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Linear and nonlinear Hodge-like systems for 1-forms are studied with an assumption
equivalent to complete integrability substituted for the requirement of closure under
exterior differentiation. The systems are placed in a variational context and
properties of critical points are investigated. Certain standard choices of energy
density are related by Bäcklund transformations which employ basic properties of the
Hodge involution. These Hodge–Bäcklund transformations yield invariant forms of
classical Bäcklund transformations that arise in diverse contexts. Some extensions to
higher-degree forms are indicated.

1. Introduction

The study of vectors which are both divergence free and curl free can be traced back
at least to Helmholtz’s analysis of vortices and gradients [16]. The generalization to
differential forms which are both closed and co-closed under exterior differentiation
is the content of the Hodge equations (see, for example, [27, ch. 7]). The divergence-
free condition is frequently relaxed in variational contexts, but generalizations of
the curl-free condition remain rather rare.

Our goal is to study both linear and nonlinear variants of the Hodge equations
for differential forms which are neither co-closed nor closed but which satisfy milder
conditions having physical and geometric significance.

1.1. Organization of the paper

Sections 1–4 are mainly expository. We introduce the topic in § 1.2 with an exam-
ple from fluid dynamics. Section 2 presents the equations in an invariant context.
The linear case is studied in § 3, largely as motivation for the considerably more
complex nonlinear case. Two geometric analogies are discussed in § 4. Technical
results on the properties of solutions are presented in § 5. Section 6 shows that
ideas introduced, in very different contexts, by Yang [45] and by Magnanini and
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Talenti [21–23] can be given a unified interpretation in terms of equations studied
in the preceding sections.

The proofs of theorems 5.4, 5.5 and 5.7, which are based on rather straightforward
applications of nonlinear elliptic theory, are collected in the appendix. We note that
these applications are only straightforward once solutions have been associated
to a uniformly sub-elliptic operator; this is accomplished in § 5.2. The methods
used in that section to derive uniform estimates are elementary and, in particular,
do not require a delicate limiting argument that has become known as Shiffman
regularization (see [36] and [37, appendix]).

1.2. A motivating example: steady, ideal flow

In models for the steady, adiabatic and isentropic flow of an ideal fluid, conser-
vation of mass is represented by the continuity equation

∇ · (ρ(|v|2)v) = 0, (1.1)

where v denotes flow velocity and ρ denotes mass density. The dependence of ρ on
|v|2 is a consequence of compressibility; in the incompressible limit, equation (1.1)
merely says that the vector v has zero divergence. If the fluid is irrotational, then
the velocity is curl free in the sense that

∇ × v = 0. (1.2)

Condition (1.2) implies, by the Poincaré lemma, that there exists locally a scalar
flow potential ϕ(x), where x ∈ R

3 denotes the position of a particle in the flow.
Perhaps the mildest weakening of the irrotationality condition results from replac-

ing (1.2) by the integrability condition

v · ∇ × v = 0. (1.3)

The replacement of the linear condition (1.2) by the nonlinear condition (1.3) as
a side condition to equation (1.1) is likely to result in singular solutions, even in
the subsonic regime. The usual arguments for reducing ρ to the conventional form,
which depend on smoothness (see, for example, [5, ch. 1.2]), would not necessar-
ily apply in such cases. This suggests that we consider whether a useful a priori
bound can be placed on the size of the singular set for solutions of systems having
the general form (1.1), (1.3). In § 5.2 we take the first step towards an answer to
this difficult question, deriving sufficient conditions under which a solution remains
bounded on an apparent singular set of given codimension. Despite the physical
motivation (here and in various other examples scattered throughout the text), in
this paper our main interest is in deriving hypotheses which are mathematically
natural and apply to large classes of mass densities.

2. An invariant formulation

We now generalize the mathematical context of § 1.2. Let Ω be an open, finite
domain of R

n, n � 2, satisfying an interior sphere condition. Consider the following
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system (see [28, § 6], [29, § 4]):

δ(ρ(Q)ω) = 0, (2.1)
dω = Γ ∧ ω, (2.2)

for scalar-valued 1-forms ω and Γ , where Γ is given and ω is unknown, d is the flat
exterior derivative with formal adjoint δ, Q is a quadratic form in ω given by

Q(ω) = ∗(ω ∧ ∗ω) ≡ 〈ω, ω〉, (2.3)

where ∗ : Λk → Λn−k is the Hodge involution and ρ is a positive, continuously
differentiable function of Q (but a possibly singular function of x).

Using (2.2), we find that

ω ∧ dω = −Γ ∧ ω ∧ ω = 0. (2.4)

A 1-form ω that is the pointwise Riemannian inner product with a vector field v
is said to be dual to v. In this case, the left-hand side of (2.4) is equivalent to the
left-hand side of (1.3), and any solution ω of equation (2.2) is dual to a solution v
of equation (1.3).

The system (2.1), (2.2) is uniformly elliptic provided the differential inequality

0 < κ1 � (d/dQ)[Qρ2(Q)]
ρ(Q)

� κ2 < ∞ (2.5)

is satisfied for constants κ1, κ2. In the context of fluid dynamics, one typically
encounters the weaker condition

0 < ρ2(Q) + 2Qρ′(Q)ρ(Q). (2.6)

Ideal flow governed by equation (1.1) is subsonic provided that (2.6) is satisfied.
Moreover, there is typically a critical value Qcrit such that the right-hand side of
(2.6) tends to zero in the limit as Q tends to Qcrit. In this case, equations (2.1) and
(2.2) with ρ satisfying (2.6) are elliptic, but not uniformly so, and this condition
has mathematical as well as physical interest.

If Γ ≡ 0, then the system (2.1), (2.2) degenerates to the nonlinear Hodge equa-
tions introduced in [38] on the basis of a conjecture in [4]. In that case, condition
(2.2) generates a cohomology class, which is not true in the more general case
studied here.

We show in § 2.1 that whenever ω is a 1-form, equation (2.2) possesses solutions
of the form

ω = eη du, (2.7)

where u and η are 0-forms, and Γ can be made exact : we can write Γ = dη. When ω
is a k-form, a more general representation applies; that representation is discussed
in § 2.2.

In § 5.1 we introduce a variant of equation (2.1) for differential k-forms (k � 1)
satisfying equation (2.2) with Γ exact (Γ ≡ dη), namely

δ[ρ(Q)ω] = (−1)n(k+1) ∗ (dη ∧ ∗ρ(Q)ω), (2.8)
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which arises as a variational equation of the nonlinear Hodge energy

E = 1
2

∫
Ω

∫ Q

0
ρ(s) ds dΩ. (2.9)

2.1. The Frobenius theorem

Let Γ be fixed, and define

S ≡
{

ω ∈ Λ(Ω) ≡
n⊕

k=1

Λk(Ω) : dω = Γ ∧ ω

}
.

Denote by I ≡ I(S) the ideal generated by S. If Γ 
= 0, then clearly dI 
= {0}, so
the k-forms ω ∈ S do not generate cohomology classes.

Nevertheless, the ideal I is closed, i.e. dI ⊂ I. In fact, a differential form α ∈ I
is a linear combination of forms of type ω ∧ β with ω ∈ S, β ∈ Λ(Ω). The latter
satisfy

d(ω ∧ β) = ±ω ∧ (Γ ∧ β ± dβ),

and thus satisfy dα ∈ I. This is an important fact, especially for exterior systems
of 1-forms.

Following the approach used in [12, § 4.2], we define an exterior system {ωa},
a = 1, . . . , r, of r 1-forms in a space of dimension n = r + s to be completely
integrable if and only if there exist r independent functions ga, a = 1, . . . , r, such
that each of the 1-forms ωa vanishes on the r-parameter family of s-dimensional
hypersurfaces {ga = ka, a = 1, . . . , r} generated by letting the constants ka range
over all r-tuples of real numbers.

Equivalently, we define {ωa}r
1 to be completely integrable if and only if there exist

a non-singular r × r matrix of functions ξa
b , and r independent functions gb such

that

ωa =
r∑

b=1

ξa
b dgb.

The Frobenius theorem asserts that an exterior system {ωa}r
1 of 1-forms is com-

pletely integrable if and only if it generates a closed ideal of Λ(Ω).
Because a 1-form ω satisfying (2.2) generates a closed ideal, by the Frobenius

theorem it can always be written in the form (2.7). (In this case, r = 1.) Thus

dω = dη ∧ ω, (2.10)

which shows that Γ can be chosen to be exact. Note the gauge invariance has the
form Γ → Γ̃ ≡ Γ + f(x)ω.

For this reason we call the system (2.1), (2.2) the nonlinear Hodge–Frobenius
equations for 1-forms.

