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Grounded on the premise that dust particles are charged hard balls, the analysis in
Davletov et al. (Contrib. Plasma Phys., vol. 56, 2016, 308) provides an original
pseudopotential model of intergrain interaction in complex (dusty) plasmas. This
accurate model is engaged herein to consistently treat the finite-size effects from the
process of dust particle charging to determination of the thermodynamic quantities
and the dust-acoustic wave dispersion in the strongly coupled regime. The orbital
motion limited approximation is adopted to evaluate an electric charge of dust grains
immersed in a neutralizing background of the buffer plasma. To account for finite
dimensions of dust particles, the radial distribution function is calculated within the
reference hypernetted-chain (RHNC) approximation to demonstrate a well-pronounced
short-range order formation at rather large values of the coupling parameter and the
packing fraction. The evaluated excess pressure of the dust component is compared
to the available theoretical approaches and the simulation data and is then used to
predict the dust-acoustic wave (DAW) dispersion in the strongly coupled regime under
the assumption that the dust particles charge varies in the course of propagation. In
contrast to many previous investigations, it is demonstrated for the first time ever
that for DAWs the charge variation of dust particles should necessarily be taken into
account while evaluating the dust isothermal compressibility.
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1. Introduction
For the past few decades a great deal of the attention of plasma physics researchers

has been paid to complex (dusty) plasmas that are frequently encountered in
various settings both in nature and the laboratory (Fortov & Morfill 2010). In
particular, a dusty plasma appears in various astrophysical contexts (Forsberg
et al. 2006; Malmrose et al. 2011; Seok, Koo & Hirashita 2015), space and Earth
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experiments (Heidemann et al. 2011; Fedoseev et al. 2016; Izvekova & Popel 2016),
nanotechnology (Szetsen, Hsiu-Feng & Chien-Ju 2007; Kundrapu & Keidar 2012),
cancer therapy in medicine (Keidar et al. 2013; Walk et al. 2013), etc. Furthermore, it
is nowadays a working substance in controlled nuclear fusion investigations (Castaldo
et al. 2007; Tolias et al. 2016) and plasma etching in electronics (Kokura et al. 1999;
Kersten et al. 2001) because solid micron-sized particles readily penetrate into the
plasma medium as a consequence of its contact with electrodes and chamber walls,
which substantially modifies surface properties of the confining material and the local
plasma characteristics as well.

What makes complex plasma a unique object for intensive investigations is the
presence of micron-sized dust particles, called grains, which are capable of acquiring
a high, mostly negative, electric charge (Khrapak & Morfill 2009; Shukla & Eliasson
2009), thereby invoking diverse manifestations of strong coupling effects (Bonitz,
Henning & Block 2010). For instance, experiments with dusty plasmas clearly
demonstrate that, under certain external conditions, strong electrostatic interactions
between grains prevail over their thermal kinetic energy resulting in the formation of
so-called plasma crystals (Kählert & Bonitz 2010; Dietz & Thoma 2016; Piel 2017).
The latter are quite similar, in physical properties, to ordered structures in liquids and
solids, such that phase transitions of the first and second orders were theoretically
predicted and experimentally observed (Vaulina et al. 2002; Kundu et al. 2014).

In order to reliably describe the properties of strongly coupled systems it is
crucial to somehow establish the form of interaction energy between the constituent
elements (Momot, Zagorodny & Orel 2017). As for dusty plasmas, the interaction
potential between grains is conventionally taken in the form of the screened Coulomb
(Yukawa) potential (Kalman et al. 2013; Khrapak & Thomas 2015a,b), which is
exceptionally valid for point-like dust particles immersed into the buffer plasma,
whose role is virtually reduced to shielding of the electric field of grains. Such an
idealized one-component model remains intrinsically unphysical in essence because
a dust grain must have an appropriate size in order to be able to absorb the buffer
plasma particles and thus to be able to acquire the electric charge. To overcome
this deficiency a convenient interaction model was proposed in the framework of the
density-response formalism (Davletov, Arkhipov & Tkachenko 2016) and its logical
and proper application is the core motivation of the present consideration.

In most dusty plasma simulations treating the strongly coupled regime, the charge
of dust particles is assumed to be invariable, which is only reasonable if the charging
time is much larger than the characteristic time of the processes under study.
Otherwise, the dust grain charge can no longer be considered a constant, which
is true, for example, for dust-acoustic wave (DAW) propagation when local variations
of the dust number density in the wave can seriously affect the local quasi-neutrality
balance in the medium.

