.
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For the second term on the r.h.s. of (A.3), we have that max1≤ j,k≤


∣∣mt−k −mt− j
∣∣ ≤

C
(

hT
T

)α
for all 
 ≤ hT thanks to the Hölder condition on ν, such that

Var

⎛
⎝ 
∑

j=1

∣∣∣∣∣∣
1

T

T∑
t=
+1

(
mt−k −mt− j

)
xt− j

∣∣∣∣∣∣
⎞
⎠

≤ 
2 max
1≤k, j≤


Var

⎛
⎝
∣∣∣∣∣∣

1

T

T∑
t=
+1

(
mt−k −mt− j

)
xt− j

∣∣∣∣∣∣
⎞
⎠

≤ C
2
(

hT

T

)2α

T 2d−1 ≤ Ch2
T

(
hT

T

)2α

T 2d−1

uniformly in 
. Now, the maximum over at most hT uniformly L2-bounded variables

is of order Op
(√

hT
)
; by normalizing

∑

j=1

∣∣∣ 1
T
∑T

t=
+1
(
mt−k −mt− j

)
xt− j

∣∣∣ with

hT

(
hT
T

)α
T d− 1

2 we may thus conclude that

sup
1≤
≤hT

max
1≤k≤



∑
j=1

∣∣∣∣∣∣
1

T

T∑
t=
+1

(
mt−k −mt− j

)
xt− j

∣∣∣∣∣∣= Op

(
h1.5

T

(
hT

T

)α

T d−1/2

)

which, for α > 1/4 and κ < 1/3, is Op

(
hT

T 1/2−d

)
as can easily be checked (for any α > 1/4

we have that α
1
2 +α

> 1
3 > κ as required). Summing up, we have for the row-sum norm

sup
1≤
≤hT

max
1≤k≤



∑
j=1

∣∣∣∣∣∣
1

T

T∑
t=
+1

mt−k xt− j

∣∣∣∣∣∣= Op

(
hT

T 1/2−d

)
;

the same arguments apply for the maximum column-sum norm, such that one has

sup
1≤
≤hT

∥∥∥∥∥∥
1

T

T∑
t=
+1

mt−
x
′
t−


∥∥∥∥∥∥
≤

√√√√√ sup
1≤
≤hT

∥∥∥∥∥∥
1

T

T∑
t=
+1

mt−
x
′
t−


∥∥∥∥∥∥
col

sup
1≤
≤hT

∥∥∥∥∥∥
1

T

T∑
t=
+1

mt−
x
′
t−


∥∥∥∥∥∥
row

,

which is Op

(
hT

T 1/2−d

)
as required. n

Proof of Proposition 1. We will prove that

max
1≤
≤hT

√
hT
∥∥â
 − ã


∥∥ p→ 0 , (A.4)

which is slightly stronger than the required result. Obviously, (A.4) implies the conver-
gence stated in Proposition 1; but the uniformity will further be employed in the proof of
Proposition 2.
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Let Ŝ
 = 1
T
∑T

t=
+1yt−
y
′
t−
 and �μ,
 = �
 + μ̄2ι
ι

′

, as well as Ĝ
 =

1
T
∑T

t=
+1yt−
yt and �μ,
 = �
 + μ̄2ι
. Let againmt−
 = (mt−1, . . . ,mt−

)′.

Note as a preliminary result that, using the Sherman–Morrison formula,

�−1
μ,
 =

(
�
 + μ̄2ι
ι

′



)−1 = �−1



(
I − μ̄2

1+ μ̄2ι′
�
−1

 ι


ι
ι
′

�

−1



)
,

implying that

∥∥∥�−1
μ,


∥∥∥≤
∥∥∥�−1




∥∥∥
(

1+
∣∣∣∣∣ μ̄2

1+ μ̄2ι′
�
−1

 ι


∣∣∣∣∣
∥∥∥ι
ι′
�−1




∥∥∥
)

.