Unfortunately, the Frobenius theorem does not generalize to forms of arbitrary
degree k, as the condition dI ⊂ I does not imply complete integrability if k 
= 1.
However, this does not mean that there is nothing to be said about higher-degree
forms. Relevant properties of such forms are described in the following section.
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2.2. Recursive forms

An exterior differential form of degree k is said to be recursive with coefficient Γ
if it satisfies (2.2). Let Ω be star shaped. It is known that one can define a homotopy
operator H : Λk(Ω) → Λk−1(Ω), which satisfies

ω = dHω + H dω. (2.11)

This property can be used, among other things, to show that a closed form on a
star-shaped domain is exact. We omit the formal definition of this operator (for
this and further details, see [12, § 5.3]) and describe its main properties as follows:

(a) H is linear;

(b) H2 = 0;

(c) H dH = H, dH d = d;

(d) (dH)2 = dH, (H d)2 = H d.

Using (b), we observe that H dω ∈ ker H. This and (2.11) can be used to define the
exact part of ω as ωe ≡ dHω and the anti-exact part of ω as ωa ≡ ω − ωe = H dω.

Using (2.11), one can further show that H improves regularity. With no loss of
generality, we prove this for forms having vanishing anti-exact part, i.e. forms ω
such that

ω = ωe. (2.12)

Note that, for any given form ω, no cancellations can occur between ωe and ωa,
therefore ωe is always as smooth as ω, and furthermore Hωa = 0. Thus, we can
restrict our attention to forms satisfying (2.12). If ω is 1-form, then Hω is a function
and (2.12) implies that

ωi =
∂(Hω)

∂xi
for all i,

thus improving regularity. In the general case, Hω ≡ (Hω)I dxI , where I is a
multi-index satisfying |I| = k − 1. In order to improve regularity in this case one
would need to control δ(Hω), i.e. all derivatives of type ∂(Hω)I/∂xi for i ∈ I. But
δ(Hω) = 0 from the Hodge decomposition theorem [27], as Hω is anti-exact (using
(b), above), so H is a smoothing operator on k-forms.

The important result for us is the following. Recursive k-forms with coefficient Γ
on a star-shaped region can be represented as follows [12]:

ω = eη[du + H(θ ∧ du)], (2.13)

where η = HΓ , θ = H dΓ and u = H(e−ηω). Condition (2.2) implies that θ satisfies

dθ ∧ [du + H(θ ∧ du)] = 0.

For our purposes we can rewrite (2.13) as

ω = eηg(du), (2.14)

where g is a smooth linear operator, or, alternatively, as

ω = eη du + eηh(du), (2.15)
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where h is also a smooth linear operator, the coefficients of which depend on Γ .
The latter variant yields better regularity. In fact, the form h(du) is as smooth as
u, provided Γ is smooth.

A particular case of the above occurs when the coefficient Γ is exact. In that case,
the form ω satisfying (2.2) is said to be gradient recursive. For gradient recursive
k-forms, (2.13) assumes the simpler form (2.7), in which g is the identity.

3. The linear case

Corresponding to the physical example of § 1.2, which illustrates the nonlinear form
of equations (2.1) and (2.2), we can illustrate the linear case with an even simpler
physical example.

Condition (1.3) arises when a rigid body rotates in the x, y-plane at constant
angular velocity ω̃. Taking the axis of rotation to lie at the origin of coordinates,
we write the tangential velocity vector in the form

v = v1 ı̂ + v2ĵ,

where
v1 = −ω̃y, v2 = ω̃x. (3.1)

Then
∇ × v = 2ω̃k̂, (3.2)

so (1.3) is satisfied (see, for example, [26, exercise 4.4]). In what follows we take
ω̃ ≡ 1 for simplicity.

Equations (3.1) imply that
∇ · v = 0,

so we express the 1-form ω dual to v as a solution of the linear Hodge–Frobenius
equations

δω = 0,

dω = Γ ∧ ω. (3.3)

Applying (2.7) and (2.10), we choose η to depend only on the distance r from the
axis of rotation. Then

dη ∧ ω = η′(r) · r dxdy. (3.4)

In addition, equation (3.2) implies that

dη ∧ ω = dω = 2 dxdy. (3.5)

Equating the right-hand sides of equations (3.4) and (3.5), we conclude that η(r) =
2 log r and ω = r2 du for u(x, y) = arctan(y/x). Then |du| = r−1, so the singular
structure of u in the x, y-plane is analogous to that of the fundamental solution of
Laplace’s equation in R

3. In particular, u is singular at the origin of the disc.
In this example, the Hodge–Frobenius equations themselves are only defined on

the punctured disc, as

Γ ∧ ω = (Γ1ω2 − Γ2ω1) dxdy = dω = 2 dxdy.
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Using (3.1), we can write this condition as an equation for the inner product(
Γ1

Γ2

)
·
(

x

y

)
= 2,

which cannot be satisfied at the origin.
Thus, singular solutions arise naturally in both the linear and nonlinear Hodge–

Frobenius equations.
Because equation (2.13) requires that the domain be star shaped, the conclusion

that ω is representable as a product f du, where f is non-vanishing, does not follow,
and is in fact violated in our example, in which f = r2.

We have presented a particularly simple model, in which the role of condition
(2.2) is especially transparent. For more sophisticated completely integrable models
of rigid-body rotation see, for example, [6] and the references therein.

In the linear case we can accomplish easily what we cannot accomplish at all in
the nonlinear case: an integrability condition sufficient to imply the smoothness of
weak solutions.

Proposition 3.1. Let ω be a weak solution of the linear Hodge–Frobenius equations
(3.3) on Ω. If |Γ | is bounded and ω ∈ Lp(Ω) for p > n, then ω is continuous.

Proof. The Friedrichs mollification ωh of ω is a classical solution of (3.3) (see, for
example, [15, § 7.2]). Thus,

|dωh|p + |δωh|p + |ωh|p � (|Γ |p + 1)|ωh|p.

Integrate and apply the Lp Gaffney–Gärding inequality [18, lemma 4.7] to obtain

‖∇ωh‖p � C(Γ )‖ωh‖p.

Because ω ∈ Lp(Ω) we can allow the mollification parameter h to tend to zero. The
proof is completed by the Sobolev embedding theorem.

4. Geometric analogies

4.1. Hypersurface-orthogonal vector fields

A unification of the two superficially different physical examples of §§ 1 and 3 can
be found in their underlying geometry: in particular, in the relation of each vector
field to hypersurfaces created by the level sets of an associated scalar function u.
We can think of u informally as the potential for the conservative field that would
result from taking Γ to be zero in equation (2.2). Whereas a conservative vector
field is actually equal to ∇u, the vector fields in §§ 1 and 3 merely point in the same
direction as ∇u.

A non-vanishing vector field v is said to be hypersurface-orthogonal whenever
there exists a foliation of hypersurfaces orthogonal to v. The foliated hypersurfaces
can be represented as level sets of a scalar function u. That is, one can write

v = λ(x)∇u

for a non-vanishing function λ. Conversely, a vector field which can be written in
this way is clearly hypersurface-orthogonal. We conclude that a vector field v is
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hypersurface-orthogonal if and only if the 1-form ω dual to v satisfies

ω = λ du,

with non-vanishing λ (i.e. if and only if ω is completely integrable). Other equivalent
conditions now follow from the Frobenius theorem.

Hypersurface-orthogonal vector fields arise naturally in general relativity, partic-
ularly in connection with black-hole mechanics. Introducing a tensor field

Bαβ ≡ vα;β ,

where the semicolon denotes covariant differentiation with respect to the space-
time metric connection, the condition that v be hypersurface-orthogonal implies
that the antisymmetric part of B, called the rotation tensor, vanishes [31, §§ 2.32
and 2.33]. For this reason, vector fields satisfying (2.2) are called rotation free in
general relativity, which is somewhat confusing in the context of the examples in
§§ 1 and 3.

4.2. Twisted Born–Infeld equations

A condition broadly analogous to (2.2) arises if ω is a Lie-algebra-valued 2-form
satisfying the second Bianchi identity. In that case, replacing ω by FA, where A is
a Lie-algebra-valued 1-form, we have

dFA = −[A, FA] (4.1)

(where [·, ·] denotes the Lie bracket): an equation which resembles (2.2).
Precisely, let X be a vector bundle over a smooth, finite, oriented, n-dimensional

Riemannian manifold M . Suppose that X has compact structure group G ⊂ SO(m).
Let A ∈ Γ (M, adX ⊗ T ∗M) be a connection 1-form on X having curvature 2-form

FA = dA + 1
2 [A, A] = dA + A ∧ A,

where [·, ·] is the bracket of the Lie algebra �, the fibre of the adjoint bundle
adX. Sections of the automorphism bundle AutX, called gauge transformations,
act tensorially on FA but affinely on A (see, for example, [24]).

Consider energy functionals having the form (2.9), where Q = |FA|2 = 〈FA, FA〉
is an inner product on the fibres of the bundle adX ⊗Λ2(T ∗M). The inner product
on adX is induced by the normalized trace inner product on SO(m), and the inner
product on Λ2(T ∗M) is induced by the exterior product ∗(FA ∧ ∗FA).