The influence of dust particle charge variation on wave phenomena in cold and ideal
dusty plasmas was studied in many papers, see for instance Ivlev et al. (1999), Ivlev &
Morfill (2000), Ostrikov et al. (2000), Khrapak & Morfill (2001), by incorporating the
particle charging dynamics. It is advocated herein that such a detailed consideration
is irrelevant for DAWs because the recharging time in ordinary dusty plasmas is
much lower in magnitude than the inversed frequency of DAWs, which means that,
in the course of DAW propagation, dust grains are almost instantly recharged. Of
interest in the following is the strongly coupled regime in which the dust charge
variation for DAWs must play a much more crucial role because the thermal pressure
is predominated by the mutual interaction of likely charged dust particles. DAWs in
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strongly coupled dusty plasmas with varying grain charge were intensively studied
in the literature (Mamun, Shukla & Farid 2000; Xie & Yu 2000a,b; Kaw 2001) but
unfortunately the isothermal compressibility of the dust component was calculated
under the assumption of the constant grain charge. The present consideration is
intended to amend this situation.

With the purpose of correcting the determination of the isothermal compressibility
of the dust component, one has to use unconventional parametrization in which the
dust particle charge is no longer an independent quantity and is governed by the
ambient plasma characteristics as well as by the dust grain size and number density.
That is why we start from the examination of the charging process and proceed to the
evaluation of the thermodynamic properties of the strongly coupled dust component.
The final goal pursued is to show that, in contrast to some previous investigations,
the isothermal compressibility found in such a way takes into account the variation of
dust particle charge, which has a decisive impact on the DAW spectrum in strongly
coupled dusty plasmas.

The rest of the paper is organized as follows. The following § 2 introduces the
dimensionless parameters relevant to the description of the state of dusty plasmas.
Section 3 is devoted to the determination of the dust grain charge within the
orbital motion limited approach. Thermodynamic quantities and the dust-acoustic
wave dispersion are extensively dealt with in § 4 starting with the derivation of
the correlation functions in the reference hypernetted-chain (RHNC) approximation
initially proposed by Lado (1973, 1976). Main inferences and general conclusions are
summarized in § 5.

2. Plasma parameters
The focus of the following is a dusty plasma which, for the sake of simplicity, is

assumed to consist of the free electrons with number density ne and electric charge −e,
protons with number density np and electric charge e and dust particles with number
density nd and electric charge −Zde. The presence of neutrals is completely ignored
everywhere below since of principal interest is the pure electrostatic interaction
between the dust particles, merged into a plasma medium.

To characterize the state of the dusty plasma it is very helpful to introduce a few
dimensionless parameters such as the density-ratio parameter

β =
nd

np
(2.1)

and the non-isothermicity coefficient

τ =
Te

Tp
. (2.2)

Here Te and Tp stand for the temperatures of the electrons and protons, respectively.
The temperature of the dust grains Td is known to significantly vary in magnitude
(Avinash, Merlino & Shukla 2011) but for definiteness it is assumed to be equal to
the temperature of the electrons, Td=Te, although the generalization to other practical
situations is rather straightforward. As a matter of fact, the temperature of the dust
grain matter remains almost equal to that of the neutral gas of the buffer plasma and
what is referred to as Td is a quantity that simply determines the average chaotic
kinetic energy of the dust particles caused either by the thermally fluctuating electric
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field in the plasma or by the fluctuating electric charge of dust grains themselves
(Quinn & Goree 2000). Note that at rather low neutral gas pressures (<200 mTorr), Td
normally lies in the range of 10–300 eV as experimentally evidenced by stereoscopic
particle image velocimetry (Fisher & Thomas 2010).

To describe the state of the buffer plasma the coupling parameter for the protons is
defined as

Γp =
e2

apkBTp
, (2.3)

where ap = (3/4πnp)
1/3 denotes the proton sphere radius and kB signifies the

Boltzmann constant.
Herein, the finite-size effects of dust particles are under scrutiny, which necessitates

a standard definition of the packing fraction as follows

η= 4
3πndR3, (2.4)

where R designates the radius of the dust particles, which are viewed as hard spherical
balls. It is well established in the literature that the packing fraction cannot exceed the
value of

√
2π/6≈ 0.74 for the most compact packing of hard balls of the same size.

It is essential for further consideration that the local quasi-neutrality condition is
imposed in the form of

np = ne + Zdnd. (2.5)

It has to be strictly emphasized that the electric charge of the dust grains Zd is no
longer an independent parameter of the present model. Moreover, all further quantities
under study turn out to be functions of the parameters (2.1)–(2.4) defined above.

