
Software-engineering challenges of building and deploying
reusable problem solvers

MARTIN J. O’CONNOR,1 CSONGOR NYULAS,1 SAMSON TU,1 DAVID L. BUCKERIDGE,2

ANNA OKHMATOVSKAIA,2 AND MARK A. MUSEN1

1Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, California, USA
2Department of Epidemiology and Biostatistics, McGill University, Montreal, Canada

(RECEIVED December 1, 2008; ACCEPTED January 15, 2009)

Abstract

Problem solving methods (PSMs) are software components that represent and encode reusable algorithms. They can be
combined with representations of domain knowledge to produce intelligent application systems. A goal of research on
PSMs is to provide principled methods and tools for composing and reusing algorithms in knowledge-based systems.
The ultimate objective is to produce libraries of methods that can be easily adapted for use in these systems. Despite the
intuitive appeal of PSMs as conceptual building blocks, in practice, these goals are largely unmet. There are no widely
available tools for building applications using PSMs and no public libraries of PSMs available for reuse. This paper
analyzes some of the reasons for the lack of widespread adoptions of PSM techniques and illustrate our analysis by de-
scribing our experiences developing a complex, high-throughput software system based on PSM principles. We conclude
that many fundamental principles in PSM research are useful for building knowledge-based systems. In particular, the
task–method decomposition process, which provides a means for structuring knowledge-based tasks, is a powerful abstrac-
tion for building systems of analytic methods. However, despite the power of PSMs in the conceptual modeling of knowl-
edge-based systems, software engineering challenges have been seriously underestimated. The complexity of integrating
control knowledge modeled by developers using PSMs with the domain knowledge that they model using ontologies
creates a barrier to widespread use of PSM-based systems. Nevertheless, the surge of recent interest in ontologies has
led to the production of comprehensive domain ontologies and of robust ontology-authoring tools. These developments
present new opportunities to leverage the PSM approach.

Keywords: Knowledge-Based Systems; Problem Solving Methods; Reusable Problem Solvers; Software-Engineering
Challenges; Task–Method Decomposition Process

1. INTRODUCTION

A major goal of research in reusable problem solving methods
(PSMs) is to provide libraries of predefined, implemented algo-
rithms that developers can use to construct knowledge-based sys-
tems (Chandrasekaran, 1986). The aim is to bring the promise of
software reuse to these systems, permitting the rapid assembly of
knowledge-based applications. Approaches for meeting this goal
include techniques to support the specification and construction
of PSMs and their assembly into application systems. The
knowledge-based system community has converged on a set of
fairly well-understood requirements and common terms for
building systems from PSMs. The two main requirements are

the abilities to compose complex algorithms from simpler algo-
rithms and to reuse these algorithms in knowledge-based systems.

To define the control knowledge for an intelligent system, a
technique known as task decomposition allows developers to
construct task models via recursive application of PSMs as
building blocks (Chandrasekaran et al., 1992). Basic high-
level tasks are at the root, and progressively more granular
subtasks are at lower levels (Fig. 1). Developers select or cre-
ate PSMs to model the control knowledge needed to solve a
task; each PSM may entail subtasks, which themselves are
modeled using PSMs that in turn may entail subtasks. At a
minimum, each PSM provides input and output relations,
which describe the task’s data and knowledge requirements
and its results. This modular approach to PSM assembly facil-
itates much more flexible PSM reuse than would be possible
with monolithic PSMs. The clear specification of inputs and
outputs of all subtasks in a PSM also produces a detailed pic-
ture of knowledge requirements. These specifications can

Reprint requests to: Martin J. O’Connor, Stanford Center for Biomedical
Informatics Research, Medical School Office Building, Room X-215, 251
Campus Drive, Stanford University, Stanford, CA 94305-5479, USA.
E-mail: martin.oconnor@stanford.edu

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2009), 23, 339–356. Printed in the USA.
Copyright # 2009 Cambridge University Press 0890-0604/09 $25.00
doi:10.1017/S0890060409990047

339

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

also assist in knowledge acquisition (Marcus et al., 1988). A
PSM is configured for deployment in a particular application
domain by mapping its input–output specification to the rel-
evant domain knowledge and available types of input data.
This mapping describes transformations between the inputs
of a PSM and their referents in the domain, which provides
the PSM with the static knowledge and the data on which it
needs to operate.