A non-abelian variational problem analogous to equations (2.2) and (2.8) is de-
scribed briefly in [30, § 5.1]. One is led to consider smooth variations taken in the
infinitesimal deformation space of the connection and having the explicit form

var(E) =
∫

M

ρ(Q) var(Q) dM

=
∫

M

ρ(Q)
d
dt

∣∣∣∣
t=0

|FA+tψ|2 dM

=
∫

M

ρ(Q)
d
dt

∣∣∣∣
t=0

|FA + tDAψ + t2ψ ∧ ψ|2 dM, (4.2)
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where DA = d+ [A, ·] is the exterior covariant derivative in the bundle. The Euler–
Lagrange equations are

δ(ρ(Q)FA) = − ∗ [A, ∗ρ(Q)FA]. (4.3)

In addition, we have the Bianchi identity (4.1).
Writing equation (2.2) in components as

dωa = Γ a
b ∧ ωa,

we observe that if −Γ is interpreted as a connection 1-form, then (2.2) can be
interpreted as the vanishing of an exterior covariant derivative, which is the content
of equation (4.1). Moreover, the well-known algebraic requirement that Γ must
satisfy

(dΓ a
b − Γ a

c ∧ Γ c
b ) ∧ ωb = 0

(see [12, equation (4.2.3)]) is the zero-curvature condition [FΓ , ω] = 0.
If G is abelian, then the Lie bracket vanishes and equations (4.3) reduce to the

system
δ{ρ[Q(FA)]FA} = δ{ρ[Q(dA)] dA} = 0,

which is a nonlinear Hodge equation analogous to taking Γ = 0 in equations (2.1)
and (2.2).

Equations (4.1) reduce, in the abelian case, to the equations for the equality of
mixed partial derivatives,

d2A = 0.

If ρ ≡ 1, then equations (4.3) are the Yang–Mills equations, describing quantum
fields in the classical limit. These resemble a version of equation (2.8) for 2-forms
with ρ ≡ 1, with the Bianchi identity (4.1) playing the role of equation (2.2).

Whereas the Yang–Mills equations do not have the nonlinear structure of (2.8) for
non-constant ρ, those of the Born–Infeld model for electromagnetism are equivalent
to (2.8) for differential forms of degree 2 with

ρ(Q) = (1 + |FA|2)−1/2. (4.4)

This model was introduced in [7] in order to produce a model of electromagnetism
that does not diverge when the source is a point charge. Geometric aspects of
the model are investigated in [13] and its analytic aspects are investigated in [45].
A mathematical generalization of the Born–Infeld model to non-abelian variational
equations was proposed in [28] and further studied in [40] (see also [17] for a related
problem). The equations assume the form of (4.1) and (4.3) for an appropriate
choice of ρ(Q).

Geometrically, the non-abelian model puts a twist in the principal bundle cor-
responding to the configuration space of solutions. Thus, equations (4.1) and (4.3)
are called twisted nonlinear Hodge equations [30]. A different approach to general-
izing nonlinear Hodge theory to bundle-valued connections, which is based on the
formulation of a natural class of boundary-value problems, is introduced in [25], but
interior estimates would be required in order to extend the theory of [25] to twisted
forms of the equations considered in this paper. The derivation of such estimates is
a goal of § 5.2.
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5. Analysis

We do not expect rotational fields of any kind to be very smooth. In particular,
assumption (2.2) may produce caustics (see, for example, the discussion in [31,
§ 2.4]). However, it is reasonable to seek conditions under which the field remains
bounded at a singularity or under which the field equations remain uniformly
elliptic.

Because these conditions will be derived for a large class of mass densities, the
strength of the estimates obtained will depend on the integrability with respect to
x of a given choice of mass density ρ(Q(x)).

In what follows, we denote by C generic positive constants, the value of which
may change from line to line. We follow an analogous convention for continually
updated small positive constants ε. Repeated indices are to be summed from 1 to n.

5.1. Variational structure

The energy E of the field ω on Ω is defined by equation (2.9), where Q = Q(ω) is
defined as in (2.3) for ω ∈ Λ1 given by (2.7). Then, for all ψ ∈ C∞

0 (Ω), the variations
of E are computed as

var(E) =
d
dt

E(u + tψ)
∣∣∣∣
t=0

= 1
2

∫
Ω

ρ(Q)
d
dt

Q(u + tψ)
∣∣∣∣
t=0

dΩ

= 1
2

∫
Ω

ρ(Q)
d
dt

[e2η|d(u + tψ)|2]
∣∣∣∣
t=0

dΩ

= 1
2

∫
Ω

ρ(Q)e2η d
dt

(|du|2 + 2〈du, t dψ〉 + t2|dψ|2)
∣∣∣∣
t=0

dΩ

=
∫

Ω

ρ(Q)e2η〈du, dψ〉 dΩ

=
∫

Ω

〈ρ(Q)e2η du, dψ〉 dΩ

=
∫

Ω

d〈ρ(Q)e2η du, ψ〉 dΩ +
∫

Ω

〈δ[ρ(Q)eηω], ψ〉 dΩ

=
∫

Ω

〈δ[ρ(Q)eηω], ψ〉 dΩ,

as ψ has compact support in Ω. At a critical point, var(E) = 0, or

δ[ρ(Q)eηω] = 0, (5.1)

so the variational formulation yields a ‘weighted’ form of the continuity equa-
tion (2.1). The presence of this weight adds an inhomogeneous term to the un-
weighted variant. To see this, we write the local equation

−∂i[ρ(Q)eηωi] = −(∂iη)eηρ(Q)ωi − eη∂i[ρ(Q)ωi] = 0.
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This local form corresponds to the invariant representation

eηδ[ρ(Q)ω] = eηρ(Q)〈 dη, ω〉.

Thus, we obtain equation (2.8) for 1-forms ω (i.e. for k = 1) or, equivalently, since
δα = − ∗ d ∗ α for all α ∈ Λ1, the equation

d ∗ [ρ(Q)ω] = −dη ∧ ∗[ρ(Q)ω]. (5.2)

5.1.1. Variational equations for k-forms

Recall that an exterior differential form ω of degree k which is recursive with
coefficient Γ can be written in the form (2.15), where u is a (k − 1)-form (which
depends on ω), and where the function η and the linear operator h depend only on
Γ (§ 2.2).

We now compute the variation of the energy functional (2.9) among all forms
ω + tα satisfying

d(ω + tα) = Γ ∧ (ω + tα).

Such forms satisfy (2.15) with fixed η and h. Therefore, the variations of E are
computed as

var(E) =
d
dt

E(ω + tα)
∣∣∣∣
t=0

= 1
2

∫
Ω

ρ(Q)
d
dt

Q(ω + tα)
∣∣∣∣
t=0

dΩ

=
∫

Ω

〈ρ(Q)ω, α〉 dΩ,

where α = eη(dv + h(dv)) for a (k − 1)-form v that depends on α.
Thus,

var(E) = 1
2

∫
Ω

〈eηρ(Q)ω, dv + h(dv)〉 dΩ

=
∫

Ω

〈eηρ(Q)ω, G dv〉 dΩ

=
∫

Ω

〈GTeηρ(Q)ω, dv〉 dΩ,

where G ≡ gij(Γ ) is an n × n matrix and GT is its transpose.
As the forms α (and thus v) are assumed to have compact support in Ω, setting

var(E) = 0 is equivalent to imposing the condition

δ[GTeηρ(Q)ω] = 0.

Note that if ω is gradient recursive, then G is the identity matrix and we recover
(5.1), or, equivalently, since, for all α ∈ Λk,

δα = (−1)nk+n+1 ∗ d ∗ α, (5.3)
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the equation
d ∗ [ρ(Q)ω] = −dη ∧ ∗[ρ(Q)ω], (5.4)

i.e. equation (2.8) for a gradient-recursive k-form ω with coefficient dη.
The variations employed in this section, applied directly to a 2-form, are nec-

essarily different from the variations of (4.2), which are applied instead to the
Lie-algebra-valued connection 1-form A.

In the remainder of the paper we focus mainly on 1-forms. However, many of the
results will extend easily to gradient-recursive k-forms. Moreover, the structure of
expressions (2.14) and (2.15) suggests that, under appropriate technical hypotheses
on the linear operators g or h, many of the results will also extend to recursive
k-forms with coefficient Γ (not necessarily exact).

5.2. When are solutions bounded at a singularity?

Following [44], we find it convenient to introduce a function H(Q), which is
defined so that

H ′(Q) = 1
2ρ(Q) + Qρ′(Q). (5.5)

Then ellipticity is equivalent to the condition that H has positive derivative with
respect to Q.

In [28, theorem 7 and corollary 8] and [29, theorem 6 and corollary 7], Lp con-
ditions are derived which imply the boundedness of solutions to equations (2.1)
and (2.2) on domains that include singular sets of given co-dimension. We call such
theorems partial removable singularities theorems as they imply that although solu-
tions may have jump discontinuities at the singularity they cannot blow up there.
Those results require the mass density ρ to satisfy the inequality

C(K + Q)q � H ′(Q) � C−1(Q + K)q (5.6)

for constants q > 0 and K � 0. (This hypothesis is imposed in [29], following [44,
§ 1]; a somewhat stronger hypothesis is imposed in [28].)

