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Triggering is the process by which a linearly stable thermoacoustic system can reach
self-sustained oscillations. This nonlinear phenomenon is activated only for sufficiently
large amplitudes of perturbations to the equilibrium state. In this work, using a nonlinear
variational optimisation method coupled with energy bisection, we compute the minimal
thresholds for triggering in the Rijke tube. In particular, extending previous works, we take
into account the effect of the time delay by optimising not only the perturbations at initial
time, but also the velocity at the hot-wire position in the time-delay interval. We found
that, for sufficiently large time delays, the nonlinearity linked to the delayed flow velocity
bears a strong potential for energy growth, leading to transient amplifications of the energy
reaching O(102), two orders of magnitude larger than those reported in previous studies.
Notably, the gain increases with the time delay, but decreases with the initial energy of the
perturbation, thus reaching very high values close to the triggering threshold of the system.
The minimal energy for triggering self-sustained oscillations achieves energy values as
low as O(10−4), two orders of magnitude smaller than previous estimates. This indicates
that, for thermoacoustic systems characterised by a non-negligible time delay, taking into
account the effect of the time-delayed variables, as well as the system nonlinearity, is
crucial for correctly evaluating the triggering energy thresholds.

Key words: nonlinear instability, variational methods

1. Introduction

Combustion instabilities are observed in power-generation systems (e.g. gas-turbine
plants), boiler and heating systems, industrial furnaces and propulsion systems. These
instabilities are spontaneously generated by a feedback loop between an oscillatory source
embedded in the combustion process and one of the natural acoustic modes of the
combustor (Lieuwen & Yang 2005). As a consequence, large-amplitude velocity and
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pressure oscillations may be generated, which may cause severe damage to the system and
may lead to reducing the performance, to shortening the life of the components or, in the
worst cases, to system failure (Culick 2006). For these reasons, combustion instability has
been studied from the end of the 19th century (Rayleigh 1878) and still today represents
a challenging topic due to the complexity of the involved phenomena. Traditionally, the
stability of thermoacoustic systems has been studied by performing a linear stability
analysis (Lieuwen & Yang 2005), evaluating the eigenvalues of the system and determining
the asymptotical behaviour of the acoustic wave energy. Such a modal analysis, although
useful for determining the most dangerous unstable acoustic modes, cannot provide any
information about the transient behaviour of the system through the stability boundaries
or about its dynamics beyond those boundaries where nonlinear phenomena play a
fundamental role (Sujith & Unni 2020). In fact, such inherently nonlinear systems may
show bifurcations when varying a suitable control parameter (Strogatz 2018) such as
the flame gain. Even a simple deterministic thermoacoustic system, such as a premixed
laminar flame in a duct, may generate a complex chaotic dynamics (Lei & Turan 2009;
Gotoda et al. 2010, 2011; Kabiraj et al. 2012). Clearly, this indicates that the linear stability
analysis is not suitable to capture the full dynamics of the system (Sujith & Unni 2020),
as also shown in the present work. In particular, the nonlinear heat release rate plays a
fundamental role, because it has been proven that it can cause subcritical bifurcations,
whether the dynamics of the waves is linear or nonlinear (Sujith, Juniper & Schmid 2016).

A rather simple system exhibiting thermoacoustic instability is the Rijke tube, first
studied by Rijke (1859), consisting of an open-ended duct with flowing air and a
compact heat source. This simple system has been long studied, both experimentally and
theoretically, also to investigate the influence of nonlinear phenomena on thermoacoustic
instability. It is now well known that nonlinear effects lead to limit cycles (Heckl 1990)
and that the amplitude of the oscillations is linked to the nonlinear interaction between the
thermal source and the flow (Hantschk & Vortmeyer 1999; Matveev & Culick 2003).

Triggering is the phenomenon by which a linearly stable combustor is pushed away
from the stable statistically steady state towards a stable limit cycle, namely, a state
characterised by sustained oscillation of finite amplitude. The first studies about triggering
date back to 1960 (Dickinson 1962; Mitchell, Crocco & Sirignano 1969) and were related
to rocket propulsion systems. Wicker et al. (1996) used a simple wave equation for
determining conditions for triggering in a solid rocket motor. More recently, several
authors focused on gas-turbine combustors (Lieuwen & Zinn 1998). Kabiraj et al. (2012)
observed experimentally complex thermoacoustic oscillations in a simple laboratory
combustor that burns lean premixed fuel–air mixture, as a result of nonlinear interaction
between the acoustic field and the combustion process. The same phenomenon was
observed numerically by Balasubramanian & Sujith (2008a) in a ducted diffusion flame.
The conditions for triggering to occur in such a system were investigated by Juniper
(2012) using a weakly nonlinear analysis. Waugh & Juniper (2011) have shown that
low-amplitude stochastic perturbations can cause triggering before the linear stability limit
of a thermoacoustic system. All these studies demonstrated that triggering is possible when
the system is bi-stable, namely, when for the same value of the control parameter there are
two stable states, a steady (base) state and a limit cycle. This scenario is characteristic
of a subcritical Hopf bifurcation in a suitable range of the control parameter and is
potentially very dangerous for real combustors. In fact, even if the system is linearly
stable, the oscillations may be triggered by finite perturbations due to the background
noise or to exogenous disturbances and they are capable of inducing large vibrations
leading to structural failure of the combustor or damaging its thermal protection system.

938 A23-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

14
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.149


Minimal energy thresholds for triggering in the Rijke tube

Thus, to avoid these problems, it is fundamental to determine under which circumstances
triggering may occur. To answer to this question, one has to consider that in the bi-stability
region, between the stable base state and the stable limit cycle, there is an unstable limit
cycle, whose stable manifold is the separatrix of the basin of attraction of the two stable
states (the steady state and the oscillating limit cycle). Depending on its amplitude and
spatial distribution, a perturbation of the base state can be capable of driving the system
towards the high-amplitude stable limit cycle (Kerswell, Pringle & Willis 2014). In a
‘normal’ system (i.e. a system whose eigenvectors are mutually orthogonal), the minimum
energy level of the unstable limit cycle would represents the lower energy bound for any
perturbation to trigger the stable limit cycle. In ‘non-normal’ systems (i.e. systems whose
eigenvectors are mutually non-orthogonal), the minimum perturbation energy required
for triggering can be consistently lower than this bound (Trefethen et al. 1993; Kerswell
2018). In fact, due to the non-orthogonality of the eigenvectors of the operator governing
the dynamics of the system, perturbations may experience a significant transient energy
growth (Nicoud, Benoit & Sensiau 2007), which provides a large potential for lowering
the energy bounds for triggering.