In closing this section, it is obligatory to mention another two parameters, which
are widely used to solely describe the state of the dust component. They are the dust
coupling parameter

Γd =
Z2

de2

adkBTd
, (2.6)

and the screening parameter
κ =

ad

rD
. (2.7)

Here ad = (3/4πnd)
1/3 represents the Wigner–Seitz radius of dust particles and kD =

r−1
D = (4πnee2/kBTe + 4πnpe2/kBTp)

1/2 denotes the Debye wavenumber inverse to the
Debye screening radius rD.

Note that the dust coupling characterizes the non-ideality effects in the intergrain
interactions, while the screening parameter estimates the contribution of shielding due
to the buffer plasma. However, they both play only a subsidiary role in the following
and are needed only for the sake of comparison with the results of other approaches.

3. Dust grain charge
It was recently demonstrated that the plasma electrodynamics in the framework

of the density-response formalism provides the following interaction model of dusty
plasma particles (Davletov et al. 2016):

Φab(r)=
Qab

r+ Rab
−

Qab

r

(
1− exp(−rkD)−

RabkD

2
Bab(r)

)
, (3.1)

where the subscripts a, b take on values of e for electrons, p for protons and d for
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dust grains, Qed =−Qpd = Zde2, Red = Rpd = R and Qdd = Z2
de2, Rdd = 2R, and

Bab(r) = exp((Rab + r)kD)Ei((Rab + r)kD)− exp(kD(Rab − r))Ei(kDRab)

+ exp(−(Rab + r)kD) [Ei(−RabkD)− Ei(−(Rab + r)kD)] , (3.2)

with the exponential integral function Ei(x)=
∫
∞

x exp(−t)/t dt. In formulas (3.1) and
(3.2) the distance r is measured between the surfaces of the particles.

The interaction model (3.1) is designed to account for the finite size of dust particles
by engaging the parameter kDR which was first proposed by Whipple (1981). The
parameter kDR is known to vary in quite a broad range from very small values up
to dozens and the Whipple approximation and its generalizations are widely used in
studying various aspects of dusty plasma physics (Tang & Delzanno 2014; Delzanno
& Tang 2015; Momot et al. 2017).

It is worth mentioning that the Yukawa (Debye–Hückel) interaction potential,
Φab(r)=Qab exp(−kDr)/(r+Rab), is simply recovered as a limiting case of expressions
(3.1) and (3.2) when kDRab� 1, i.e. the dust particles are quite small. Moreover, it has
to be kept in mind that, for the same values of the dust coupling and the screening
parameters, the Yukawa potential always underestimates the interparticle interaction
potential as compared to formulas (3.1) and (3.2).

Another important limiting case is that of big dust particles kDRab � 1 when
expressions (3.1) and (3.2) simplify to

Φab(r)=
2QabRab

k2
Dr(r+ Rab)3

−
2Qab

k2
DR2

abr
exp(−rkD). (3.3)

It is very interesting to stress that, at large interparticle distances, the exponential
decay of the interaction potential (3.1) as well as (3.2) for small dust grains is
replaced by the inverse power-law decay for large dust grains, as predicted by the
first term on the right-hand side of formula (3.3).

In the remainder of this section the charging process is properly considered on
the basis of the orbital motion limited approximation, in which trajectories of plasma
particles, say electrons and protons, are considered ballistic such that the interparticle
collisions are completely omitted. It is implicitly presumed in the subsequent analysis
of the dust particle charging that the material of the dust is a perfect absorber. Under
those simplified assumptions, simultaneous application of conservation laws of energy
and angular momentum is sufficient to deduce the corresponding absorption cross-
sections, whose averaging over the Maxwellian velocity distribution function allows
one to derive the corresponding fluxes of plasma particles on the dust grain surface.
That the dust grain retains its electric charge over time requires the electron and
proton fluxes to be equal, which yields the following general relation, valid for any
kind of the interaction potential:

np

ne

√
meTp

mpTe

(
1−

Φpd(0)
kBTp

)
= exp

(
−
Φed(0)
kBTe

)
. (3.4)

In the case of the Coulomb interaction, Φab(r)=Qab/(r+ Rab), expression (3.4) is
reduced to the well-known equation of the form (Fortov et al. 2004)

np

ne

√
meTp

mpTe

(
1+

Zde2

kBTpR

)
= exp

(
−

Zde2

kBTeR

)
. (3.5)
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FIGURE 1. Dust grain charge number Zd as a function of the non-isothermicity parameter
τ at the fixed values of β = 1.00 × 10−4, Γp = 0.01 and η = 0.1. Red line: solution to
(3.5); green line: solution to (3.6); blue line: solution to (3.7).