Furthermore, ι′
�
−1

 ι
 ≥ C
 has the same order as

∥∥∥ι
ι′
�−1



∥∥∥≤ ∥∥ι
ι′
∥∥
∥∥∥�−1




∥∥∥≤ C
 ≤
C hT , hence∥∥∥�−1

μ,


∥∥∥= O
(∥∥∥�−1




∥∥∥)= O (1) (A.5)

uniformly in 1 ≤ 
 ≤ hT .
Turning our attention to the OLS estimator, we have

â
 = Ŝ−1

 Ĝ
 = Ŝ−1




(
Ĝ
 −�μ,


)
+
(

Ŝ−1

 −�−1

μ,


)
�μ,
 +�−1

μ,
�μ,


such that∥∥∥â
 −�−1
μ,
�μ,


∥∥∥≤
∥∥∥Ŝ−1




∥∥∥∥∥∥Ĝ
 −�μ,


∥∥∥+
∥∥∥Ŝ−1


 −�−1
μ,


∥∥∥∥∥�μ,


∥∥ .

Obviously, sup1≤
≤hT

∥∥�μ,


∥∥= O
(√

hT
)
. We then need to analyze the remaining norms.

To do so, let us first examine

Ŝ
 −�μ,
 =
⎛
⎝ 1

T

T∑
t=
+1

xt−
x
′
t−
 −�


⎞
⎠+

⎛
⎝ 1

T

T∑
t=
+1

mt−
m
′
t−
 − μ̄2ι
ι

′



⎞
⎠

+ 1

T

T∑
t=
+1

mt−
x
′
t−
 + 1

T

T∑
t=
+1

xt−
m
′
t−
.

We now derive upper bounds for the norms of each of the summands on the r.h.s. of

the above equation, which will give an upper bound for
∥∥∥Ŝ
 −�μ,


∥∥∥. It follows from

Lemma A.1 that

sup
1≤
≤hT

∥∥∥∥∥∥
1

T

T∑
t=
+1

mt−
x
′
t−


∥∥∥∥∥∥= Op

(
hT√

T

)
.

Moreover, given the rate restriction hT = o
(
T κ
)

for some κ ≤ 1/4 and the uniformly

bounded variance of ε2
t , we conclude after carefully examining the proof of Lemma 7

in Demetrescu (2009) that

sup
1≤
≤hT

∥∥∥∥∥∥
1

T

T∑
t=
+1

xt−
x
′
t−
 −�


∥∥∥∥∥∥= Op

(
hT√

T

)
,
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and for the remaining terms, we have from Lemma A.1 that

sup
1≤
≤hT

∥∥∥∥∥∥
1

T

T∑
t=
+1

mt−
m
′
t−
 − μ̄2ι
ι

′



∥∥∥∥∥∥= O

(
h2

T
T

)
.

Summing up,

sup
1≤
≤hT

∥∥∥Ŝ
 −�μ,


∥∥∥= Op

(
max

{
h2

T
T

; hT√
T

})
= op (1) .

Furthermore, as a consequence of this and Equation (A.5),
∥∥∥Ŝ−1




∥∥∥ ≤
∥∥∥Ŝ−1


 −�−1
μ,


∥∥∥
+
∥∥∥�−1

μ,


∥∥∥ = Op (1) uniformly in 
. Also,
∥∥∥�−1

μ,


∥∥∥∥∥∥Ŝ
 −�μ,


∥∥∥ p→ 0 so
∥∥∥�−1

μ,


∥∥∥∥∥∥Ŝ
 −�μ,


∥∥∥ < 1 with probability approaching unity as T → ∞ and we have in the limit

that

∥∥∥Ŝ−1

 −�−1

μ,


∥∥∥≤
∥∥∥�−1

μ,


∥∥∥
∥∥∥�−1

μ,


∥∥∥∥∥∥Ŝ
 −�μ,


∥∥∥
1−
∥∥∥�−1

μ,


∥∥∥∥∥∥Ŝ
 −�μ,


∥∥∥
for all 
. (The inequality is given explicitly by Lütkepohl, 1996, Sec. 8.4.1 11(c), but it has
been used before by Lewis and Reinsel, 1985, p. 397 and Berk, 1974, eqn. 2.15.) Thus, we
may conclude that

sup
1≤
≤hT

∥∥∥Ŝ−1

 −�−1

μ,


∥∥∥= Op

(
sup

1≤
≤hT

∥∥∥Ŝ
 −�μ,


∥∥∥
)

= Op

(
max

{
h2

T
T

; hT√
T

})
.