The effects of non-normality on the phenomenon of triggering in the Rijke tube have
been studied both numerically (Juniper 2011; Waugh & Juniper 2011) and experimentally
(Jagadesan & Sujith 2012; Zhao 2012) over the last 15 years. Some authors have focused
on the combined effects of non-normality and nonlinearity (Balasubramanian & Sujith
2008b; Juniper 2011; Mariappan & Sujith 2011). The triggering scenario computed by
Juniper (2011) was confirmed experimentally by Jagadesan & Sujith (2012), who observed
that the system’s energy at first evolved transiently along an unstable periodic orbit and
then grew to reach the stable limit cycle. In order to evaluate the maximum transient
energy growth, an optimisation problem can be formulated to compute the maximum
amplification of the initial perturbation energy, corresponding to the most dangerous initial
perturbation. Concerning the study of the Rijke tube, of interest for the present work,
Sujith et al. (2016) reported a maximum energy amplification due to transient growth of
about 25 % in linearised conditions, which is a function of the optimisation time interval
only. This estimate is in agreement with the findings of Juniper (2011), who estimated
an energy amplification of about 50 % in a nonlinear framework, indicating a rather
weak non-normality of the system. Mariappan, Sujith & Schmid (2015) experimentally
demonstrated that non-orthogonality of the eigenvectors increases with the heater power,
reaching a maximum transient energy growth of 2.3. For a vertical Rijke tube, Zhao
(2012) investigated the most dangerous flame location and the effect of the heat source
and temperature on the non-orthogonality of the eigenmodes. More recently, Blumenthal
et al. (2017) discussed the choice of the energy norm (or semi-norm) for the analysis
of non-normality in thermoacoustic systems. However, in all these works, the effect of
the time-delayed perturbations, which influence the heat release in the ‘memory’ interval
[−τ, 0[ (where τ is the delay time), was not analysed, even though it might potentially
lead to a significant energy growth, for sufficiently large values of τ . In the present paper,
the cases in which the time-delayed perturbation in the interval [−τ, 0[ is set to zero in
order to freeze the additional degrees of freedom provided to the problem by the memory
variables, will be referred to as ‘frozen’ cases. More recently, Sogaro, Schmid & Morgans
(2019) demonstrated the considerable effect of memory variables on the energy growth
of the system. They considered the time-delayed perturbation in the interval [−τ, 0[ to
be non-zero, which will be referred to as ‘unfrozen’ conditions in the remainder of this
paper. Optimising in a linearised framework the acoustic energy integrated over a period
of time corresponding to the time delay, they reported a transient energy growth much
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larger than that previously reported (see the works of Juniper 2011; Magri et al. 2013;
Mariappan et al. 2015; Blumenthal et al. 2017). They suggested that the additional degrees
of freedom related to the memory variables are of significant importance in the short-time
dynamics of the system, which is essentially governed by the excitation at the flame
location during the time delay (Blumenthal et al. 2017), whereas long-time dynamics is
mostly flame-independent and dominated by acoustic effects. In particular, amplification
factors of two to five were reported, which may be significant for triggering nonlinear
limit-cycle behaviour. However, because the main motivation of that work was to study
the interplay between classical acoustic modes and intrinsic thermoacoustic modes, the
transient growth analysis was carried out only in linearly unstable cases, hindering the
character of bi-stability required for the triggering phenomenon. Moreover, the analysis
of Sogaro et al. (2019) was restricted to the linear framework, so that the effects of
nonlinearity on the energy growth were not evaluated. Unlike in hydrodynamic systems,
where nonlinear terms are conservative (Schmid & Henningson 2012), in thermoacoustic
systems nonlinearities can directly contribute to transient growth, because nonlinear
terms do not conserve energy (Juniper 2011). Therefore, extending the above ‘unfrozen’
optimisation analysis to a nonlinear, asymptotically stable case might lead to a stronger
energy growth, and might consequently reduce the energy bounds for triggering the
high-amplitude stable limit cycle.

The aim of the present study is thus to setup a nonlinear optimal growth analysis
including the effect of the time-delayed perturbations, which influence the heat release
in the ‘memory’ interval [−τ, 0[. Unlike the linear case considered by Sogaro et al.
(2019), where the optimisation problem is solved by a singular value decomposition
(Schmid & Henningson 2012), for including nonlinear effects we use a more general
framework consisting of the formulation of a Lagrangian augmented functional in which
the governing equations are imposed as constraints to be satisfied (Luchini & Bottaro 2014;
Kerswell 2018). This variational nonlinear optimisation approach has been employed with
success in fluid dynamics (Luchini 2000; Cherubini et al. 2010a; Pringle & Kerswell 2010;
Rabin, Caulfield & Kerswell 2012; Cherubini et al. 2012, 2013; Cherubini, De Palma &
Robinet 2015; Farano et al. 2015, 2017) and in thermoacoustics (Juniper 2011), although,
to the best of the authors’ knowledge, it has never been extended to include the effect of
the memory variables on the transient energy growth.

Thus, in the present work, we carry out a variational nonlinear optimisation of the
transient energy growth in a model of the Rijke tube, with the assumption that the
hot-wire is compact. It is known that this simplification of the problem could lead to
some errors in the prediction of the frequency of the thermoacoustic oscillations. However,
the assumption is reasonable when two conditions are satisfied: both the wavelengths of
the low-frequency acoustic modes and the wavelength of the entropy wave are very long
compared with the narrow size of the combustion region. The second constraint is more
restrictive than the first, however it can be relaxed under several flow conditions, and,
in particular, when the mean Mach number is low (Dowling 1995). The heat release
rate is a nonlinear function of the velocity, with linear acoustic dynamics and linear
damping. The optimisation process includes the effect of the memory variables, and is
extended to different values of the time delay, to evaluate its effect on the energy growth.
The independent parameters of the optimisation (i.e. initial energy and time interval)
are varied in order to reach the minimal energy for triggering. Moreover, the effects of
nonlinearity are evaluated by comparing the reported growth with those obtained in a
linearised framework. The obtained results represent a detailed description of the effect of
time-delayed variables and nonlinearity on the triggering phenomenon in the Rijke tube.
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Notably, when both these effects are taken into account, we obtain a much larger energy
amplification with respect to previous data available in the literature, reaching O(100), two
orders of magnitude higher than previous predictions.