Conditions resembling (5.6) also arise in the theory of A-harmonic forms [10, con-
dition (1.2)]. Like the ρ-harmonic forms of nonlinear Hodge theory, A-harmonic
forms du are closed (in fact, exact), but are not generally co-closed (cf. [10, equa-
tion (1.4)]). See also [1] and the references therein.

There is obvious interest in deriving estimates for densities which may not sat-
isfy (5.6). The focus of this section is to obtain and exploit such estimates for a
broad class of densities, using the variational form of the equations. However, we
retain the condition that ρ is positive, which is natural for applications.

We impose an additional condition that arises from technical considerations. If
ρ′(Q) > 0, we require that

H ′(Q) � Cρ(Q). (5.7)

(This inequality is satisfied automatically if ρ′(Q) � 0.) If ρ′(Q) < 0, we require
instead that

H ′(Q) � Cρ(Q). (5.8)

(This inequality is satisfied automatically if ρ′(Q) � 0.) Note that (5.8) implies
(2.6) under our assumption ρ(Q) > 0. In the case where ρ′(Q) < 0, equation (2.8)
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is uniformly elliptic (i.e. (2.5) is satisfied) whenever (5.8) is satisfied and ρ is non-
cavitating, that is, bounded below away from zero. In the case when ρ′(Q) > 0,
condition (2.5) is satisfied whenever ρ(Q) is bounded above.

Densities which satisfy (5.6) satisfy hypotheses (5.7) and (5.8). However, there
are many densities which satisfy (5.7) and (5.8) but do not satisfy (5.6). Among the
latter are densities for which the value of the exponent q on the left-hand side of
inequality (5.6) differs from its value on the right-hand side, and certain densities
for which the value of q in (5.6) is negative.

As a simple illustration, consider the class of densities

ρ(Q) = (K + Q)q, − 1
2 < q < 0, K > 0. (5.9)

Such densities do not satisfy condition (5.6) and cavitate as Q tends to infinity.
They arise, for example, in connection with models of pseudo-plastic non-Newtonian
fluids [3]. In this section we will obtain sufficient conditions for a bound on Qρ(Q)
which is valid as Q tends to infinity. Under additional conditions, this bound extends
to possibly singular solutions of the system (2.2), (2.8) with density given by (5.9).
Note that, for such densities, a bound on the product Qρ(Q) implies an asymptotic
bound on the norm Q of the solution itself.

Because conditions (5.7) and (5.8) are used in a crucial way to establish both the
subelliptic estimates and the ellipticity of the second-order operator, they appear
to provide a mathematically natural generalization of condition (5.6).

Lemma 5.1. Let condition (5.8) be satisfied. Then H can be chosen so that

Qρ(Q) � CH(Q). (5.10)

Proof. If ρ′(Q) is non-negative, then (5.10) is always satisfied with C = 2 if we
choose H(0) � 0. (Note that assumption (5.8) is not needed in this case.) In order
to see this, let

Φ(Q) ≡ 2H(Q) − Qρ(Q).

Then Φ(0) = H(0) � 0 and

Φ′(Q) = 2H ′(Q) − ρ(Q) − Qρ′(Q) = Qρ′(Q) � 0.

Thus, Φ(Q) remains non-negative on the entire range of Q.
If ρ′(Q) � 0, we assume (5.8). Then, in particular,

2H ′(Q) � ερ(Q), (5.11)

where we take ε to be so small that it lies in the interval (0, 1). Inequality (5.11)
can be written in the form

(1 − ε)ρ(Q) + 2Qρ′(Q) � 0. (5.12)

Define a constant c by the formula

c =
1 + ε

2ε
.

In terms of c, (5.12) can be written in the form

(c − 1)ρ(Q) + 2(c − 1
2 )Qρ′(Q) � 0.
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We can convert this expression into the differential inequality

2cH ′(s) � d
ds

[sρ(s)], s ∈ [0, Q].

Integrate the inequality over s, using H(0) = 0. We obtain (5.10).

Lemma 5.2. Let the 1-forms Γ and ω smoothly satisfy (2.2) and (2.8). Let ρ > 0
satisfy conditions (5.7) and (5.8). Then

∆H + (−1)3n∇ · {∗[ω ∧ ∗(ρ′(Q) dQ ∧ ω)]} + C(|Γ |2 + |∇Γ |)H � 0. (5.13)

Proof. We have [44, § 1]

〈ω, ∆[ρ(Q)ω]〉 = ∂i〈ω, ∂i(ρ(Q)ω)〉 − 〈∂iω, ∂i(ρ(Q)ω)〉
= ∆H(Q) − [ρ(Q)〈∂iω, ∂iω〉 + ρ′(Q)〈∂iω, ω〉∂iQ], (5.14)

where
∆H(Q) = ∂i(∂iH(Q)) = ∂i(H ′(Q)∂iQ).

Setting ∂iQ = 2〈∂iω, ω〉, we rewrite (5.14) in the form

〈ω, ∆[ρ(Q)ω]〉 = ∆H(Q) − ρ(Q)|∇ω|2 − 2Qρ′(Q)|d|ω‖2. (5.15)

Applying equation (5.15) to the operator identity ∆ = −(δ d + dδ) and using (2.8),
we write

0 = 〈ω, ∆[ρ(Q)ω]〉 + 〈ω, δd(ρ(Q)ω)〉 + 〈ω, dδ(ρ(Q)ω)〉
= ∆H(Q) − γ + 〈ω, δ(dρ ∧ ω)〉 + τ1 + τ2, (5.16)

where

γ = ρ(Q)|∇ω|2 + 2Qρ′(Q)|d|ω‖2,

τ1 = 〈ω, δ(ρ(Q) dω)〉

and

τ2 = 〈ω, d[ρ(Q)〈Γ, ω〉]〉.

Define
Lω(H) ≡ ∆H + 〈ω, δ(dρ(Q) ∧ ω)〉.

Then (5.16) can be written in the compact form

LωH + τ1 + τ2 = γ. (5.17)

We have

τ1 = 〈ω, ρ(Q)δ(Γ ∧ ω) − 〈dρ(Q), dω〉〉
� |ω|[ρ(Q)|δ(Γ ∧ ω)| + |dρ(Q)‖dω|]
� |ω|[ρ(Q)|∇Γ‖ω| + ρ(Q)|Γ‖∇ω| + |ρ′(Q)dQ| |dω|].

Applying (2.2) to the last term on the right-hand side and using

|dQ| = 2|ω‖d|ω‖,
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we obtain

τ1 � Qρ(Q)|∇Γ | + ρ(Q)|Γ‖ω‖∇ω| + 2Q|ρ′(Q)‖Γ‖ω| |d|ω‖

� Qρ(Q)|∇Γ | + ρ(Q)
[
Q|Γ |2

2ε
+ 1

2ε|∇ω|2
]

+ 2Q|ρ′(Q)|
(

1
2ε|d|ω‖2 +

|Γ |2Q
2ε

)
.

(5.18)

Estimating τ2 yields the same terms:

τ2 � Qρ(Q)|∇Γ | + |ω‖Γ |[ρ(Q)|∇ω| + |ω|∇ρ(Q)|]
= Qρ(Q)|∇Γ | + |ω‖Γ |ρ(Q)|∇ω| + 2Q|Γ‖ρ′(Q)‖ω‖d|ω‖, (5.19)

which is bounded by the right-hand side of (5.18). That is,

τ1 + τ2 � 2Qρ(Q)|∇Γ | +
Q

ε
[ρ(Q) + 2Q|ρ′(Q)|]|Γ |2

+ ερ(Q)|∇ω|2 + 2Qε|ρ′(Q)‖d|ω‖2. (5.20)

Applying inequality (5.20) to equation (5.17) we obtain, in the case where ρ′(Q) > 0,
the estimate

Lω(H) + 2
[
Qρ(Q)|∇Γ | +

QH ′(Q)
ε

|Γ |2
]

� (1 − ε)[ρ(Q)|∇ω|2 + 2Qρ′(Q)|d|ω‖2]

� (1 − ε)H ′(Q)|d|ω‖2, (5.21)

the inequality on the right following from Kato’s inequality. We apply lemma 5.1
and (5.7) to terms on the extreme left-hand side of inequality (5.21):

2
[
Qρ(Q)|∇Γ | +

QH ′(Q)
ε

|Γ |2
]

� C[H(Q)|∇Γ | + Qρ(Q)|Γ |2]

� C(|∇Γ | + |Γ |2)H(Q).

We now have, for the case where ρ′(Q) > 0, the estimate

Lω(H) + C(|∇Γ | + |Γ |2)H � (1 − ε)H ′(Q)|d|ω||2 � 0. (5.22)

In the case where ρ′(Q) < 0, we also apply (5.20) to (5.17), but here we obtain

Lω(H) + 2
[
Qρ(Q)|∇Γ | +

QH ′(Q)
ε

|Γ |2
]

� (1 − ε)[ρ(Q)|∇ω|2 + 2Qρ′(Q)|d|ω‖2] + 4εQρ′(Q)|d|ω‖2. (5.23)

In the case where ρ′(Q) < 0, condition (5.8) yields

−Qρ′(Q) < 1
2ρ(Q) � CH ′(Q),

and thus,
Q|ρ′(Q)| � CH ′(Q). (5.24)
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(Note that (5.24) is automatic for ρ′(Q) � 0.) Applying Kato’s inequality and (5.24)
to (5.23) yields

Lω(H) + 2
[
Qρ(Q)|∇Γ | +

QH ′(Q)
ε

|Γ |2
]

� (1 − ε − 4εC)H ′(Q)|d|ω‖2

� 0.