For the Yukawa potential with the Whipple approximation (Whipple 1981), Φab(r)=
Qab exp(−kDr)/(1+ kDR)(r+ Rab), expression (3.4) gives rise to

np

ne

√
meTp

mpTe

(
1+

Zde2

kBTp(1+ kDR)R

)
= exp

(
−

Zde2

kBTe(1+ kDR)R

)
(3.6)

whereas for the interaction potential (3.1), the following equation is obtained

np

ne

√
meTp

mpTe

(
1+

Zde2

kBTpR

[
1− kDR (1+ kDR exp(kDR)Ei(−kDR))

])
= exp

(
−

Zde2

kBTeR

[
1− kDR (1+ kDR exp(kDR)Ei(−kDR))

])
. (3.7)

In figure 1 the dust grain charge number Zd is drawn against the non-isothermicity
parameter τ at fixed values of the density-ratio parameter β = 1.00× 10−4, the proton
coupling Γp = 0.01 and the packing fraction η = 0.1. A comparison is provided
between the solutions to (3.5)–(3.7) to demonstrate that the grain charge within the
Coulomb potential is always underestimated while it is permanently overestimated
within the Yukawa potential in comparison with the proposed expression (3.7). The
former is prescribed to account for the screening phenomenon whereas the latter is
a straightforward consequence of the application of the plasma electrodynamics. It is
seen from the same figure 1 that, for all three cases, the dust grain charge number
monotonically grows with increasing τ and tends to its critical value of Zd = 1/β,
as assured by the quasi-neutrality condition (2.5). This is not surprising because the
number of protons is kept constant by fixing the density-ratio parameter β and the
negative charge is somehow allocated between the electrons and the dust grains. Then,
an increase in τ results in significant growth of the electron flux on the grain surface,
whose electric charge thus inevitably grows.
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FIGURE 2. Dust grain charge number Zd as a function of the logarithm of the density-ratio
parameter β at fixed values of τ = 1, Γp = 0.01 and η= 0.1. Red line: solution to (3.5);
green line: solution to (3.6); blue line: solution to (3.7).

FIGURE 3. Dust grain charge number Zd as a function of the packing fraction η at the
fixed values of β = 1.00× 10−4, Γp = 0.01 and τ = 1. Red line: solution to (3.5); green
line: solution to (3.6); blue line: solution to (3.7).

Figure 2 portrays the dependence of the dust grain charge number Zd on the
logarithm of the density-ratio parameter β at fixed values of the non-isothermicity
parameter τ = 1, the proton coupling Γp = 0.01 and the packing fraction η = 0.1. It
is obvious from the physical point of view that the increase in the number density
of dust grains gives rise to a decrease of the dust grain charge number since the
corresponding number of absorbing centres grows, which is clearly proved by figure 2.

Figure 3 is specifically shown to demonstrate the influence that the finite-size
effects exert on the electric charge of the dust grains. Once again, it clearly shows
that the grain charge number is underestimated within the Coulomb interaction and
overestimated within the Yukawa model and in all cases the charge number grows
with η because of the resulting increase in the dust particle radius.
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4. Thermodynamics and dust-acoustic waves
It is well known from the statistical physics of equilibrium systems that the

complete many-body distribution function is exactly expressed by the Gibbs
distribution. It still, however, carries a great deal of unnecessary information, which
is not needed in practice. From the point of view of calculating the thermodynamic
characteristics of the medium, it is sufficient to know only the pair correlation
function h(r) or the corresponding radial distribution function g(r), which simply
represents the probability density of finding two particles at a certain distance r from
each other.

For a system of single particle species, interacting via the potential Φ(r), the direct
correlation function c(r) is expressed in terms of the pair correlation function h(r)
with the help of the Ornstein–Zernike relation

h(r)= c(r)+ n
∫

c(r− r′)h(r′) dr′, (4.1)

where
h(r)= g(r)− 1 (4.2)

with n being the particle number density.
Equations (4.1) and (4.2) stay unclosed from the viewpoint of mathematics since

they still contain three unknown functions. For neutral systems like ordinary liquids,
an important closure is provided by the Percus–Yevick relation

c(r)= g(r)
[

1− exp
(
Φ(r)
kBT

)]
, (4.3)

where T stands for the particle temperature.
The set of equations (4.1)–(4.3) was especially successful in describing various

properties of hard sphere (HS) systems since it can be explicitly solved for a wide
range of packing fraction and a very good agreement was found with the results of
numerical simulations.