The paper is structured as follows. Section 2 provides the thermoacoustic model,
the governing equations in their dimensional (§ 2.1) and non-dimensional forms (§ 2.2),
the damping terms treatment (§ 2.3), the nonlinear optimisation framework (§ 2.4) and
the numerical discretisation adopted (§ 2.5). Section 3 provides relevant results for two
selected flow cases, for low (§ 3.1) and high (§ 3.2) time delay, discussing the extension to
a generalised flame model (§ 3.3). Conclusions are drawn in § 4.

2. Model and governing equations

The thermoacoustic model considered in the present work is the classical Rijke tube, which
consists of an open-ended tube of length L with a compact hot-wire located at xf (measured
from the inflow section), responsible of the heat-release rate, q. The gas properties are
modelled by the parameters γ , cv , R, k and c, which represent the specific heat ratio, the
specific heat at constant volume, the gas constant, the thermal conductivity and the speed
of sound

√
γ RT , respectively.

2.1. Dimensional governing equations
A simplified one-dimensional thermoacoustic model is adopted, which is derived from the
Navier–Stokes equations under the assumption that the mean flow has negligible effects
on the unsteady flow field (Dowling & Stow 2003). Decomposing each variable in a
time-averaged value (denoted by overbars) and a small perturbation (denoted by primes),
and neglecting higher-order terms, the dimensional conservation equations for momentum
and energy in perturbative formulation and one space dimension, x, are given as

∂u′

∂t
+ 1

ρ̄

∂p′

∂x
= 0, (2.1a)

∂p′

∂t
+ ρ̄c̄2 ∂u′

∂x
+ D( p′) − (γ − 1)q′δxf = 0, (2.1b)

where ρ, p, u and t are the density, the pressure, the velocity and time, respectively. Here
δxf indicates the Dirac delta function at the hot-wire location xf , δxf = δD(x − xf ), and
D( p′) represents the dissipative term. The energy equation has the same form employed
by Juniper (2011) when the King’s law is used to model the compact heat-release source.
This is adapted from Heckl (1990) following experimental evidence:

q = q̄ + q′ = Lw(Tw − T)

S

[
k+2

√
πkcvρ̄

d
2

((
1− 1

3
√

3

)√
ū+ 1√

3

√∣∣∣∣ ū3 + u′(t − τ)

∣∣∣∣
)]

,

(2.2)

where q, Lw, Tw, S and d are the heat release rate, the length and the temperature of the hot
wire, the cross section of the tube and the diameter of the hot wire, respectively. The effect
of the perturbation at x = xf is delayed by a constant value τ . After some calculations, the

938 A23-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

14
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.149


A. Giannotta, S. Cherubini and P. De Palma

average value and the unsteady heat release can be found:

q̄ = Lw(Tw − T)

S

[
k + 2

√
πkcvρ̄

d
2

((
1 − 1

3
√

3

)√
ū + 1√

3

√∣∣∣∣ ū3
∣∣∣∣
)]

,

q′ = 2
Lw(Tw − T)

S

√
πkcvρ̄

d
2

(
1√
3

)(√∣∣∣∣ ū3 + u′(t − τ)

∣∣∣∣−
√

ū
3

)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.3)

Grouping all the physical properties of the heat source in the term K, one has

q′ = K

(√∣∣∣∣ ū3 + u′(t − τ)

∣∣∣∣−
√

ū
3

)
. (2.4)

2.2. Non-dimensional governing equations
The non-dimensional governing equations are obtained by using the following reference
variables:

p′ = ρ̄c2p∗, u′ = cu∗, ū = cū∗, x = Lx∗, t = L
c

t∗, δxf =
δx∗

f

L
, (2.5a–f )

where the star indicates non-dimensional variables. Substituting these quantities into the
governing equations (2.1), and dropping the stars for the ease of reading, one obtains the
following non-dimensional perturbative formulation:

∂u
∂t

+ ∂p
∂x

= 0, (2.6a)

∂p
∂t

+ ∂u
∂x

+ D( p) − β

(√∣∣∣∣13 + u(t − τ)

∣∣∣∣−
√

1
3

)
δxf = 0, (2.6b)

where

β = γ − 1
γ

1

p̄
√

ū

(
2

Lw(Tw − T)

S
√

3

√
πkcvρ̄

d
2

)
, (2.7)

which coincides with the formulation employed by Juniper (2011). In the present work this
system of equations is solved numerically setting to zero the pressure perturbation and the
velocity perturbation gradient at the boundaries,

p(x = 0) = p(x = 1) = 0,

∂u
∂x

∣∣∣∣
x=0

= ∂u
∂x

∣∣∣∣
x=1

= 0.

⎫⎪⎬
⎪⎭ (2.8)

The heat-source term can be linearised for |u| � 1/3,

q = β

(√∣∣∣∣13 + u
∣∣∣∣−

√
1
3

)
�

√
3

2
βu + O (u)2 . (2.9)

The nonlinear and linear heat release model are compared in figure 1.
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1

3
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2
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Figure 1. Comparison between the linear (red dashed line) and nonlinear (continuous blue line) heat-release
models adopted in this work. The heat release is plotted against the value of the velocity perturbation at the
hot-wire location. Here, for the ease of visualisation, uf indicates u(xf , t). The gray dotted lines indicate the
range of uf ∈] − 1/3, 1/3[.

2.3. The dissipation term
A model for the dissipation term is needed for closing the governing equations. This can
be added either locally in the proximity of the heat release source (Heckl & Howe 2007)
or globally, to model the dissipative effects in the boundary layer or at the boundaries.
Recent works (Juniper 2011; Sayadi et al. 2014) included a frequency-dependent term ξ

by a convolution operator, D( p) = ξ∗p. The frequency-dependent term, in its simplified
form, has been adapted from Sterling & Zukoski (1991) and Matveev & Culick (2003) as

ξ = c1j2 + c2
√

j, (2.10)

where c1 and c2 are two constants and j is the acoustic mode number. This model is
implemented straightforwardly when the Galerkin method is used. In the present work,
a different model is proposed, to better suit the numerical scheme employed, based on the
second derivative of the pressure perturbation, namely,

D = −α
∂2p
∂x2 . (2.11)

It can be shown that the two models provide very close dissipation properties assuming
α = (c1 + c2)/π

2, in order to match the damping of the low-frequency modes.