Similarly,

Ĝ
 −�μ,
 =
⎛
⎝ 1

T

T∑
t=
+1

xt−
xt −�


⎞
⎠+

⎛
⎝ 1

T

T∑
t=
+1

mt−
mt − μ̄2ι


⎞
⎠

+ 1

T

T∑
t=
+1

xt−
mt + 1

T

T∑
t=
+1

mt−
xt .

We have analogously to the relations above that

sup
1≤
≤hT

∥∥∥∥∥∥
1

T

T∑
t=
+1

xt−
mt

∥∥∥∥∥∥= Op

(√
hT

T

)
= sup

1≤
≤hT

∥∥∥∥∥∥
1

T

T∑
t=
+1

mt−
xt

∥∥∥∥∥∥ ,

sup
1≤
≤hT

∥∥∥∥∥∥
1

T

T∑
t=
+1

mt−
mt − μ̄2ι

∥∥∥∥∥∥= O

(
h1.5

T
T

)
;

using again the arguments of the proof of Lemma 7 in Demetrescu (2009), we furthermore
obtain

sup
1≤
≤hT

∥∥∥∥∥∥
1

T

T∑
t=
+1

xt−
xt −�


∥∥∥∥∥∥= Op

(√
hT

T

)
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such that, summing up,

sup
1≤
≤hT

∥∥∥Ĝ
 −�μ,


∥∥∥= Op

(
max

{
h1.5

T
T

;
√

hT

T

})
.

Hence

sup
1≤
≤hT

∥∥∥â
 −�−1
μ,
�μ,


∥∥∥= Op

(√
hT ·max

{
h2

T
T

; hT√
T

})
+Op

(
max

{
h1.5

T
T

;
√

hT

T

})
.

This is op

(
h−1/2

T

)
when suitably choosing κ ≤ 1/4, as required for (A.4).

Focusing now on the “centering” sequence

ã
 = �−1
μ,
�μ,
 =

(
�
 + μ̄2ι
ι

′



)−1 (
�
 + μ̄2ι


)
,

use the Sherman–Morrison formula again to obtain that

ã
 =
(

I − μ̄2

1+ μ̄2ι′
�
−1

 ι


�−1

 ι
ι

′



)
�−1


 �


+ μ̄2�−1

 ι
 − 1

1+ μ̄2ι′
�
−1

 ι


μ̄2�−1

 ι
μ̄

2ι′
�−1

 ι


=
(

I − μ̄2

1+ μ̄2ι′
�
−1

 ι


�−1

 ι
ι

′



)
a
 + μ̄2�−1


 ι


(
1− 1

1+ μ̄2ι′
�
−1

 ι


μ̄2ι′
�−1

 ι


)

= a
 − μ̄2

1+ μ̄2ι′
�
−1

 ι


�−1

 ι
ι

′

a
 + 1

1+ μ̄2ι′
�
−1

 ι


μ̄2�−1

 ι


= a
 + μ̄2

1+ μ̄2ι′
�
−1

 ι


�−1

 ι


(
1− ι′
a


)
as required. n

Proof of Corollary 1. By definition, we have that

ŷT (1) =
hT∑
j=1

ãj,hT yT +1− j +
hT∑
j=1

(
âj,hT − ãj,hT

)
yT +1− j .

With
∥∥yT +1−hT

∥∥=
∥∥∥(yT , . . . , yT +1−hT

)′∥∥∥= Op
(√

hT
)

it follows∣∣∣∣∣∣
hT∑
j=1

(
âj,hT − ãj,hT

)
yT +1− j

∣∣∣∣∣∣≤
√∥∥âhT − ãhT

∥∥∥∥yT +1−hT

∥∥= op (1)

such that ŷT (1) = ∑hT
j=1 ãj,hT yT +1− j + op (1). Examining the nonnegligible term of

ŷT (1), we further obtain that

hT∑
j=1

ãj,hT yT +1− j = μ2

hT∑
j=1

ãj,hT +
hT∑
j=1

ãj,hT xT +1− j .
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Since
∑hT

j=1 ãj,hT → 1 as T → ∞ by Proposition 1 (see also Remark 2), the correct mean
μ2 at the end of the sample is automatically taken into consideration for the out-of-sample
forecast when T is large. With yT (1) = μ2 +x′

T +1−hT
ahT , one obtains

hT∑
j=1

ãj,hT xT +1− j = x′
T +1−hT

ãhT = yT (1)−μ2

+ μ̄2

1+ μ̄2ι′hT
�−1

hT
ιhT

x′
T +1−hT

�−1
hT
ιhT

(
1− ι′hT

ahT

)
.