Another general expression, appropriate for charged systems at any coupling,
appears in the diagrammatic expansion in the following form

g(r)= exp
(
−
Φ(r)
kBT
+ h(r)− c(r)+ B(r)

)
, (4.4)

where B(r) denotes the bridge function.
Equation (4.4) is of no help unless it is directly stated how to calculate the bridge

function B(r). The simplest possible method is the so-called hypernetted-chain (HNC)
approximation, which completely drops the bridge function by assuming

BHNC(r)= 0. (4.5)

In this case, the set of equations (4.1), (4.2), (4.4) and (4.5) can be solved
numerically by using an iterative procedure and straightforward comparison with
the results of numerical simulations shows that the HNC approximation works very
well for weakly and moderately coupled systems like one-component plasmas. For
a strongly coupled regime, however, a discrepancy with Monte Carlo data was
discovered for both the radial distribution function and the static structure factor,
which provoked further studies on the topic.
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FIGURE 4. Radial distribution function as a function of the normalized intergrain spacing
r/ad at fixed values of τ = 1, β = 1.00 × 10−4, Γp = 0.001 and η = 1.00 × 10−6, which
correspond to Γd=10.6 and κ=1.5. Red line: HNC scheme with the bridge correction for
point-like particles; blue line: RHNC approximation for particles with finite dimensions.

On the one hand, it was immediately realized that for very strong couplings the
shape of the radial distribution function was practically reminiscent of that observed
for a HS system. On the other hand, the tremendous success of analytical predictions
for a HS model stimulated further advance by invoking a number of extensions to
systems with an arbitrary interaction potential. The original idea was to incorporate
the hard sphere system as a reference by presenting a real interaction potential as a
sum of two parts such that the interaction potential varies from that of the reference
system to that of the system under investigation by adjusting a free parameter.
All these techniques somehow rely on the supposition that the bridge function is
weakly dependent on the interaction potential and can, therefore, be taken from the
solution of the Percus–Yevick relation for hard spheres (Wertheim 1963). Among
most fruitful approaches that deserve to be mentioned here are the perturbative HNC
(PHNC) (Kang & Ree 1995), the reference HNC (RHNC) (Lado 1973, 1976), the
modified HNC (MHNC) (Lado 1982; Lado, Foiles & Ashcroft 1983) and, finally, the
variationally modified HNC (VMHNC) (Rosenfeld & Ashcroft 1979; Rosenfeld 1986;
Faussurier 2004). All of which are primarily designed for systems with point-like
particles and an adjustable packing fraction of a HS reference model is chosen to
satisfy some additional conditions. For instance, in MHNC, the hard sphere diameter
is chosen to ensure thermodynamic consistency, whereas, in VMHNC, the packing
fraction serves as a parameter for minimizing the system free energy.

Contrarily, it is crucial for the present consideration that the dust grains have their
own size, hence, the packing fraction cannot be treated as an adjustable parameter. The
aforementioned logically necessitates further engagement of the RHNC calculation
scheme with the fixed packing fraction. Thus, figures 4–7 show a comparison of
the radial distribution function obtained within the RHNC method for the finite-size
dust particles interacting via potential (3.1) with that derived from the HNC scheme
with the bridge correction (Daughton, Murillo & Thode 2000) for point-like particles
interacting via the Yukawa potential. In-depth analysis of the obtained graphic data
allows us to draw the following conclusions. For rather small values of the dust
coupling parameter and low packing fractions, both methods give practically the
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FIGURE 5. Radial distribution function as a function of the normalized intergrain spacing
r/ad at fixed values of τ = 1, β = 0.061, Γp = 0.109 and η = 0.3, which correspond to
Γd = 10.05 and κ = 1.5. Red line: HNC scheme with the bridge correction for point-like
particles; blue line: RHNC approximation for particles with finite dimensions.