Applying (5.7) and (5.10) to the left-hand side of this inequality, we obtain (5.22)
(for updated ε) for the case where ρ′(Q) < 0 as well.

It remains only to show that the operator Lω(H) can be put into divergence
form, at the cost of absorbing another lower-order term. The second term of Lω(H)
can be written in the form

〈ω, δ(dρ(Q) ∧ ω)〉 = ∗[ω ∧ ∗δ(dρ(Q) ∧ ω)]
= ∗d[ω ∧ ∗(dρ(Q) ∧ ω)] − ∗[dω ∧ ∗(dρ(Q) ∧ ω)],

where

− ∗ [dω ∧ ∗(dρ(Q) ∧ ω)] = − ∗ [Γ ∧ ω ∧ ∗(dρ(Q) ∧ ω)]
� −2Q|Γ‖ρ′(Q)‖ω‖d|ω‖,

which is estimated in the same way as the last term in the sum on the far right-hand
side of (5.19).

Taking into account (5.3) we obtain, for any k-form α,

∗dα = (−1)k(n−k) ∗ d(∗∗)α

= (−1)k(n−k)(∗d∗) ∗ α

= (−1)2kn+n+1−k2
δ ∗ α. (5.25)

Taking k = 1 and
α = ∗[ω ∧ ∗(ρ′(Q) dQ ∧ ω)]

in equation (5.25), we can express the operator δ in that equation as a divergence.
This allows us to write (5.22) (again updating C and ε) in the form

∆H + (−1)3n∇ · {∗[ω ∧ ∗(ρ′(Q)dQ ∧ ω)]}
+ C(|Γ |2 + |∇Γ |)H � (1 − ε)H ′(Q)|d|ω‖2 � 0.

This completes the proof of lemma 5.2.

Lemma 5.3. Under the hypotheses of lemma 5.2, the operator

Lω(H) ≡ ∆H + (−1)3n∇ · {∗[ω ∧ ∗(ρ′(Q) dQ ∧ ω)]}

is a uniformly elliptic operator on H.

Proof. We argue as in [44, § 1] and [29, § 4], but without using hypothesis (5.6).
Define a map βω : Λ0 → Λk+1 by the explicit formula

βω : µ → dµ ∧ ω (5.26)
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for µ ∈ Λ0 and ω ∈ Λk. Then we can write the variational form of the Hodge–
Frobenius equations (2.2), (2.7) and (2.8) in the alternate form

dσi = −βσi(η), σ = 1, 2, (5.27)

where σ1 = ∗ρ(Q)ω and σ2 = −ω. The ‘irrotational’ case dω = 0 can be recovered
as the special case of (5.27) in which

βω(η) = d(ηω),

in which case equation (5.26) implies that

dη ∧ ω = dη ∧ ω + η dω

(cf. [29, § 4] and [44, § 1]).
Moreover, writing

βω(g) = dg ∧ ω

for some 0-form g we compute, for arbitrary compactly supported µ ∈ Λk+1,

〈µ,dg ∧ ω〉 = ∗(dg ∧ (∗∗)(ω ∧ ∗µ))
= 〈dg, ∗(ω ∧ ∗µ)〉
= 〈g, δ ∗ (ω ∧ ∗µ)〉.

So the map β∗
ω : Λk+1 → Λ0 defined by the explicit formula

β∗
ω(µ) = δ ∗ (ω ∧ ∗µ)

is the formal adjoint of βω.
In terms of the maps βω and β∗

ω, we can write

(−1)n+1∇ · {∗[ω ∧ ∗(ρ′(Q)dQ ∧ ω)]} = β∗
ωβω[ρ]

= β∗
ω[µω(H)]

for µω satisfying

µω(H) =
ρ′(Q)
H ′(Q)

dH ∧ ω.

Using β∗
ω, we write the inequality of lemma 5.2 in the form

Lω(H) + lower-order terms � 0,

where

Lω(H) = ∆H − β∗
ω[µω(H)].

Writing

Lω(H) = ∂k(αjk∂j)H,

we find that if ρ′(Q) < 0, then (5.24) implies that

1 � αkj +
Q|ρ′(Q)|
H ′(Q)

� αkj + C.
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If ρ′(Q) � 0, then we write

∇ ·
{[

1 − Qρ′(Q)
H ′(Q)

]
∇H

}
= ∇ ·

{[
ρ(Q)

2H ′(Q)

]
∇H

}
.

Condition (5.7) implies that there is a positive constant c such that

1
2c � ρ(Q)

2H ′(Q)
� 1,

where c is the reciprocal of the constant C in (5.7). This completes the proof of
lemma 5.3.

These three lemmas easily yield the following.

Theorem 5.4. Under the hypotheses of lemma 5.2, the product Qρ(Q) is locally
bounded above by the L2-norm of H.

The proof of theorem 5.4 is given in § A.1.
Of course, the integrability of H depends on ρ. But for any given ρ in C1(Q), H

can be computed explicitly by integrating (5.5). Even if ρ cavitates, theorem 5.4
yields asymptotic information about the fastest rate at which Q can blow up. Nev-
ertheless, theorem 5.4 is ultimately not very useful, due to the hypothesis that the
solutions are smooth. It would become more useful if it could be applied to singu-
lar solutions. We will find that the partial removable singularities theorems proven
in [29] for singular sets of prescribed codimension extend to our conditions on ρ
under slightly different hypotheses.

Initially, we treat the special case of an isolated point singularity, for which the
proof is somewhat simpler than the proof for higher-order singularities and the
range of applicable dimensions somewhat larger.

Theorem 5.5. Let the hypotheses of lemma 5.2 be satisfied on Ω \ {p}, where p is
a point of R

n and n > 2. If H ∈ L2n/(n−2)(Ω) and if the function

f ≡ |∇Γ | + |Γ |2 (5.28)

is sufficiently small in Ln/2(Ω), then H is an H1,2-weak solution in a neighbourhood
of the singularity.

The proof of theorem 5.5 is given in § A.2.

Corollary 5.6. Let the hypotheses of theorem 5.5 be satisfied and, in addition,
let the function f given by (5.28) satisfy the growth condition∫

Br(x0)∩Ω

|f |n/2 dΩ � Crκ (5.29)

for some κ > 0, where Br(x0) is an n-disc of radius r, centred at x0. Then the
conclusion of theorem 5.4 remains valid.

Proof. Apply [27, theorem 5.3.1] to the conclusion of theorem 5.5, following the
proof of theorem 5.4.
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Note that the singularity in corollary 5.6 is in the solution, rather than in the
underlying metric (cf. [41], in which metric point singularities are considered in the
case when Γ ≡ 0). Corollary 5.6 extends to higher-order singularities in spaces of
sufficiently high dimension, but the proof requires more delicate test functions.

Theorem 5.7. Let the pair ω and Γ smoothly satisfy equations (2.2) and (2.8),
with ρ satisfying the hypotheses of lemma 5.2, on Ω \ Σ. Here Σ is a compact
singular set of dimension 0 � m < n − 4, completely contained in a sufficiently
small n-disc D which is itself completely contained in the interior of Ω. Let H(Q)
lie in L2βγ1(D) ∩ L2γ2(D), where β = (n−m− ε)/(n−m− 2− ε) for 1

2 < γ1 < γ2.
If the function f given by (5.28) satisfies the growth condition (5.29), then the
conclusion of theorem 5.4 remains valid.

The proof of theorem 5.7 is given in § A.3.
The conditions imposed on ρ in this section also lead to extensions of known

results for the conventional case Γ ≡ 0. In particular, we consider equations which,
expressed in components, have the weak form∫

Ω

[ρ(Q)uxk
]xi

ϕxk
dΩ = 0, (5.30)

where ϕ ∈ C∞
0 (Ω) is arbitrary and Q = |du|2. Such equations have been intensively

studied in cases for which ρ(|du|2) grows as a power of |du| [9, equation (3.10)].
Equation (5.30) can be interpreted as a weak derivative with respect to xi of the
system (2.1), (2.2) with Γ ≡ 0.

Define
H(Q) ≡ Qρ2(Q).

The system (2.1), (2.2) is elliptic precisely when H′(Q) > 0. The following result
extends [29, theorem 1], which requires the derivative of ρ with respect to Q to be
non-positive. If ρ is specified to be non-increasing in Q, then the integrability of
H(Q) can be shown to follow from finite energy. In the general case, we impose this
integrability as an independent hypothesis on the weak solution.

Theorem 5.8. Let the scalar function u(x) satisfy equation (5.30) with ρ bounded,
positive and non-cavitating, and with H(Q) integrable. Assume conditions (2.6) and
(5.7). Then, for every n-disc DR of radius R completely contained in Ω, there is a
positive number δ > 0 such that

sup
Q∈D(1−δ)R

H(Q) � CR−n

∫
DR

H(Q) ∗ 1,

where C depends on ρ and δ but not on Q or R.