We are thus left with showing that the third summand on the r.h.s. of this equation vanishes
as T → ∞. This holds true, since

(
1− ι′hT

ahT

)
is bounded, see above and

x′
t−hT

�−1
hT
ιhT = Op

(√
ι′hT

�−1
hT
ιhT

)

since Var
(
x′

t−hT
�−1

hT
ιhT

)
= ι′hT

�−1
hT

Cov
(
xt−hT

)
�−1

hT
ιhT = ι′hT

�−1
hT
ιhT . At the same

time,

μ̄2

1+ μ̄2ι′hT
�−1

hT
ιhT

= O

⎛
⎝ 1

ι′hT
�−1

hT
ιhT

⎞
⎠ ,

and the result follows given that ι′hT
�−1

hT
ιhT → ∞. Hence the proof is complete. n

Proof of Proposition 2. For a fitted model or order 
, the residuals are

ε̂t,
 = yt − â′

yt−
 = xt − â′


xt−
 +mt − â′

mt−


= εt − (â
 −a

)′
xt−
 +mt − â′


mt−
.

We start with the case 
 ≥ p, where

σ̂ 2

 = 1

T

T∑
t=
+1

ε̂2
t,
 = 1

T

T∑
t=
+1

ε2
t + 2

T

T∑
t=
+1

εt

(
−(â
 −a


)′
xt−
 +mt − â′


mt−


)
.

+ 1

T

T∑
t=
+1

(
−(â
 −a


)′
xt−
 +mt − â′


mt−


)2

= AT + BT +CT .

Analyzing the three terms in turn, we have first

AT = 1

T

T∑
t=
+1

ε2
t = 1

T

T∑
t=hT +1

ε2
t − 1

T

hT∑
t=l+1

ε2
t

where, for all p ≤ 
 ≤ hT ,

0 ≤ 1

T

hT∑
t=l+1

ε2
t ≤ 1

T

hT∑
t=1

ε2
t = Op

(
hT

T

)
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such that

max
p≤
≤hT

∣∣∣∣∣∣
1

T

T∑
t=
+1

ε2
t − 1

T

T∑
t=hT +1

ε2
t

∣∣∣∣∣∣= Op

(
hT

T

)
;

moreover,

1

T

T∑
t=hT +1

ε2
t = 1

T

T∑
t=1

ε2
t + Op

(
hT

T

)
= σ 2 +op (1)

with the op (1) term obviously not depending on 
, so maxp≤
≤hT

∣∣∣AT −σ 2
∣∣∣= op (1).

Second, for examining

BT = − 2

T

(
â
 −a


)′ T∑
t=
+1

εtxt−
 + 2

T

T∑
t=
+1

εt
(
mt − â′


mt−

)= BT 1 + BT 2,

note that∥∥â
 −a


∥∥ ≤ ∥∥â
 − ã


∥∥+‖ã
 −a
‖

= op (1)+
∥∥∥∥∥ μ̄2

1+ μ̄2ι′
�
−1

 ι


�−1

 ι


(
1− ι′
a


)∥∥∥∥∥ .

The op (1) term on the r.h.s. is uniform in p ≤ 
 ≤ hT , see Equation (A.4), while the
norm converges as 
 → ∞ (see e.g. the discussion preceding Equation (A.5)) and is thus
bounded. Hence