FIGURE 6. Radial distribution function as a function of the normalized intergrain spacing
r/ad at the fixed values of τ = 1, β = 1.00 × 10−5, Γp = 2.20 × 10−4 and η = 1.00 ×
10−6, which correspond to Γd= 132 and κ = 1.66. Red line: HNC scheme with the bridge
correction for point-like particles; blue line: RHNC approximation for particles with finite
dimensions.

same results, as figure 4 clearly displays. Increase in the packing fraction results
in strong oscillations of the radial distribution function obtained within the RHNC
method, whereas a single weakly expressed maximum is observed for the HNC
scheme, as evidenced by figure 5. In the strong dust coupling regime and for rather
low packing fractions, the above two methods differ significantly from each other, see
figure 6, namely, the HNC scheme gives a higher first peak located to the right of
that in the RHNC method. It is interesting to note that, at high packing fractions and
strong dust couplings, the opposite picture is observed, as exemplified by figure 7. It
is also seen from figures 5 and 7 that there is a discontinuity in the radial distribution
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FIGURE 7. Radial distribution function as a function of the normalized intergrain spacing
r/ad at the fixed values of τ =1, β=8.00×10−3, Γp=0.05 and η=0.3, which correspond
to Γd= 124 and κ = 2.03. Red line: HNC scheme with the bridge correction for point-like
particles; blue line: RHNC approximation for particles with finite dimensions.

function at high values of the packing fraction, which is a rudiment of the HS model
involved into the RHNC scheme.

It has to be remarked at this point that, in an ordinary dusty plasma encountered in
real experimental installations, the packing fraction is usually very small such that the
HNC approximation retains its credibility. However, this is not the case for colloidal
suspensions, to which the constructed theoretical approach is undoubtedly applicable.

The main thermodynamic quantity studied below is the pressure P, which is written
below in reduced units of the excess pressure pex = P/ndkBT − 1. It is well known
from the statistical physics of many-body systems that the reduced excess pressure is
expressed in terms of the radial distribution function g(r) as

pex =−
2πnd

3kBT

∫
∞

0
r3Φ ′dd(r)g(r) dr. (4.6)

In table 1 the isothermal compressibility factor Z = 1 + pex is shown as Zpresent
calculated within the RHNC scheme for η= 1.00× 10−15 to formally disregard finite-
size effects. In the same table the comparison is made with the data of the Monte
Carlo simulations (Meijer & Frenkel 1991) and the results of the approach proposed
by Tejero et al. (1992), which also benefits from merits of the HNC and Percus–
Yevick integral equation techniques. A very good agreement is observed, even for
large values of the dust coupling, which completely verifies the validity of the present
approach for the point-like dust grains corresponding to vanishing packing fractions.
In figure 8 comparison of the excess pressure at τ = 1, β= 1.00× 10−3 and Γp= 0.001
is provided with the practical expressions (Khrapak et al. 2014; Khrapak & Thomas
2015b) obtained for point-like dust grains. It is visibly inferred from figure 8 that,
when the packing fraction grows, the hard sphere contribution begins to dominate over
the like-charge repulsion. Namely, for a packing fraction of η ∼ 10−3 the correction
to the excess pressure due to the finite-size effects reaches the value of almost 20 %.

Finally, the dust-acoustic wave dispersion is studied below in the strongly coupled
regime. Various approaches have been developed here (Rosenberg & Kalman 1997;
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κ Γd ZMC ZDRY Zpresent

3.050 234.2 10.400 10.343 10.691
2.778 257.1 15.705 15.722 16.081
2.631 271.5 20.016 20.069 20.455
2.532 282.1 23.780 23.855 24.235
2.398 297.9 30.294 30.394 30.792
2.348 304.2 33.204 33.314 33.760
2.306 309.7 35.954 36.072 36.517
2.238 319.2 41.041 41.176 41.582
2.182 327.3 45.711 45.862 46.357
2.117 337.5 52.133 52.307 52.762
2.049 348.6 59.889 60.091 60.548
1.984 360.0 68.640 68.865 69.277
1.923 371.4 78.148 78.387 78.821
1.860 383.9 89.606 89.846 90.303
1.800 396.9 102.492 102.751 103.144

TABLE 1. Compressibility factor Z = 1 + pex for a wide range of the dust coupling and
screening parameters. ZMC: Monte Carlo simulations (Meijer & Frenkel 1991); ZDRY: DRY
approach by (Tejero et al. 1992); Zpresent: present results for η= 1.00× 10−15.

FIGURE 8. Excess pressure (4.6) as a function of the logarithm of the packing fraction
log10 η at fixed values of τ = 1, β = 1.00× 10−3 and Γp= 0.001. Blue line: results of the
present approach; red line: practical expressions (Khrapak et al. 2014; Khrapak & Thomas
2015b).