2.4. Nonlinear optimisation
The classical formulation of the optimisation problem is to find the perturbation (u, p)

at t = 0 capable of providing the largest disturbance energy growth at any given target
time, T . In the present work, we modify the formulation of the problem to include in the
optimisation also the time evolution of the optimal perturbation in the memory interval
t ∈ [−τ, 0[. We indicate the values of u and p in this interval as the ‘memory’ variables.
Towards this purpose, we optimise half of the norm ‖ · ‖2 of the state variable [u, p]T,
defined under the scalar product

〈a(t), b(t)〉 =
∫ 1

0
(a(x, t) · b(x, t)) dx, (2.12)

where a, b are two generic states of the system. Note that using this scalar product, as
in Juniper (2011), the objective function of the present optimisation corresponds to the
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acoustic energy E(t), which is the sum of the kinetic energy and the pressure potential
energy. However, it differs from that used by Sogaro et al. (2019), who optimised the
ratio of the acoustic energies E(t) integrated in the time intervals [T − τ, T] and [−τ, 0],
respectively. Such a choice of the norm was necessary for limiting the energy of the
memory variables while optimising by using the singular value decomposition method
(Sogaro et al. 2019). Instead, in the present work, using the direct-adjoint looping provides
the possibility to choose the constraints more freely. Thus, we use the norm adopted by
Juniper (2011), while limiting the value of the memory variables by imposing a dedicated
constraint.

Once defined the energy norm to be maximised at the given target time T , a constrained
optimisation problem is formulated, which is solved by means of a Lagrange multiplier
technique (Pringle & Kerswell 2010; Cherubini et al. 2011; Luchini & Bottaro 2014). The
Lagrange multiplier technique consists of seeking extrema of the augmented functional L
with respect to every independent variable. Such a functional is written as

L = 1
2

(||u(T)||2 + ||p(T)||2) − 1
T

∫ T

0

〈
a,

(
∂u
∂t

+ ∂p
∂x

)〉
dt

− 1
T

∫ T

0

〈
b,

[
∂p
∂t

+ ∂u
∂x

− α
∂2p
∂x2 − β

(√∣∣∣∣13 + v

∣∣∣∣−
√

1
3

)
δxf

]〉
dt

− 〈c, [u(0) − u0]〉 − 〈
d,
[
p(0) − p0

]〉− 〈
e,
[

1
2
(u2

0 + p2
0) − E0

]〉

+ 1
T

∫ 0

−τ

〈f , [u − u−τ ]〉 dt − 1
T

∫ T

0
〈g, [v − u(t − τ)]〉 dt, (2.13)

which is the sum of the objective function E(T) and the constraints. The second and
third terms on the right-hand side represent the thermoacoustic momentum and energy
equations (direct problem), respectively. The fourth and fifth terms are the constrained
values of the velocity u0 and of the pressure p0 at t = 0. The sixth term is the constrained
value of the initial energy of the disturbance. The seventh term constrains the velocity in
the time interval [−τ, 0[ to be equal to the auxiliary variable u−τ , which thus represents
the velocity in the memory interval. This support variable, which is needed for evaluating
the gradient with respect to the memory variable, is updated at each iteration step of
the optimisation in the direction of the gradient (see (2.17)). Such a term is necessary to
include in the optimisation process the effect of past perturbations which are constrained
within a given amplitude range, as discussed in § 3. Note that only the velocity is
constrained because the heat release model does not depend on the value of the pressure in
the past (which is set to zero in the memory interval [−τ, 0[). Finally, the last term defines
an auxiliary variable v = u(t − τ), which is formally employed to derive the adjoint
equations. The coefficients a, b, c, d, e, f and g are the Lagrange multipliers, namely,
the adjoint variables. Integrating by parts and setting to zero the first variation of L with
respect to u, p, v u0, p0 and u−τ lead to the following adjoint equations (2.14a)–(2.14c),
compatibility equations (2.14d)–(2.14e) and gradient equations (2.14f )–(2.14h):

∂a
∂t

+ ∂b
∂x

+ βb(t + τ)
1
2

(
1
3

+ u
)−1/2

sign
(

1
3

+ u
)

δxf = 0, for t ∈ [0, T − τ ];
(2.14a)
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Minimal energy thresholds for triggering in the Rijke tube

∂a
∂t

+ ∂b
∂x

= 0, for t ∈]T − τ, T]; (2.14b)

∂a
∂x

+ ∂b
∂t

+ α
∂2b
∂x2 = 0, for t ∈ [0, T]; (2.14c)

a(T) = Tu(T); (2.14d)

b(T) = Tp(T); (2.14e)

∂L
∂u0

= a(0)

T
− eu0; (2.14f )

∂L
∂p0

= b(0)

T
− ep0; (2.14g)

∂L
∂u−τ

= βτ
b(t + τ)

T
1
2

(
1
3

+ u
)−1/2

sign
(

1
3

+ u
)

δxf , for t ∈ [−τ, 0[. (2.14h)

If (2.14a)–(2.14e) are satisfied, then the Lagrangian functional does not change with
variations of u, p and v and only depends on the initial and memory states u0, p0 and
u−τ . The variations of the Lagrangian with respect to these variable are defined through
(2.14f ), (2.14g) and (2.14h).

The direct and adjoint equations can be solved by a coupled iterative approach consisting
of a sequence of direct-adjoint loops (Cherubini et al. 2010a,b; Pringle & Kerswell 2010).
Solving the direct and adjoint equations at each step of the iterative procedure is equivalent
to set to zero the first variation of the augmented functional with respect to the direct
and adjoint variables. Moreover, the gradient of L with respect to the initial and memory
state, (u0, p0, u−τ ), which is evaluated at the end of each loop (see (2.14f )–(2.14h)), is
forced to vanish within a reasonable number of iterations. Different methods can be used
to achieve this goal. In the present work, in order to achieve convergence efficiently, a
conjugate gradient algorithm is used, whereas the initial guess is updated in the steepest
ascent direction (Cherubini et al. 2011).

The procedure for minimising the Lagrangian can be summarised in the following
steps.

(i) Start from an initial distribution of velocity and pressure u0, p0, satisfying the energy
constraint, and an initial distribution of u−τ for t ∈ [−τ, 0[.

(ii) Integrate the direct equations from 0 to T .
(iii) Initialise the adjoint variables by (2.14d) and (2.14e).
(iv) Integrate backwards the adjoint equations (2.14a) to (2.14c) from T to 0.
(v) Update the new initial conditions by

u(n+1)
0 = u(n)

0 + ε
∂L
∂u0

(n)

= u(n)
0 + ε

(
a(0)

T
− eu(n)

0

)
, (2.15)

p(n+1)
0 = p(n)

0 + ε
∂L
∂p0

(n)

= p(n)
0 + ε

(
b(0)

T
− ep(n)

0

)
, (2.16)

u(n+1)
−τ = u(n)

−τ + ε
∂L

∂u−τ

(n)

= u(n)
−τ + εβτ

b(t + τ)

T
1
2

(
1
3

+ u(n)

)−1/2

sign
(

1
3

+ u(n)

)
δxf .