Proof. Define Q∗ to be the (possibly infinite) value of Q for which

sup
Q∈Ω

ρ(Q) = ρ(Q∗).

Then
H′(Q)
ρ2(Q∗)

=
2ρ(Q)H ′(Q)

ρ2(Q∗)
� C

(
ρ(Q)
ρ(Q∗)

)2

� C, (5.31)

where C is the constant in (5.7).
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As in [29], we initially estimate smooth solutions, and subsequently extend the
result to weak solutions, recovering the derivatives as limits of difference quotients.

We choose test functions ϕi having the form

ϕi(x) = uxi
H̃

α/2ζ2,

where α > 0, ζ(x) ∈ C∞
0 (DR), and

H̃ ≡ H(Q) + ε (5.32)

for a small positive parameter ε (cf. [9, § 3]). Then

[ρ(Q)uxk
]xiϕ

i
xk

= 2H ′(Q)(uxixk
)2H̃α/2ζ2

+ αρ(Q)[H ′(Q)]2|∇Q|2H̃(α−2)/2ζ2

+ 2H ′(Q)Qxk
H̃

α/2ζζxk

≡ i1 + i2 + i3.

Here

i1 � 2H ′(Q)uxixk
uxixk

Qρ2(Q)H̃(α−2)/2ζ2

= 1
2ρ2(Q)H ′(Q)|∇Q|2H̃(α−2)/2ζ2

� C|∇(H̃(α+2)/4)|2ζ2,

where the last inequality follows from (5.31) and the constant C depends on α,
ρ−1(Q∗), the constant of (5.31) and the lower bound of ρ(Q).

Similarly,

i2 � ρ(Q)
ρ(Q∗)

i2 � C|∇(H̃(α+2)/4)|2ζ2

and
i3 = 2H ′(Q)Qxj

H̃
α/2ζ(x)ζxj

.

The latter quantity can be estimated by applying, as in the proof of lemma 5.2, the
elementary algebraic inequality (Young’s inequality):

ab � −
(

ε̃

2
a2 +

1
2ε̃

b2
)

.

Now, take
a = 2H ′(Q)H̃(α−2)/4ζQxj , b = H̃

(α+2)/4ζxj

and ε̃ = δ̃ρ2(Q) for small δ̃ > 0.
Putting these estimates together, we obtain∫

Ω

|∇(H̃(α+2)/4)|2ζ2 dΩ � C

∫
Ω

H̃
(α+2)/2|∇ζ|2 dΩ.

The proof for the smooth case is completed by applying the Moser iteration as
in [20, (9.5.8)–(9.5.12)] and subsequently letting the parameter ε in (5.32) tend to
zero. The proof is extended to the general case by applying the difference-quotient
method as in [29, equation (13)] (see also [44, lemma 2]).
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6. Hodge–Bäcklund transformations

Different choices of ρ may sometimes be related by a special kind of Bäcklund
transformation which is based on properties of the Hodge involution. We call these
transformations Hodge–Bäcklund. Although this term does not seem to have been
used up to now, such generalized Bäcklund transformations have a long history in
diverse fields of mathematical physics. Our aim in this section is to unify these
various transformations, to place them in an invariant context and extend them to
the completely integrable case.

Historically, the term Bäcklund transformation has been defined in many ways
(see, for example, [33] for the classical theory). In what follows we will use it in the
general sense of a function that maps a solution a of a differential equation A into
a solution b of a differential equation B and vice versa, where B may equal A but
b will not equal a.

6.1. Transformation of the Chaplygin mass density

The mass density for the adiabatic and isentropic subsonic flow of an ideal fluid
has the form

ρ(Q) =
(

1 − γ − 1
2

Q

)1/(γ−1)

(6.1)

for Q ∈ [0, 2/(γ + 1)), where γ is the adiabatic constant : the ratio of specific heats
for the gas. The adiabatic constant for air is 1.4. Choosing γ = 2, we obtain, by
an independent physical argument originally introduced for one spatial dimension
in [32], the mass density for shallow hydrodynamic flow in the tranquil regime [42,
equation (10.12.5)]. If we choose γ to be −1 (a physically impossible choice), we
obtain the density of the minimal surface equation [19,39]

ρ(Q) =
1√

1 + Q
. (6.2)

Flow governed by this density is called Chaplygin flow. Despite the fact that the
numbers −1 and 1.4 are not particularly close, this choice of mass density has
many attractive properties as an approximation for (6.1) (see, for example, [11]
and [5, ch. 5]). These properties are, in general, retained in the case of completely
integrable flow described in § 1.2.

If Γ ≡ 0, equations (2.1) and (2.2) with ρ(Q) given by (6.2) describe, for k = 1,
non-parametric minimal surfaces embedded in Euclidean space. If k = 2, they
describe electromagnetic fields in the Born–Infeld model, as in (4.4).

More generally, we have the following result, which extends an argument intro-
duced for the case Γ ≡ 0 by Yang [45] (see also [2] and [40, theorem 2.1]).

Theorem 6.1. Let the 1-form ω satisfy equations (2.2) and (2.8), with ρ satisfying
(6.2). Then there exists an (n−1)-form ξ with |ξ| < 1, satisfying equations analogous
to (2.2) and (2.8), but with Γ ≡ dη replaced by Γ̂ ≡ dη̂ = −dη and ρ(Q) replaced
by

ρ̂(|ξ|2) ≡ 1√
1 − |ξ|2

. (6.3)
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Proof. Equation (2.8) can be interpreted as the assertion that the (n − 1)-form

ξ = ∗[ρ(Q)ω] = ∗
[

ω√
1 + |ω|2

]
(6.4)

satisfies
dξ = dη̂ ∧ ξ, (6.5)

that is, equation (2.2) with η replaced by η̂ ≡ −η. As a consequence, we conclude
that this (n−1)-form is also gradient recursive and, on domains with trivial de Rham
cohomology, there exists an (n − 2)-form σ such that ξ = eη̂ dσ (cf. § 2.2).

Because the Hodge involution is an isometry,

|ξ|2 =
|ω|2

1 + |ω|2

or, equivalently,

1 − |ξ|2 =
1

1 + |ω|2 . (6.6)

Note that equation (6.6) implies |ξ|2 < 1, as well as

ρ(|ω|2)ρ̂(|ξ|2) =
1√

1 + |ω|2
1√

1 − |ξ|2
= 1.

This, together with (6.4), directly yields

∗ρ̂(|ξ|2)ξ = ∗2ρ(|ω|2)ρ̂(|ξ|2)ω
= (−1)n−1ω.

Hence,

d ∗ (ρ̂(|ξ|2)ξ) = (−1)n−1 dω

= (−1)n−1 dη ∧ ω

= dη ∧ ∗(ρ̂(|ξ|2)ξ)
= −dη̂ ∧ ∗(ρ̂(|ξ|2)ξ),

which is equivalent to equation (2.8) for the gradient recursive (n − 1)-form ξ with
coefficient dη̂, where ρ has been replaced by ρ̂ (see also (5.4)). This completes the
proof of theorem 6.1.

The above argument carries over to any pairing of functions ρ(|ω|2), ρ̂(|ξ|2),
as long as their product is 1. Moreover, it carries over essentially unchanged to
gradient-recursive k-forms ω, as these would automatically yield gradient-recursive
(n − k)-forms ξ.

The same argument, with small modifications, extends theorem 6.1 to general
(non-gradient-recursive) k-forms, in which we write equations (2.2) and (2.8) in
terms of Γ and Γ̂ rather than in terms of η and η̂.

In addition to the original, ‘irrotational’ version of theorem 6.1 introduced in [45],
other aspects of the duality of mass densities for nonlinear Hodge equations are
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presented in [38] and [30, § 4.2]. (The irrotational case of the above argument is
reviewed in [30, § 4.1]; note the recurring misprint in the two paragraphs following
equation (35) of that reference: dω should be du.) Densities of the form (6.3) arise
in the study of maximal space-like hypersurfaces [8] and, in a completely different
way, harmonic diffeomorphisms [43].

6.2. Transformation of the complex eikonal equation
(after Magnanini and Talenti)

As an example of the diverse fields in which these transformations arise, and of
the simplifying and unifying role of the Hodge involution, we describe an example
from complex optics. The description of the local Bäcklund transformations follows
the analysis of Magnanini and Talenti [21], in which these transformations were
introduced (see also [22,23]). We then reproduce the argument of [21] in a simpler,
invariant context using the Hodge operator.