∥∥â
 −a


∥∥= Op (1) uniformly in p ≤ 
 ≤ hT . Note now that

∥∥∥∥∥∥
T∑

t=hT +1

εtxt−


∥∥∥∥∥∥=

√√√√√ 
∑
i=1

⎛
⎝ T∑

t=hT +1

εt xt−i

⎞
⎠

2

≤

√√√√√ hT∑
i=1

⎛
⎝ T∑

t=hT +1

εt xt−i

⎞
⎠

2

=
∥∥∥∥∥∥

T∑
t=hT +1

εtxt−hT

∥∥∥∥∥∥
and similarly

∥∥∥∑hT
t=
+1 εtxt−


∥∥∥≤
∥∥∥∑hT

t=1 εtxt−hT

∥∥∥ such that it follows for any p ≤ 
 ≤
hT that∥∥∥∥∥∥

1

T

T∑
t=
+1

εtxt−


∥∥∥∥∥∥≤
∥∥∥∥∥∥

1

T

T∑
t=hT +1

εtxt−


∥∥∥∥∥∥+
∥∥∥∥∥∥

1

T

hT∑
t=
+1

εtxt−


∥∥∥∥∥∥
≤
∥∥∥∥∥∥

1

T

T∑
t=hT +1

εtxt−hT

∥∥∥∥∥∥+
∥∥∥∥∥∥

1

T

hT∑
t=
+1

εtxt−hT

∥∥∥∥∥∥ ,

where in turn
∥∥∥ 1

T
∑T

t=hT +1 εtxt−hT

∥∥∥ = Op

(√
hT
T

)
and

∥∥∥ 1
T
∑hT

t=
+1 εtxt−hT

∥∥∥ =
Op

(
h2

T
T

)
uniformly in 
, leading to

max
p≤
≤hT

|BT 1| ≤ max
p≤
≤hT

∥∥â
 −a


∥∥ max
p≤
≤hT

∥∥∥∥∥∥
1

T

T∑
t=
+1

εtxt−


∥∥∥∥∥∥= op (1) .
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For examining BT 2, note that
∥∥â


∥∥= ‖a
‖+op

(

−1/2

)
= Op (1) and proceeds as above

to obtain uniform (in 
) bounds for 2
T
∑T

t=
+1 εt mt and 2
T
∑T

t=
+1 εtmt−
 leading after
some algebra to

BT 2 = 2

T

T∑
t=
+1

εt mt − â′



2

T

T∑
t=
+1

εtmt−
 = Op

(
T −1/2

)
+ Op

(√
hT

T

)

uniformly in p ≤ 
 ≤ hT , or maxp≤
≤hT |BT 2| = op (1).
Third,

CT = 1

T

T∑
t=
+1

((
â
 −a


)′
xt−


)2 + 1

T

T∑
t=
+1

(
mt − â′


mt−

)2

− 2

T

T∑
t=
+1

((
â
 −a


)′
xt−


)(
mt − â′


mt−

)
.

= CT 1 +CT 2 +CT 3.

Examining CT 1, write â
 −a
 = â
 − ã
 + ã
 −a
 to obtain

CT 1 = 1

T

T∑
t=
+1

((
â
 − ã


)′
xt−


)2 + 1

T

T∑
t=
+1

(
(ã
 −a
)

′xt−

)2

+ 2

T

T∑
t=
+1

((
â
 −a


)′
xt−


)(
(ã
 −a
)

′xt−

)
.

For the first term on the r.h.s. of the above equation, we have

1

T

T∑
t=
+1

((
â
 − ã


)′
xt−


)2 = (â
 − ã

)′⎛⎝ 1

T

T∑
t=
+1

xt−
x
′
t−


⎞
⎠(â
 − ã


)

where
∥∥â
 − ã


∥∥→ 0 uniformly in p ≤ 
 ≤ hT , see Equation (A.4), and the norm of the
sample covariance matrix is easily shown to be uniformly (in 
) bounded in probability
such that

max
p≤
≤hT

1

T

T∑
t=
+1

((
â
 − ã


)′
xt−


)2 = op (1) .

The second term on the r.h.s. gives

1

T

T∑
t=
+1

(
(ã
 −a
)

′xt−

)2 = (ã
 −a
)

′ �
 (ã
 −a
)

+ (ã
 −a
)
′
⎛
⎝ 1

T

T∑
t=
+1

xt−
x
′
t−
 −�


⎞
⎠(ã
 −a
) .
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With ‖ã
 −a
‖ = Op (1) ∀ p ≤ 
 ≤ hT as above and
∥∥∥ 1

T
∑T

t=
+1xt−
x
′
t−
 −�


∥∥∥ p→ 0

∀ p ≤ 
 ≤ hT , it follows for the second term on the r.h.s. that

1

T

T∑
t=
+1

(
(ã
 −a
)

′xt−

)2 = (ã
 −a
)

′ �
 (ã
 −a
)+op (1)

uniformly in p ≤ 
 ≤ hT , or

max
p≤
≤hT

∣∣∣∣∣∣∣
1

T

T∑
t=
+1

(
(ã
 −a
)

′xt−

)2 − μ̄4 (1− ι′
a


)2
ι′
�

−1

 ι
(

1+ μ̄2ι′
�
−1

 ι


)2

∣∣∣∣∣∣∣= op (1) .