(2.17)

938 A23-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

14
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.149


A. Giannotta, S. Cherubini and P. De Palma

The parameter e is chosen to ensure that

E0 =
∫ 1

0

1
2

(
u2(n+1)

0 + p2(n+1)

0

)
dx

=
∫ 1

0

1
2

[(
(1 − εe)u(n)

0 + ε
a(0)

T

)2

+
(

(1 − εe)p(n)
0 + ε

b(0)

T

)2
]

dx, (2.18)

and ε is varied with the iterations in order to improve convergence. Moreover, because
in the nonlinear cases the objective function can be characterised by local maxima, an
algorithm of search among several initial guesses is implemented, for determining the
global optimal solution. In particular, for any given initial energy and target time, the
optimisation is run for different initial conditions resulting from previous optimisations
performed for different target times and the same value of E0. Then, the local optimal
solutions found for different initial guesses are compared, in order to determine the global
optimum corresponding to (E0, T). Note that, starting the optimisation process from
solution obtained at other target times, strongly reduces the computational cost of the
search algorithm.

Once the global optimal perturbations are found for a given initial energy and different
target times, the direct equations are integrated for a very long time starting from these
optimal solutions. In the case at least one of these initial conditions reaches the stable
limit cycle instead of decaying exponentially, we infer that the imposed initial energy is
sufficiently high to induce the triggering phenomenon. In this case, the global optimisation
is repeated for a slightly lower value of the initial energy, until the value of E0 for which
all optimal initial conditions decay asymptotically is found. At this point, the minimal
initial energy for triggering is determined with higher accuracy by carrying out a bisection
procedure starting with the lowest initial energy for which perturbations are able to trigger
and the highest one for which all optimal disturbances decay.

2.5. Numerical discretisation
The governing equations describing thermoacoustic phenomena have been traditionally
discretised by using the Galerkin method (Juniper 2011). One of the novelties proposed in
this paper is the adoption of a high-order finite difference scheme, as also done by Sayadi
et al. (2014) and Sogaro et al. (2019). This allows us to obtain a very accurate solution,
to avoid spurious oscillation at the hot-wire section, where a discontinuity is located, and
to easily extend the discretisation to the memory variable in the time interval t ∈ [−τ, 0].
The equations are written in conservative form; in particular, (2.6b) is written as

∂p
∂t

+ ∂

∂x

[
−α

∂p
∂x

+ u − q(t − τ)H(x − xf )

]
= ∂p

∂t
+ ∂f

∂x
= 0, (2.19)

where H is the Heaviside function, taking into account the compact source term q at the
heater location xf . Equations (2.6a) and (2.19) are discretised using a staggered grid, the
velocity and pressure being evaluated at the cell centres and at the cell faces, respectively.
The hot-wire location is chosen to coincide with a pressure node. The first derivative in
space of the function f in (2.19) is approximated at the cell faces (pressure nodes) using
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Minimal energy thresholds for triggering in the Rijke tube

the fourth-order-accurate Padé implicit scheme as proposed by Lele (1992),

Af ′
i−1 + f ′

i + Af ′
i+1 = B

fi−1/2 − fi+1/2

�x
, (2.20)

where A = 1/22 and B = 3
8(3 − 2A). In (2.20), the fractional indices indicate cell centre

locations, whereas the spatial derivatives are evaluated at the cell face (integer indices).
The magnitude of the velocity in the term q at the cell face if corresponding to the hot-wire
location is estimated as

uif (t − τ) = uif −1/2(t − τ) + uif +1/2(t − τ)

2
. (2.21)

The spatial derivative of the pressure in (2.6a) at the cell centres is computed as

Ap′
i−3/2 + p′

i−1/2 + Ap′
i+1/2 = B

pi − pi−1

�x
. (2.22)

A similar spatial discretisation is employed for the adjoint variables a and b.
This numerical approach has been verified to provide a satisfactory capturing of the
discontinuity with a few points inside the jumps, without producing spurious oscillations
for the considered computations.

Concerning the time discretisation, both the direct and adjoint systems of equations
contain a delay-differential equation, namely, (2.6b) and (2.14a). Such equations are
transformed into partial differential equation by introducing a ‘memory’ coordinate
θ ∈ [−τ, 0] (as an additional independent variable), which is then discretised following
the procedure proposed by Jarlebring (2008). Time discretisation is performed by a
fifth-order-accurate embedded Runge–Kutta scheme (Dormand & Prince 1980). The
number of the grid points in space is N = 100; the memory coordinate, θ , is discretised
using 20 Gauss–Lobatto points in the large time-delay case (§ 3.2), whereas 5 points
are sufficient in the small time-delay case (§ 3.1) to obtain a satisfactory numerical
convergence of the results.

3. Results

The model considered in the present study is defined by a set of five non-dimensional
parameters to be chosen, namely P = {β, xf , τ, c1, c2}. We decided to focus on two
different parameter configurations. In order to make a direct comparison with the work
of Juniper (2011), we choose as first parameter set P1 = {0.75, 0.3, 0.02, 0.06, 0}, where
the only difference with respect to Juniper’s work is in the value of c1 and c2, which
has a negligible effect on the results, as discussed in § 3.1. Note that, in this first case,
the value of the time delay is very small, so we expect the memory variable u−τ not to
play a fundamental role in the energy growth. For investigating the potential influence of
the memory variable on the nonlinear energy growth, we choose the second parameter
set to be identical to P1 except for the value of τ , which is increased by two orders
of magnitude. In particular, we set the value of τ to be in the condition of marginal
asymptotic stability, in order to avoid the growth of modal disturbances and focus the
analysis on non-normality and nonlinearity. Figure 2(a) shows a map of the asymptotic
growth rate of the most unstable modes of the stability spectrum, versus the time delay τ

and the hot-wire position xf . A well-known result is recovered by this analysis, namely, the
maximum growth is obtained for xf = 0.25 (Heckl & Howe 2007). Moreover, the locus of
states of marginal stability, indicated by red lines, can be observed. One branch of this
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(a) (b)

Figure 2. (a) Map of the system’s maximum asymptotic growth rates, varying the hot-wire position xf and the
time delay τ , for β = 0.75, c1 = 0.06 and c2 = 0. The red curves represent the locus of points with zero growth
rate of the most unstable mode. The symbols • and  on these curves indicate cases P1 and P2, respectively.
(b) Time evolution of the energy E(t) for three different random initial conditions with energy E0 = 0.0500
(blue line), E0 = 0.0539 (red line) and E0 = 0.0600 (yellow line), for case P2 obtained employing the
high-order finite difference scheme.