Kaw & Sen 1998; Murillo 1998; Filippov et al. 2010, 2011) but the simplest
hydrodynamic model of the dust component with a neutralizing background of
electrons and ions yields (Khrapak et al. 2014)

ω2

ω2
p

=
q2

q2 + κ2
+

q2

3Γd
γµp, (4.7)

where ω2
p = 4πZ2

de2nd/md designates the dust plasma frequency with md being the
mass of the dust particles, µp = (1/kBT)(∂P/∂nd)T is the inverse reduced isothermal
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compressibility, q= kad stands for the dimensionless wavenumber, γ = Cp/CV refers
to the adiabatic index.

In its turn, the inverse reduced isothermal compressibility is expressed via the
reduced excess pressure with a neutralizing background

p0
ex =−

2πnd

3kBT

∫
∞

0
r3Φ ′dd(r) (g(r)− 1) dr, (4.8)

in the following form

µp = 1+ p0
ex + β

∂p0
ex

∂β
+ η

∂p0
ex

∂η
, (4.9)

in which it is employed that

∂β

∂nd
=
β

nd
,

∂η

∂nd
=
η

nd
. (4.10a,b)

Expressions (4.9) and (4.10) are quite similar to those obtained in Khrapak
et al. (2014) but bear new original meaning. Indeed, one has to be very careful
in determining the isothermal compressibility of the dust component. In a series of
papers (Mamun et al. 2000; Xie & Yu 2000a,b) the variation of dust particle charge
in DAW propagation was treated for the strongly coupled regime but the isothermal
compressibility was inaccurately assessed. This inference is simply justified because,
for example, the following relation

∂Γd

∂nd
=
Γd

3nd
(4.11)

has been implicitly used, which is only valid for Zd = const. as evidenced by formula
(2.6).

Indeed, the isothermal compressibility of the dust component is the derivative of
the pressure over the number density, which, in the strongly coupled regime, severely
depends on the dust grain charge. Thus, the derivation of the dust grain charge on the
dust grain number density should appear in the isothermal compressibility, which was
completely overlooked in the literature. Moreover, it is seen from formula (2.6) that
when the dust component strongly affects the local plasma quasi-neutrality, expression
(4.11) should be rewritten as

∂Γd

∂nd
=
Γd

3nd
+

2Γd

Zd

∂Zd

∂nd
. (4.12)

It is thus clear from formula (4.12) that the dust particle charge variation must be
also taken into account in the isothermal compressibility of the dust component. A
similar procedure must be applied for the screening parameter (2.7), in which the
number density of electrons is a function dependent on the dust grain charge and
number density.

To strictly evaluate the second term on the right-hand side of expression (4.12) it
is necessary to calculate the grain charge as a function of its number density and,
as is shown below, the result strongly depends on the dust particle size. This is why
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FIGURE 9. Frequency of the dust-acoustic waves (4.7) as a function of the reduced
wavenumber q = kad at fixed values of κ = 0.3 and Γd = 144. Red line: τ = 1, β =
1.37 × 10−4, Γp = 7.00 × 10−5 and η = 1.00 × 10−5; blue line: τ = 1, β = 3.07 × 10−5,
Γp= 1.95× 10−5 and η= 1.00× 10−7; green line: τ = 1, β= 2.30× 10−6, Γp= 3.00× 10−6

and η = 1.00× 10−9; black circles: MD data with error bars (Ohta & Hamaguchi 2000;
Hamaguchi & Ohta 2001).

the finiteness of dust particle dimension must be appropriately treated right from the
charging process up to determination of the corresponding thermodynamic quantities.

In the present consideration, another strategy is proposed stemming from the
parametrization of § 1. Namely, the dust grain charge Zd is evaluated as a function
of parameters (2.1)–(2.4), and is then used to find the radial distribution function and
the reduced excess pressure of the dust component in terms of the same parameters
(2.1)–(2.4). Since the dust grain charge is, thus, not an independent parameter, its
variation with the dust number density is automatically handled in the evaluation
of the dust isothermal compressibility, as is witnessed by expression (4.9). To
validate such an interpretation, the simultaneous fulfilment of two conditions is
required. First, for the dust grains to be almost instantly recharged and to avoid
the direct consideration of the recharging dynamics, the characteristic time of the
charging process must be much less in magnitude than the inverse dust-acoustic wave
frequency, which is usually the case under ordinary experimental conditions (Fortov
et al. 2004). Secondly, the dust component must exert a strong influence on the
local quasi-neutrality of the plasma medium, which normally means that the Havnes
parameter P = ndZd/ne should be of the order or larger than 1. This is usually the
case in the strongly coupled regime of interest herein such that the local variation
of the dust particle number density in the dust-acoustic wave leads to a respective
change in the local electron number density, thereby affecting the dust grain charge.