The absolute value of the third term on the r.h.s. can be bounded via the Cauchy–Schwarz
inequality,∣∣∣∣∣∣

T∑
t=
+1

((
â
 −a


)′
xt−


)(
(ã
 −a
)

′xt−

)∣∣∣∣∣∣

≤

√√√√√ T∑
t=
+1

((
â
 − ã


)′
xt−


)2 T∑
t=
+1

(
(ã
 −a
)

′xt−

)2

so it also vanishes uniformly. Thus,

max
p≤
≤hT

∣∣∣∣∣∣∣CT 1 − μ̄4 (1− ι′
a

)2
ι′
�

−1

 ι
(

1+ μ̄2ι′
�
−1

 ι


)2

∣∣∣∣∣∣∣= op (1) .

For CT 2, we have that mt −â′

mt−
 = mt

(
1− â′


ι

)

for 
 ≤ t ≤ τT and τT +hT ≤ t ≤
T , and otherwise maxp≤
≤hT

∣∣mt − â′

mt−


∣∣ = Op (hT ), since
∥∥â


∥∥ = op (1) as above,
so

1

T

T∑
t=
+1

(
mt − â′


mt−

)2 = (1− â′


ι

)⎛⎝ 1

T

T∑
t=
+1

m2
t − 1

T

τT∑
t=τT −
+1

m2
t

⎞
⎠+ Op

(
h2

T
T

)

uniformly. Then, with 1
T
∑T

t=1 m2
t → μ̄2, maxp≤
≤hT

∣∣∣ 1
T
∑τT

t=τT −
+1 m2
t

∣∣∣ = O
(

hT
T

)
and

â′

ι
 = ã′


ι
 + (â
 − ã

)′
ι
 = 1+op (1)

uniformly in p ≤ 
 ≤ hT , it follows that

max
p≤
j≤hT

∣∣∣∣∣∣
1

T

T∑
t=
+1

(
mt − â′


mt−

)2∣∣∣∣∣∣= op (1) .

Using Cauchy–Schwarz again, we have |CT 3| ≤ √
CT 1CT 2 = op (1) uniformly in

p ≤ 
 ≤ hT .
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Summing up, we have that

max
p≤
≤hT

∣∣∣∣∣∣∣σ̂
2

 −σ 2 − μ̄4 (1− ι′
a


)2
ι′
�

−1

 ι
(

1+ μ̄2ι′
�
−1

 ι


)2

∣∣∣∣∣∣∣
p→ 0.

Since AI C (
) = ln σ̂ 2

 + 2


T and 
 ≤ hT , this implies in turn

max
p≤
≤hT

∣∣∣∣∣∣∣AI C (
)− ln

⎛
⎜⎝σ 2 + μ̄4 (1− ι′
a


)2
ι′
�

−1

 ι
(

1+ μ̄2ι′
�
−1

 ι


)2

⎞
⎟⎠
∣∣∣∣∣∣∣

p→ 0.

The logarithm in the equation above is a sequence converging to lnσ 2 from above. Hence,
for any fixed 
, the probability to observe an AI C (
) smaller than all AI C (k) for 
 < k ≤
hT converges to zero, implying that argmin

p≤
≤hT

AI C (
)
p→ ∞ as required.

Since the true model order is equal to p, it is easily shown that a lag length smaller than
p will not be chosen asymptotically; we omit the details. The proof is complete. n

Proof of Proposition 3. The steps of the proof are essentially the same as in the proof of
Proposition 1, and we use the same notation with ã
 = �−1

μ,
�μ,
 for each 1 ≤ 
 ≤ hT etc.

Hassler and Kokoszka (2010) show that, if j1−d bj → 0 with 0 < d < 1, the Wold co-
efficients of xt behave asymptotically as those of the fractional white noise of integration
order d. Hence we may build on results derived for fractional white noise for 0 < d < 1

2 ,
and on the analogous results for absolutely summable coefficients for d = 0.