line lays at very low values of τ , where the point P1 is located. Starting from P1 and
increasing the time delay with constant xf , we select the closest marginally stable point,
obtaining the second parameter set with τ = 1.08, P2 = {0.75, 0.3, 1.08, 0.06, 0}. Thus,
in both conditions P1 and P2, the system is marginally stable and shows a bi-stability
region linked to a subcritical Hopf bifurcation, as discussed by Juniper (2011) for the
former case, and shown in figure 2(b) for the latter. In fact, considering the time evolution
of three different random perturbations of the mean flow, one can observe that, when the
initial energy is sufficiently high, the system evolves toward the stable upper-branch limit
cycle (yellow curve), whereas it decays when the initial energy is sufficiently low (blue
curve). An unstable, lower-branch limit cycle is present as well (red curve), whose stable
manifold separates the phase space into the basin of attraction of the two aforementioned
stable states.

Concerning the optimisation algorithm, the independent parameters to be chosen are the
target time T , the initial energy E0 and the maximum value of |u−τ | in the time interval
t ∈ [−τ, 0[. This variable is restricted to be in the range ] − 1/3, 1/3[, in order to avoid the
cusp present for u(xf ) = −1/3 in the adopted heat-release model (see figure 1). In order
to investigate the influence of this constraint, we have carried out additional optimisations
reducing this interval to ] − 0.1, 0.1[ and to zero (indicated as the ‘frozen’ case). The
target time is varied in the range T ∈ [0.1, 11], whereas, for the initial energy, different
ranges of variability are chosen depending on the selected case, due to the fact that the
minimal energy threshold for triggering, E0

min, is found to change remarkably. Note that
the search for E0

min is carried out in the whole parameter space T, E0, requiring a large
computational cost.

3.1. Case P1: small time delay

3.1.1. Frozen optimisation
Juniper (2011) studied the triggering phenomenon in the Rijke tube using the Galerkin
method with 1, 3 and 10 modes. He showed that, for the chosen configuration of
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Minimal energy thresholds for triggering in the Rijke tube
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Figure 3. Time evolution of the energy of the minimal perturbation able to induce triggering in case P1 with
frozen memory variables (continuous line, E0 = 6.6158 × 10−2) and unfrozen memory variables (dashed line,
E0 = 6.5285 × 10−2). In both cases, the minimal perturbation has been obtained for T = 5.7 (red circle). The
dotted vertical lines indicate the times at which the time scale changes for visualisation purposes.

parameters, there exist a lower-branch unstable limit cycle and an upper-branch stable
limit cycle. When using 10 Galerkin modes, he found that the lowest energy of the unstable
lower-branch periodic solution is Emin

LB = 0.06265. Using the nonlinear optimisation with
‘frozen’ memory variables (i.e. imposing u−τ = 0 in the time interval [−τ, 0[), he
obtained a minimum energy for triggering equal to 87 % of Emin

LB , namely E0
min = 0.0548

(note that the minimal value reported in Juniper (2011) has been halved to be consistent
with the present measure of the energy). As a first validation of the direct-adjoint
looping, we repeated the analysis of Juniper (2011) using the Galerkin method with the
same number of modes and the same parameters, obtaining the same optimal initial
condition when starting sufficiently close to that provided in Juniper (2011). Then, we
performed the ‘frozen’ optimisation for the same parameters (except for the damping
model, as specified in § 2.3) using the high-order-accurate finite difference discretisation
presented in § 2.5. The results indicate that using the high-order-accurate discretisation
and the new damping model, the minimal energy for triggering is now estimated to
be E0 = 0.06635 ± 0.00025, obtained for T = 5.7. For increasing the accuracy of this
estimate we have carried out an energy bisection with fixed target time, finding a minimal
energy threshold of E0

min = 0.066158 ± 0.0001. The continuous blue line in figure 3
shows the energy evolution starting from the initial condition obtained by optimising the
acoustic energy at time T = 5.7 (red circle), for initial energy Emin

0 . Transient growth
can be observed for about the first 10 time units. Then, the state variables approach the
unstable lower-branch limit cycle and remain in its vicinity for a finite time, eventually
escaping towards the stable upper-branch limit cycle, where they remain indefinitely. The
minimal-energy initial perturbation inducing triggering is provided in figure 4. One can
observe the pressure and velocity discontinuities corresponding to the hot-wire location
xf , which appear to be accurately described by the high-order-accurate discretisation used.
The velocity is found to increase quasi-monotonically from the inlet to the outlet of the
domain (except for the discontinuity at x = 0.3, where it jumps towards lower values),
whereas the pressure oscillates in a more complex way. Note that in this case the memory
variables are frozen, so that the algorithm optimises only the velocity and pressure at t = 0.
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Figure 4. Minimal-energy initial perturbation for triggering obtained by optimising for T = 5.7 and
E0 = 6.6158 × 10−2 for case P1 in frozen conditions.

3.1.2. Unfrozen optimisation
The analysis is carried out for case P1 in the ‘unfrozen’ condition, extending the
optimisation to the memory variables. The first estimate of the minimal energy for
triggering, obtained by varying both target time and initial energy, is E0 = 0.06635 ±
0.00025, corresponding exactly to that computed in the frozen condition within the
given accuracy interval, and obtained for the same target time T = 5.7. Energy bisection,
carried out at fixed target time, provides a slightly lower minimal energy threshold of
E0

min = 0.065285 ± 0.0001. The black dashed line in figure 3 shows the energy evolution
starting from the minimal initial condition obtained by optimising the acoustic energy
at time T = 5.7. Note that the energy gain at target time increases by approximately 4 %
with respect to the frozen case, indicating that the memory variables have a non-negligible
effect on transient growth. Figure 5(a) provides the minimal initial condition for triggering,
which is similar to that recovered in the frozen case. The differences found between
the frozen and unfrozen cases in the energy gain, minimal energy for triggering and
minimal-energy initial perturbation, indicate that the memory variables have a non-trivial
effect on the dynamics of the system. However, these differences are rather small because
the time delay in case P1 is two orders of magnitude smaller than the target time for which
the minimal energy for triggering is found. Note that, in figure 5(b), the memory variable
tends to assume its extreme value in the memory interval. This behaviour will be discussed
in more detail in the P2 case. To establish whether a more marked effect can be found for
larger time delays, in the next section the variable τ is increased to the value τ = 1.08,
which is of the same order of magnitude as the target time.