To demonstrate the influence of finite-size effects, figure 9 shows the dust-acoustic
wave dispersion (4.7) at three different sets of values of the dimensionless parameters
(2.1)–(2.4), which all correspond to the same values of κ = 0.3 and Γd = 144. In
the same figure the results of the numerical experiments (Ohta & Hamaguchi 2000;
Hamaguchi & Ohta 2001) are drawn as circles with the corresponding error bars. It is
clearly seen in figure 9 that, when the charge variation is properly treated in the dust
isothermal compressibility, even qualitative behaviour of the DAW dispersion starts to
strongly depend on the packing fraction, which still remains very small. An accidental
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coincidence with the MD data is found for η= 1.00× 10−7, whereas for η= 1.00×
10−5 the DAW dispersion remains positive and for η= 1.00× 10−9 a severe cutoff in
the wavenumber is discovered since the DAW frequency cannot turn negative. Such
a picture is prescribed to the exact evaluation of the dust isothermal compressibility
that accounts for the dust grain charge variation in the course of DAW propagation. In
this respect, it would be interesting to work out the molecular dynamics, in which the
grain charge depends on its local number density so that the total energy of the grain
subsystem would no longer be conserved. In our opinion, such a computer simulation
technique would certainly take a model of Yukawa one-component plasma much closer
to real dusty plasma experiments.

5. Conclusions

This paper has been generally focused on estimating the impacts that finite-size
effects and the screening phenomenon have on the electric charge of dust particles,
its thermodynamics and dust-acoustic wave dispersion.

The starting point of the whole consideration is an original intergrain interaction
model that stems from the plasma electrodynamics formulated within the linear
density-response formalism.

In the framework of the orbital motion limited approximation, the charge number of
the dust grain in a plasma has been evaluated as a function of the non-isothermicity,
the density-ratio and the packing fraction parameters to show that the screening
effects are responsible for the increase of the charge number as compared to the
pure Coulomb interaction. It has also been verified that the Yukawa potential always
predicts higher values of the dust charge than the intergrain interaction model that
takes advantage of the plasma electrodynamics.

The cornerstone of the present consideration has been the self-consistent evaluation
of the thermodynamic quantities of the dust component starting from the determination
of the grain charge. The radial distribution function has been calculated within the
RHNC scheme to take into account the finite dimension of dust particles and it has
been proved that the HNC method (Davletov et al. 2014; Tolias, Ratynskaia & De
Angelis 2014; Yazdi et al. 2014) works very well for small values of the packing
fraction. Such a consistent determination of the thermodynamic characteristics has
allowed us to study the dispersion of the dust-acoustic waves that accounts for
variation of the dust grain charge in the dust isothermal compressibility.

In this regard, the entire analysis of the DAW propagation with variable dust charge
(Xie & Yu 2000a,b; Kaw 2001) must be revisited because in the strongly coupled
regime almost all transport coefficients begin to depend on the dust grain charge,
which is to be implemented elsewhere.

It is now rather timely to discuss a few limitations of the present consideration
imposed by the approximations applied. First of all, the neutral gas pressure is
assumed to be rather low such that, on the one hand, atoms exert absolutely no
influence on dust particles motion in the course of DAW propagation, and, on the
other hand, the fluctuating electric field heats up the dust component to a rather high
temperature as mentioned in § 2. Another restriction is shared with the orbital motion
limited approximation stating that the free flight paths of electrons and ions should
be much larger than the dust grain radius, which is again assured by the low neutral
gas pressure. In a more accurate model of DAW one has also take into account
the dynamics of ions and electrons in the buffer plasma, thereby necessitating strict
treatment of the plasma background contribution to the thermodynamic quantities.
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That the material of the dust grain is a perfect absorber is much harder to handle but
is still possible in the framework of the chemical model of dusty plasmas proposed
in Davletov et al. (2016).

One of the provisions for future work is the analytic determination of the static
correlation functions of § 4 in the framework of the generalized Poisson–Boltzmann
equation (Arkhipov et al. 1999), which was shown to be exceptionally valid for
weakly and moderately coupled regimes (Arkhipov, Baimbetov & Davletov 2003,
2005). This will allow us to study the dynamic properties of the dust component
(Arkhipov et al. 2010; Dzhumagulova et al. 2014; Ott et al. 2014) in order to
accurately derive the spectrum and decrement of damping of DAWs within the
method of moments (Arkhipov et al. 2017) and to make instructive comparison with
the results of the quasi-localized charge approximation (Kalman et al. 2004; Donkó,
Kalman & Hartmann 2008).
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