For 0 < d < 1/2, γj = Cov
(
xt , xt− j

) = O
(

j2d−1) such that ‖�
‖ ≤ C
2d ≤ Ch2d
T

and ‖�
‖ ≤ C hd
T . Still,

∥∥∥�−1



∥∥∥ = O (1) uniformly in 
 like in the short-memory case

(which is recovered for d = 0). Also, ι
�
−1

 ι

′

 ≥ C 
1−2d since �−1


 is positive definite

and its smallest eigenvalue is at least of order 
−2d . It then follows, like in the proof of
Proposition 1, that

∥∥∥�−1
μ,


∥∥∥= O

⎛
⎝∥∥∥�−1




∥∥∥
∥∥∥ι
ι′
�−1




∥∥∥
ι′
�

−1

 ι


⎞
⎠= O

(

2d
)

= O
(

h2d
T

)

for all 1 ≤ 
 ≤ hT . Therefore,

sup
1≤
≤hT

∥∥∥â
 −�−1
μ,
�μ,


∥∥∥≤ sup
1≤
≤hT

∥∥∥Ŝ−1



∥∥∥ sup
1≤
≤hT

∥∥∥Ĝ
 −�μ,


∥∥∥
+ sup

1≤
≤hT

∥∥∥Ŝ−1

 −�−1

μ,


∥∥∥ sup
1≤
≤hT

∥∥�μ,


∥∥ (A.6)

where
∥∥�μ,


∥∥≤ ‖�
‖+ μ̄2 ‖ι
‖ ≤ C
√

hT for all 1 ≤ 
 ≤ hT .
To establish the behavior of the r.h.s. of the inequality (A.6), the same norms as in the

proof of Proposition 1 need to be examined.
From Poskitt (2007, Thm. 1), it follows that

sup
1≤
≤hT

∥∥∥∥∥∥
1

T

T∑
t=
+1

xt−
x
′
t−
 −�


∥∥∥∥∥∥= Op

(
hT

(
log T

T

)1/2−d
)

,
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since the innovations εt satisfy his Assumption 1, and our rate restrictions certainly satisfy
that. Using the magnitude orders from Lemma A.1, we thus obtain

sup
1≤
≤hT

∥∥∥Ŝ
 −�μ,


∥∥∥= Op

(
max

{
h1+α

T
T α

; hT

(
log T

T

)1/2−d
})

.

With both hT

(
log T

T

)1/2−d
vanishing and

h1+α
T
T α dominated by h2d

T since κ < α
2+α+4d and

α
2+α+4d < α

1+α−2d , we further have that

sup
1≤
≤hT

∥∥∥Ŝ−1

 −�−1

μ,


∥∥∥= Op

(
h4d

T ·max

{
h1+α

T
T α

; hT

(
log T

T

)1/2−d
})

= op (1)

and hence

sup
1≤
≤hT

∥∥∥Ŝ−1



∥∥∥ ≤ sup
1≤
≤hT

∥∥∥Ŝ−1

 −�−1

μ,


∥∥∥+ sup
1≤
≤hT

∥∥∥�−1
μ,


∥∥∥
= Op

(
sup

1≤
≤hT

∥∥∥�−1
μ,


∥∥∥
)

= Op

(
h2d

T

)
.

Moving on to the behavior of
∥∥∥Ĝ
 −�μ,


∥∥∥, we exploit the uniform boundedness of the

variance of 1
T
∑T

t=
+1 xt− j mt−k for 1 ≤ j,k ≤ 
 ≤ hT (implied by boundedness of mt
and weak stationarity of xt ) to conclude that

sup
1≤
≤hT

∥∥∥∥∥∥
1

T

T∑
t=
+1

xt−
mt

∥∥∥∥∥∥= Op

( √
hT

T
1
2 −d

)
= sup

1≤
≤hT

∥∥∥∥∥∥
1

T

T∑
t=
+1

mt−
xt

∥∥∥∥∥∥ .

Lemma A.1 further allows us to conclude that

sup
1≤
≤hT

∥∥∥∥∥∥
1

T

T∑
t=
+1

mt−
mt − μ̄2ι

∥∥∥∥∥∥= O

(
h

1/2+α
T
T α

)
,

and, using again Poskitt (2007, Thm. 1), we have that

sup
1≤
≤hT

∥∥∥∥∥∥
1

T

T∑
t=
+1

xt−
xt −�


∥∥∥∥∥∥= Op

(√
hT

(
log T

T

)1/2−d
)

.