3.2. Case P2: large time delay

3.2.1. Frozen optimisation
For case P2, the time delay is increased to τ = 1.08. As a reference computation,
we first perform the optimisation by setting the memory variable to zero (u−τ = 0 in
t ∈ [−τ, 0[). Figure 6 shows the envelope of the maximum gains obtained by optimising
for each target time using both nonlinear (continuous line) and linearised (dashed line)
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Figure 5. Minimal-energy perturbation for triggering obtained by optimising for T = 5.7 and E0 = 6.5285 ×
10−2 for case P1 in unfrozen conditions: (a) initial perturbation (t = 0) and (b) memory variable distribution
in the time interval [−τ, 0[.
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T

0.8

1.0

1.2

1.4

1.6

G(T )

Nonlinear gains, E0 = 0.015

Linear gains
T = τ

Figure 6. Envelope of the maximum gains obtained by optimising the energy for different target times using
the linearised (red dashed line) and nonlinear heat-release model with E0 = 0.015 (blue continuous line) for
case P2. The dotted line indicates the value of τ .

heat-release models. The nonlinear case has been computed with E0 = 0.015. As in the
first time steps there is no energy input from the time-delayed term, the energy decreases
until t = τ , and then increases due to non-normal transient growth. Note that this initial
decrease was not visible in case P1, because the time delay was very small. The maximum
gain is achieved at T = 1.331 in both linear and nonlinear cases, although its value is much
larger in the latter case, at least for the initial energy considered in figure 6 (i.e. E0 =
0.015). In the nonlinear case, the optimal gain has a strong non-trivial dependence on the
initial energy E0, as shown in figure 7, where the maximum value of the gain is reported
for each value of the initial energy. Note that, despite the maximum gain (circles) has
a quasi-constant average value with an oscillating behaviour, the energy at target time
(crosses) increases with E0 following a quasi-linear trend. The overall maximum gain is
found in the nonlinear case for E0 = 0.015, achieving an approximately 55 % amplification
of the initial energy, about doubling that of the linear case, which is approximately 25 %
(see figure 6). These amplification values are in perfect agreement with those reported
by Juniper (2011) and Sujith et al. (2016) for linear and nonlinear frozen optimisations.
The nonlinear optimal perturbation inducing the maximum gain is provided in figure 8(a).
Once again, one can note a strong pressure (and velocity) discontinuity corresponding
to the hot-wire location xf . Unlike case P1, the velocity has a non-monotonic behaviour,
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Figure 7. Frozen nonlinear optimisation, case P2: maximum gain (circles) and energy at target time (crosses)
versus initial energy.
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Figure 8. Optimal initial perturbation for the nonlinear case P2 in frozen conditions corresponding to:
(a) maximum gain, T = 1.331, E0 = 0.015; (b) minimal-energy for triggering, E0 = 0.032 (upper estimate),
T = 6.783.

decreasing towards the hot-wire location, increasing up to x ≈ 0.6 and then decreasing
again in the vicinity of the outlet of the domain. Finally, we compute the minimum energy
for triggering the upper-branch limit cycle, which is equal to E0 = 0.030 ± 0.002, having
the same order of magnitude of that found for case P1. The minimal-energy perturbation
inducing triggering, which is found for T = 6.783, is provided in figure 8(b). Similarly to
that found for case P1, the pressure shows a discontinuity at xf and the velocity increases
from the inlet to the outlet. The evolution of the minimal-energy perturbation towards the
stable upper-branch limit cycle is provided in figure 9 (continuous blue line). The overall
dynamics is similar to that observed in case P1, except for the initial decrease of the energy
due to the large time delay and the frozen condition.

3.2.2. Unfrozen optimisation
In the present P2 case, the perturbation in the memory interval is free to vary in the range
u−τ ∈] − 1/3, 1/3[. The maximum energy gain achieved by the system is significantly
higher. Figure 10(a) shows that the energy gain reaches values as high as approximately
200 when the initial energy is equal to E0 = 2 × 10−4, then it decreases for larger values
of the initial energy. Note that, as also observed in case P1, the target time at which the
maximum gain is achieved, is independent of the initial energy, thus it is probably linked
to intrinsic linear mechanisms such as the non-normality. The maximum gain Gmax varies
considerably with the initial energy, as shown in figure 10(b) (circles), suggesting that
the value of the peak energy achievable by the system is linked to nonlinear mechanisms,
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Figure 9. Time evolution of the energy of the minimal perturbation able to induce triggering in case P2 with
frozen memory variables (continuous blue line, E0 = 3.2 × 10−2) and unfrozen memory variable (dashed
black line, E0 = 3.3 × 10−4). In both cases, the minimal perturbation is obtained for T = 5.7 (red circle).
The dotted vertical lines indicate the times at which the time scale changes for visualisation purposes.
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Figure 10. Unfrozen nonlinear optimisation for case P2, Φ = 1/3: (a) gain envelope versus target time;
(b) maximum gain (circles) and energy at target time (crosses) versus initial energy.

which could be anticipated for non-conservative nonlinearities. In particular, figure 10(b)
shows that the maximum gain varies proportionally to 1/E0. The energy at target time
(crosses) increases with E0, although with a decreasing slope for larger E0. This peculiar
behaviour of the maximum gain can be explained by evaluating the rate of change of the
energy:

dE
dt

=
∫ 1

0

(
u
∂u
∂t

+ p
∂p
∂t

)
dx, (3.1)

which, substituting the governing equations, deriving by parts and imposing the boundary
conditions becomes

dE
dt

=
∫ 1

0

[
−α

(
∂p
∂x

)2

+ pβ

(√∣∣∣∣13 + u(t − τ)

∣∣∣∣−
√

1
3

)
δxf

]
dx. (3.2)
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Figure 11. (a) Minimal-energy initial perturbation and (b) u−τ (xf ) time distribution in [−τ, 0[ for the unfrozen
nonlinear optimisation for case P2, Φ = 1/3, with initial energy E0 = 3.3 × 10−4, and target time T = 7.189.