The eikonal equation in R
2 can be written in the form

ψ2
x + ψ2

y + ν2 = 0, (6.7)

where ν(x, y) is a given real-valued function. If we write the solution ψ(x, y) as a
complex function having the form

ψ(x, y) = u(x, y) + iv(x, y)

for real-valued functions u and v, then (6.7) is equivalent to the first-order system

u2
x + u2

y − v2
x − v2

y + ν2 = 0, (6.8)

uxvx + uyvy = 0. (6.9)

The function ν corresponds physically to the refractive index of the medium
through which the wavefront represented by the function ψ propagates. If

u2
x + u2

y > 0, (6.10)

then, by equation (6.8), vx and vy cannot both vanish. In that case, equation (6.9)
can be expressed, in the language of proportions, by the assertion that either[

vx

vy

]
:
√

v2
x + v2

y = ±
[
−uy

ux

]
:
√

u2
x + u2

y, (6.11)

or
ux = uy = 0. (6.12)

Treating these relations as a coupled system of scalar equations, we have, under
the same hypothesis,

vx√
v2

x + v2
y

= ± −uy√
u2

x + u2
y

and, using equation (6.8),

vx = ±(−uy)

√
ν2

u2
x + u2

y

+ 1. (6.13)
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Similarly, the scalar equation
vy√

v2
x + v2

y

= ± ux√
u2

x + u2
y

,

which also follows from (6.11), implies, by analogous operations, the equation

vy = ±ux

√
ν2

u2
x + u2

y

+ 1. (6.14)

We can write the coupled system (6.13), (6.14) as a vector equation of the form[
vx

vy

]
= ±

√
1 +

ν2

u2
x + u2

y

[
−uy

ux

]
, (6.15)

or as a single (exact) equation for 1-forms,

dv = ±
√

1 +
ν2

u2
x + u2

y

(−uy dx + ux dy). (6.16)

This implies the local existence of a solution to the divergence-form equation

∂

∂x

(√
1 +

ν2

u2
x + u2

y

ux

)
+

∂

∂y

(√
1 +

ν2

u2
x + u2

y

uy

)
= 0, (6.17)

whenever condition (6.10) is satisfied.
Equations (6.8), (6.9) and (6.11) can also be solved for ux and uy, in addition

to being solvable for vx and vy as in (6.13) and (6.14). Under the hypothesis that
either

v2
x + v2

y = ν2 (6.18)

or

v2
x + v2

y > ν2, (6.19)

one obtains, by completely analogous arguments to those applied to vx and vy, the
vector equation [

ux

uy

]
= ∓

√
1 − ν2

v2
x + v2

y

[
−vy

vx

]
(6.20)

and the equation

du = ∓
√

1 − ν2

v2
x + v2

y

(−vy dx + vx dy) (6.21)

for 1-forms. Note that equation (6.21) is exact either if (6.18) holds, or if (6.19)
holds and the divergence-form equation

∂

∂x

(√
1 − ν2

v2
x + v2

y

vx

)
+

∂

∂y

(√
1 − ν2

v2
x + v2

y

vy

)
= 0 (6.22)

is satisfied.
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6.2.1. Hodge–Bäcklund interpretation

Equations (6.17) and (6.22) define a Bäcklund transformation u → v and its
inverse v → u [23]. These equations can be written in the form of nonlinear Hodge
equations:

d ∗ (ρ(Q)ω) = 0, (6.23)
dω = 0 (6.24)

(that is, as equations (2.1) and (2.2) for Γ ≡ 0). Either

ρ(|ω|2) =

√
1 +

ν2

|ω|2 , (6.25)

corresponding to equation (6.17), or

ρ̂(|ξ|2) =

√
1 − ν2

|ξ|2 , (6.26)

corresponding to equation (6.22). In either case we assume that Q does not vanish,
by analogy with equations (6.10), (6.12), (6.18) and (6.19).

Take ρ as in (6.25). If the domain is simply connected, then equation (6.24)
implies, analogously to § 5.1, that there is a 0-form u such that

ω = du,

and a 0-form v such that

dv = ± ∗
(√

1 +
ν2

|ω|2 ω

)
= ± ∗

(√
|du|2 + ν2 ω

|ω|

)
. (6.27)

Because the Hodge operator is an isometry, which is illustrated locally by (6.11),
we have

|dv|2 = |du|2 + ν2.

Thus, the Hodge–Bäcklund transformation (6.27) yields an invariant form of (6.8).
Unlike classical Bäcklund transformations of the eikonal equation, in this case the
Cauchy–Riemann equations are not satisfied. Rather,

ux = ∓ρ(Q)vy and uy = ±ρ(Q)vx,

which is sufficient for the orthogonality condition (6.9).
Now take ρ̂ as in (6.26). Arguing as before, we conclude that there is a 0-form ũ

such that ω = dũ and a 0-form ṽ such that

dṽ = ± ∗
(√

Q − ν2 ω

|ω|

)
.

We obtain
|dṽ|2 = |dũ|2 − ν2.
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Letting ũ = ±iu and ṽ = ±iv, we obtain a mapping taking solutions to equa-
tions (2.2) and (2.8) with Γ ≡ 0 and ρ̂ satisfying (6.26) into solutions of that
system with Γ ≡ 0 and ρ satisfying (6.25).

These arguments extend immediately to the Hodge–Frobenius case: for example,
by replacing (6.27) with the expansion

eη̂ dv = ± ∗
(√

e2η|du|2 + ν2 ω

|ω|

)

and squaring both sides. They also extend in a straightforward way to gradient-
recursive k-forms and, with some modifications, to general k-forms (see the remarks
following theorem 6.1).

Motivated by these examples, we offer a general definition of the Hodge–Bäcklund
transformation. It is a map taking a solution a of a nonlinear Hodge–Frobenius
equation having mass density ρA into a solution b of a nonlinear Hodge–Frobenius
equation having mass density ρB and vice versa, where B may equal A but b will
not equal a.
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Appendix A. Methods from elliptic theory

In this appendix we collect the proofs of theorems 5.4, 5.5 and 5.7, which follow
directly from the association of solutions to a uniformly subelliptic operator via
lemmas 5.1–5.3.

A.1. Proof of theorem 5.4

We require the following well-known extension of de Giorgi–Nash–Moser theory.

Theorem A.1 (Morrey [27, theorem 5.3.1]). Let n > 2. Let U ∈ H1,2(D) for each
n-disc D ⊂⊂ Ω, where U(x) � 1 and define an L2-function W = Uλ for some
λ ∈ [1, 2). Suppose that ∫

Ω

(aαβ∂βW∂αζ + fWζ) dΩ � 0 (A 1)

for all ζ ∈ C∞
0 (Ω) with ζ(x) � 0, where the coefficients a and f are measurable

with f ∈ Ln/2(Ω). Let the matrix a satisfy the ellipticity condition

C|ξ|2 � aαβ(x)ξαξβ

for |a(x)| � M at almost every x ∈ Ω and for all ξ. Moreover, let the growth
condition (5.29) be satisfied. If U ∈ L2(Ω), then U is bounded on each n-disc
D ⊂⊂ Ω and satisfies

|U(x)|2 � Ca−n
0

∫
D(R+a0)(x0)

|U(y)|2 dy,

where x is a point of DR(x0) ⊂ Ω.
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Slightly modified conditions will extend Morrey’s result to n = 2 [27, § 5.4].
We apply theorem A.1, taking U(x) = H(Q(x))+1 and λ = 1. Let a be given by

the matrix α of lemma 5.3 and let f be given by (5.28). Then f satisfies the local
growth condition (5.29) by smoothness. The inequality of lemma 5.2 completes the
proof of theorem 5.4.

A.2. Proof of theorem 5.5

Without loss of generality, take p to be the origin of coordinates. Write the
operator Lω in the form

Lω(H) = ∆H + ∇ · [T (H)]

for
T = (−1)3n ∗ {ω ∧ ∗[ρ′(Q) dQ ∧ ω]}.

Then
∇[T (H)] = ∂k(ajk∂jH),

by arguments analogous to those of lemma 5.3. Moreover, lemma 5.3 implies that

|∇H|2 � (1 + ajk)∂jH · ∂kH � C|∇H|2. (A 2)

If f is given by (5.28), then∫
Ω

{[∇H + T (H)] · ∇ζ − CfHζ} dΩ � 0 (A 3)

for all non-negative test functions ζ ∈ C∞
0 (Ω) which vanish in a neighbourhood of

the origin. Define
ζ = (ηη̄ν)2H,

where η ∈ C∞
0 (D) for an n-disc D of radius R, containing the origin, and itself

completely contained in the interior of Ω. Recalling that we have taken H(0) = 0
and that (2.6) implies that H ′(Q) > 0, we conclude that H is a non-negative
function. Let ην be given by the sequence [14]

ην(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, |x| � ν−2,

log(ν2|x|)
log(ν2R)

, ν−2 < |x| < R,

1, R � |x|.

Note that ην vanishes on a neighbourhood of the origin for any finite parameter ν,
but as ν tends to ∞, ην converges pointwise to 1, whereas ∇ην converges to zero
in Ln(D).