Hence

sup
1≤
≤hT

∥∥∥Ĝ
 −�μ,


∥∥∥= Op

(
max

{
h

1/2+α
T
T α

;√hT

(
log T

T

)1/2−d
})

such that sup1≤
≤hT

∥∥∥â
 −�−1
μ,
�μ,


∥∥∥ is

Op

(
h2d

T ·max

{
h

1/2+α
T
T α

;√hT

(
log T

T

)1/2−d
})

+ Op

(√
hT ·max

{
h1+α+4d

T
T α

; h1+4d
T

(
log T

T

)1/2−d
})

,
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i.e., sup1≤
≤hT

∥∥∥â
 −�−1
μ,
�μ,


∥∥∥ = Op

(
h−1/2

T max

{
h2+α+4d

T
T α ; h2+4d

T

(
log T

T

)1/2−d
})

.

To obtain the desired convergence rate for
∥∥∥â
 −�−1

μ,
�μ,


∥∥∥, it suffices to show that

max

{
T κ(2+α+4d)

T α
; (log T )

1/2−d T κ(2+4d)

T 1/2−d

}
→ 0,

which is indeed implied by our rate restrictions. With �−1
μ,
�μ,
 =

(
�
 + μ̄2ι
ι

′



)−1

(
�
 + μ̄2ι


)
, the desired result follows using the Sherman–Morrison formula. n

Proof of Corollary 2. To show that Corollary 1 still holds under the assumptions of
Proposition 3, note that

yT (1) = mT +
∞∑

j=1

aj xT +1− j =
∞∑

j=1

aj xT +1− j +mT ã
′
hT
ιhT +op (1)

since the coefficients ãj,hT sum up to 1 whenever ιhT �−1
hT
ι′hT

→ ∞ (see the proof of

Corollary 1) and indeed ιhT �−1
hT
ι′hT

≥ Ch1−2d
T → ∞ as argued above. At the same time,

ŷT (1) = â′
hT
mT +1−hT + â′

hT
xT +1−hT

= ã′
hT
mT +1−hT + ã′

hT
xT +1−hT

+ (âhT − ãhT

)′
mT +1−hT + (âhT − ãhT

)′
xT +1−hT

= ã′
hT
mT +1−hT

+x′
T +1−hT

(
�−1

hT
�hT + μ̄2

1+ μ̄2ι′hT
�−1

hT
ιhT

�−1
hT
ιhT

(
1− ι′hT

�−1
hT

�hT

))
+op (1)

since
∥∥âhT − ãhT

∥∥= o
(

h−1/2
T

)
and

∥∥mT +1−hT

∥∥= O
(√

hT
)= ∥∥xT +1−hT

∥∥ thanks to

the boundedness of mt and the uniformly bounded variance of xt . Then,

yT (1)− ŷT (1) = ã′
hT

(
mT +1−hT −mT ιhT

)

−
⎛
⎝
⎛
⎝xT +1 −

∞∑
j=1

aj xT +1− j

⎞
⎠−

(
xT +1 −x′

T +1−hT
�−1

hT
�hT

)⎞⎠

− μ̄2

1+ μ̄2ι′hT
�−1

hT
ιhT

x′
T +1−hT

�−1
pT
ιhT

(
1− ι′hT

�−1
hT

�hT

)
+op (1) .

The first term is easily shown to vanish, since

∣∣∣ã′
hT

(
mT +1−hT −mT ιhT

)∣∣∣≤ ∥∥ãhT

∥∥∥∥mT +1−hT −mT ιhT

∥∥≤ C
√

hT

(
hT

T

)α

thanks to the absolute summability of the elements of ãhT and the restrictions on α and κ
(cf. the proof of Lemma A.1). For the second term, note that xT +1 −∑∞

j=1 aj xT +1− j is
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the forecast error from a projection of xt on its infinite past, and xT +1 −x′
T +1−hT

�−1
hT

�hT
is the forecast error from a projection on its first hT lags only, and basic Hilbert space
arguments show the difference between the two, to vanish as hT → ∞. The third one is
shown to vanish as in the proof of Corollary 1, since ιhT �−1

hT
ι′hT

→ ∞. Hence, the proof
is complete. n
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