Integrating this equation in space and in the time interval [0, τ ], the increment of energy
due to the memory interval can be written as

E(τ ) − E0 =
∫ τ

0
β

(√∣∣∣∣13 + u−τ (xf , t − τ)

∣∣∣∣−
√

1
3

)
p(xf , t) dt − L, (3.3)

where L indicates the integral of the pressure gradient term representing the losses of the
system. Assuming that u−τ is constrained in the range [−Φ, Φ], it can be shown that
the heat release is maximum when the pressure at the hot-wire location, pf = p(xf ), is
negative in the interval [0, τ ] and u−τ = −Φ. Hence, the upper bound for the maximum
contribution of the memory variable to the gain can be evaluated as

Gmax(τ ) = Emax(τ )

E0
� 1 + β

(√
1
3

−
√

1
3

− |Φ|
)

max(|pf |)
E0

τ. (3.4)

Equation (3.4) provides some important information about the influence of the memory
variable: the gain scales with 1/E0 and with τ , as found by the optimisation process.

Imposing the constraint u−τ ∈] − 1/3, 1/3[, the minimal energy at which triggering
occurs is Emin

0 = (3.1 ± 0.2) × 10−4. Note that this minimal energy is two order of
magnitude smaller than that found in the frozen case. This indicates that taking into
account the effect of u−τ in the interval [−τ, 0[ is fundamental for correctly evaluating
the potential growth of the energy and the corresponding energy thresholds for triggering.
As shown in figure 9 by the dashed line, the energy increases of two orders of magnitude
in a time O(τ ), due to the energy pumped in the system in the delayed time interval. The
minimal initial condition for triggering is reported in figure 11, together with the optimal
distribution of u−τ in the interval [−τ, 0[. Note that the memory variable achieves its
extreme values, −1/3 and 1/3, with sign corresponding to the pressure sign at the hot-wire
location, such that the product in the integral in (3.3) is positive. Finally, in order to
evaluate the effect of the bound value imposed to u−τ , we have carried out the optimisation
also for u−τ ∈] − 0.1, 0.1[. Figure 12(a) shows that, although the optimal target time and
the overall shape of the energy gain curves remain the same, the maximum value of the
gain drops of one order of magnitude with respect to the previous case. Figure 12(b) shows
that, also for this limiting value of u−τ , the maximum gain is still inversely proportional
to the initial energy, as predicted by (3.4). Whereas, when Φ = 0, we obtain G(τ ) � 1, as
found in the frozen cases discussed previously.
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Figure 12. Unfrozen nonlinear optimisation for case P2, Φ = 0.1: (a) gain envelope versus target time;
(b) maximum gain (circles) and energy at target time (crosses) versus initial energy.
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Figure 13. Comparison between King’s law and the least-square polynomial model.

3.3. Extension to a general flame model
In order to generalise our procedure, we provide in this paragraph some results obtained
using a different model for the hot-wire heat release. In particular, we have replaced the
King’s law defined in (2.9) with a polynomial model similar to that described in Orchini,
Rigas & Juniper (2016),

q(t) = β

5∑
n=1

αnun(t − τ), (3.5)

whose coefficients have been determined by means of a least-square fit to the heat release
provided by (2.4) in the interval u ∈ [−1, 1]. For preserving the linear behaviour of the
flame, we set α1 = √

3/2, whereas the other coefficients resulting from the fitting are
α2 = 0.3145, α3 = −1.555, α4 = 0.1542 and α5 = 0.8812. Figure 13 shows that the two
models are in good agreement in the chosen range. The nonlinear optimisation has been
run for several values of the initial energy, using the same physical parameters reported
in the previous sections. Figure 14 shows that, for τ = 1.08 (case P2), the energy gain
increases of more than one order of magnitude, when unfrozen conditions are considered.
Thus, we can confirm that the strong energy gain potential borne by the time-delayed
variables is a general feature of simple thermoacoustic systems such as the Rijke tube,
independently of the particular model chosen for the heat release.
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Figure 14. Optimal energy gain in frozen and unfrozen cases with different initial energies and Φ = 0.1,
using the polynomial heat release model of Orchini et al. (2016).

4. Conclusions

In this work, we have investigated the minimal-energy thresholds for triggering
self-sustained oscillations in a simple thermoacoustic system such as the Rijke tube. The
nonlinear phenomenon of triggering arises in subcritical, asymptotically stable conditions,
for sufficiently large amplitudes of perturbations to the equilibrium state. Previous studies,
carried out for very small time delays, have reported a maximum energy amplification due
to transient growth of about 25 % in the linear case (Sujith et al. 2016), and approximately
50 % in a nonlinear framework (Juniper 2011). More recently, Sogaro et al. (2019)
demonstrated, for a linearised model, the considerable effect of time-delayed variables
on the linear energy growth of the system, reporting a transient energy growth of a factor
two to five, considerably larger than that reported previously by Juniper (2011).

In this work, we have investigated the effect of the time-delayed variables on the
intrinsically nonlinear mechanism of triggering, by estimating the minimal perturbation
energy able to trigger self-sustained oscillations. Towards this aim, we have used a
nonlinear optimisation algorithm, extended to the time-delayed variables, based on
direct-adjoint looping, together with energy bisection. For comparison, we have applied
the optimisation procedure using both the ‘frozen’ approach, in which the time-delayed
variables are constrained to zero, and the ‘unfrozen’ approach, for which the optimisation
is extended to the flow velocity in the time-delay interval. For small time delays, such
as that considered by Juniper (2011), the minimal energy for triggering is found to be
slightly different for the frozen and unfrozen cases. For a sufficiently large (O(1)) time
delay, the nonlinearity linked to the delayed perturbation velocity at the hot-wire position
bears a strong potential of energy growth, leading to transient amplification of the energy
reaching order O(102), two orders of magnitude larger than those reported in previous
studies. Notably, the gain increases with the time delay, but is inversely proportional to
the initial energy of the perturbation, indicating its intrinsic link to the (non-conservative)
nonlinearity of the system. The time at which the maximum gain is achieved is independent
of the initial energy, suggesting that it is mostly associated with a linear mechanism
linked to the non-normality of the system. The energy gain achieves very high values
close to the triggering threshold of systems, corresponding to energy values as low as
O(10−4), two orders of magnitude smaller than the energy threshold found in both the
frozen case for large time delay and in the small-time-delay unfrozen case. The short-time
dynamics of the system appears to be essentially governed by the excitation at the hot-wire
location during the time delay, bearing a considerably potential of growth for initial
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perturbations, which are able to induce triggering also for very low perturbation energies.
This considerable energy growth potential borne by the time-delayed variables appears
to be a robust feature of the considered thermoacoustic system, since it is observed also
when a different heat release model is taken into account. This clearly indicates that, for
thermoacoustic systems characterised by a non-negligible time delay, taking into account
the effect of the time-delayed variables, as well as the system nonlinearity, is crucial for
correctly evaluating the triggering thresholds. Future works will aim at extending these
results to more complex (and realistic) heat-release models.
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