Inequality (A 3) now assumes the form

0 �
∫

D

[(L + f)H] · (ηην)2H ∗ 1

=
∫

D

{[∂k(1 + ajk)∂j + f ]H}(ηην)2H ∗ 1

= −
∫

(1 + ajk)∂jH · ∂k[(ηην)2H] ∗ 1 +
∫

D

fH2(ηην)2 ∗ 1,
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where

−
∫

D

(1 + ajk)∂jH · ∂k[(ηην)2H] ∗ 1 = −2
∫

D

(1 + ajk)η2
νη(∂kη)H · ∂jH ∗ 1

− 2
∫

D

(1 + ajk)η2η̄ν(∂kην)H · ∂jH ∗ 1

−
∫

D

(1 + ajk)(ηην)2(∂jH · ∂kH) ∗ 1

≡ −(2i1 + 2i2 + i3).

That is,

i3 =
∫

D

(1 + ajk)(ηην)2(∂jH · ∂kH) ∗ 1

� 2(|i1| + |i2|) +
∫

D

(ηην)2fH2 ∗ 1.

Estimating the integrals on the right individually, we have

2i1 = 2
∫

D

(1 + ajk)η2
νη(∂kη)H · ∂jH ∗ 1

� ε

∫
D

(ηνη)2|∇H|2 ∗ 1 +
1
ε

∫
D

η2
ν |∇η|2H2 ∗ 1,

2i2 = 2
∫

D

(1 + ajk)η2η̄ν(∂kην)H · ∂jH ∗ 1

� ε

∫
D

(ηνη)2|∇H|2 ∗ 1 +
1
ε

∫
D

η2|∇ην |2H2 ∗ 1

≡ εi21 +
1
ε
i22,

where the small constants ε depend on the constant C in the upper inequality of
(A 2), and

i22 =
∫

D

η2|∇ην |2H2 ∗ 1 � C‖∇ην‖2
n‖ηH‖2

2n/(n−2). (A 4)

The right-hand side of (A 4) tends to zero as ν tends to infinity. Absorbing small
constants on the left, now using the lower inequality of (A 2), we conclude that

(1 − 2ε)
∫

D

(ηνη)2|∇H|2 ∗ 1

� C(ε)
( ∫

D

η2
ν |∇η|2H2 ∗ 1 + ‖∇ην‖2

n‖ηH‖2
2n/(n−2) + ‖f‖n/2‖ηηνH‖2

2n/(n−2)

)
,

(A 5)
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where

‖ηηνH‖2
2n/(n−2) � C

∫
D

|∇(ηηνH)|2 ∗ 1

� C

( ∫
D

|∇(ηην)|2H2 ∗ 1 +
∫

D

(ηην)2|∇H|2 ∗ 1
)

. (A 6)

The first integral on the far right-hand side of inequality (A 6) has essentially already
been estimated in (A 4), and the second can be subtracted from the left-hand side of
(A 5) provided that its coefficient in (A 5), the Ln/2-norm of f over Ω, is sufficiently
small. Letting ν tend to infinity, in the limit we have∫

D

η2|∇H|2 ∗ 1 � C

∫
D

|∇η|2H2 ∗ 1.

We conclude that H is a weak solution in a neighbourhood of the singularity. This
completes the proof of theorem 5.5.

A.3. Proof of theorem 5.7

6.3.1. Outline

The result follows from the application of lemmas 5.2 and 5.3 and theorem 5.4, to
the proofs of [29, theorem 6 and corollary 7]. The absence of condition (5.6) results
in a small change of Lp conditions on the solution.

6.3.2. Details

Initially proceed as in § A.2, but choose the test of functions ην to be a sequence
of functions possessing the following properties:

(a) ην ∈ [0, 1] for all ν;

(b) ην = 0 in a neighbourhood of Σ for all ν;

(c) limν→∞ ην = 1 almost everywhere;

(d) limν→∞ ‖∇ην‖Ln−m−ε = 0

(cf. [35, lemma 2 and p. 73]). The function F is given by [34]:

F(H) =

{
Hγ2 , 0 � H � �,

(1/γ1)[γ2�
γ2−γ1Hγ1 − (γ1 − γ2)�γ2 ], H � �.

The functions F(H) and

G(H) ≡ F(H)F ′(H) − γ2
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satisfy [34, p. 280] (see also [14, § 3])

F(H) � γ2

γ1
�γ2−γ1Hγ1 ,

HF ′(H) � γ2F ,

|G(H)| � F(H)F ′(H),

G′(H) � CF ′(H)2.

Replace the test function in § A.2 by the test function

ζ = (ηην)2G(H),

where η is defined as in § A.2, and substitute this value into (A 3). We obtain

0 �
∫

D

{[∂k(1 + ajk)∂j + f ]H}(ηην)2G(H) ∗ 1

= −
∫

D

(1 + ajk)∂jH · ∂k[(ηην)2G(H)] ∗ 1 +
∫

D

fη2η2
νH · G(H) ∗ 1

or

2
∫

D

(1 + ajk)(ηην)∂k(ηην)(∂jH)G(H) ∗ 1

+
∫

D

(1 + ajk)(ηην)2G′(H)∂jH∂kH ∗ 1 �
∫

D

f(ηην)2H · G(H) ∗ 1.

Writing this inequality in short-hand form,

I1 + I2 � I3, (A 7)

we proceed analogously to inequalities (28)–(35) of [28], making the following
changes from the notation of [28] to our notation: ψ → η, Q → H, H → F ,
Ξ → G, Φ → f . Explicitly,

I1 = 2
∫

D

(1 + ajk)(ηην)∂k(ηην) · G(H)∂jH ∗ 1

� −C

∫
D

(ηην)|∇(ηην)| |F(H)∇F(H)| ∗ 1

� −ε

∫
D

(ηην)2|∇F(H)|2 ∗ 1 − C(ε)
∫

D

|∇(ηη)|2F(H)2 ∗ 1,

I2 � C

∫
D

(ηην)2|F ′(H)|2|∇H|2 ∗ 1

� C

∫
D

(ηην)2|∇F(H)|2 ∗ 1,
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I3 =
∫

D

f(ηην)2H · G(H) ∗ 1

�
∫

D

|f |(ηην)2|H · F ′(H)‖F(H)| ∗ 1

� γ2

∫
D

|f |(ηην)2|F(H)|2 ∗ 1

� ‖f‖n/2

( ∫
D

|ηηνF(H)|2n/(n−2) ∗ 1
)(n−2)/n

. (A 8)

As in (A 6), we apply the Sobolev inequality to the right-hand side of this expression,
followed by the Minkowski and Schwartz inequalities:

( ∫
D

|ηηνF(H)|2n/(n−2) ∗ 1
)(n−2)/n

� C

∫
D

|∇[ηηνF(H)]|2 ∗ 1

� C

[ ∫
D

|(∇η)ηνF(H)|2 ∗ 1 +
∫

D

|(∇ην)ηF(H)|2 ∗ 1 +
∫

D

(ηην)2|∇F(H)|2 ∗ 1
]

≡ I31 + I32 + I33.

The term I33 can be subtracted from the left-hand-side of inequality (A 7), as its
coefficient in (A 8), the Ln/2 norm of f , is small on small discs as a consequence of
condition (5.29). Moreover,

I32 =
∫

D

|(∇ην)ηF(H)|2 ∗ 1

� C(γ1, γ2, �)
∫

D

(∇ην)2η2H2γ1 ∗ 1

� C‖∇ην‖2
n−m−ε‖H2γ1‖β .

Letting ν tend to infinity, the term on the right-hand side is zero for every value of
�. Now letting � tend to infinity and using Fatou’s inequality, we conclude that∫

D

η2|∇(Hγ2)|2 ∗ 1 � C

∫
D

|∇η|2H2γ2 ∗ 1.

Apply theorem A.1, taking U = Hγ2 . Then U ∈ H1,2(D) and W = Uλ satisfies
inequality (A 1) for λ = 1/γ2. Because γ2 > 1

2 , we can conclude that λ < 2, as
is required by theorem A.1. We now want to check that we can choose γ2 � 1, in
order to obtain λ � 1, which is also required by theorem A.1. Because H lies in
the space L2βγ1(D) ∩ L2γ2(D), we let γ1β = γ2. Substituting the definition of β, we
find that we can choose γ2 � 1 for γ1 > 1

2 , provided m + 4 < n, which is satisfied
by hypothesis. This completes the proof of theorem 5.7.

https://doi.org/10.1017/S0308210509001097 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001097


818 A. Marini and T. H. Otway

References

1 R. P. Agarwal and S. Ding. Advances in differential forms and the A-harmonic equations.
Math. Comp. Model. 37 (2003), 1393–1426.
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to Jesse Douglas and Tibor Radó (ed. Th. M. Rassias), pp. 138–164 (Singapore: World
Scientific, 1992).

20 O. A. Ladyzhenskaya and N. N. Ural’tseva. Linear and quasilinear elliptic equations (New
York: Academic Press, 1968).

21 R. Magnanini and G. Talenti. On complex-valued solutions to a 2-D eikonal equation. I.
Qualitative properties. Contemp. Math. 283 (1999), 203–229.

22 R. Magnanini and G. Talenti. On complex-valued solutions to a two-dimensional eikonal
equation. II. Existence theorems. SIAM J. Math. Analysis 34 (2003), 805–835.

23 R. Magnanini and G. Talenti. On complex-valued solutions to a 2-D eikonal equation. III.
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