Each PSM in a library tackles a particular class of problems.
In the abstract sense, a PSM is responsible for automating a class
of tasks using knowledge and data from a particular domain. It
describes the reasoning steps and the types of knowledge used
during the problem solving process, independent of the domain.
Developers build new knowledge-based systems by selecting
(or creating or modifying) appropriate PSMs and configuring
them to work together to solve a task. Ideally, the configuration
process would be at least partially automated by using a
set of overall design goals provided by the developer and self-
descriptions provided by each PSM (Fensel et al., 2002).

Interest in PSM-driven systems emerged in the knowledge-
based systems community in the 1980s in response to the
difficulties encountered when developers attempted to scale
up rule-based approaches to handle large applications
(McDermott & Bachant, 1984; Clancey, 1986). As develop-
ers of knowledge-based systems sought mechanisms to make
explicit the procedural knowledge required to model and
implement intelligent systems, the notion of reusable PSMs
became very alluring. Knowledge acquisition tools that could
elicit the domain knowledge for well-understood PSMs such
as propose and revise and cover and differentiate made the
approach appealing (Marcus et al., 1988). The Sisyphus ex-
periments (Rothenfluh et al., 1995) advanced at the Knowl-
edge Acquisition for Knowledge-Based Systems Workshops
offered particularly compelling examples of how PSMs could

encapsulate control knowledge and enable the construction of
more maintainable systems. Suddenly, PSMs allowed devel-
opers to clarify the role that every knowledge-base entry played
in problem solving, and to use the knowledge requirements
of PSM to guide knowledge elicitation.

Recognizing the limitations of unitary PSMs, developers
sought to develop mechanisms to create assemblies of PSMs
that could better accommodate the nuances of application
tasks (McDermott & Bachant, 1984; Schreiber et al., 1999;
Steels, 1990). Our own group’s Protégé project attempted
precisely this kind of approach (Eriksson et al., 1995).
The use of Chandrasekaran’s task–decomposition modeling
approach (Chandrasekaran et al., 1992), coupled with the
mapping of domain ontologies to the knowledge requirements
(Gennari et al., 1994), seemed like the obvious solution to the
challenge of building component-based intelligent systems
(Musen & Schreiber, 1995; Tu et al., 1995).

Despite the early enthusiasm, no widely available set of
implemented PSMs or robust PSM–development environ-
ments exist, and the original challenges addressed by this ave-
nue of research remain unsolved for practitioners who wish to
build knowledge-based systems. The engineering of knowl-
edge-based systems is still extremely difficult, and, as a prac-
tical matter, reusing control knowledge is arguably no easier
now than it was when the research began. A central problem
is the lack of tools to support building PSM-based systems. In
addition, there is a significant gap between the current cap-
abilities of commercial environments for the development
of knowledge-based systems and the requirements for con-
structing PSM-based software.

This paper explores the challenge of building a PSM-based
system using contemporary software-engineering tools. We
illustrate these challenges by describing the development of
two versions of a system called the Biological Spatio-
Temporal Outbreak Reasoning Module (BioSTORM; Crubézy
et al., 2005; Buckeridge et al., 2008). BioSTORM supports the
configuration, deployment, and evaluation of analytic methods
for detecting outbreaks of infectious diseases using public
health surveillance data. We created BioSTORM as a PSM-
based application, and we use PSMs as central system compo-
nents. Over the past 6 years, we have produced two versions of
BioSTORM, each with different goals. The first system
focused on analyzing a variety of data sources, which were de-
scribed with a rich domain ontology (Crubézy et al., 2003).
The system was built with relatively simple PSMs. The second
system used fewer data sets and instead concentrated on the
configuration of more complex PSMs capable of performing
more elaborate analyses (Buckeridge et al., 2008). Because
of their different analysis requirements, both implementations
served to emphasize two key and complementary challenges
in the development of PSM-based systems: the first system’s
focus on analyzing a large number of data sources necessitated
elaborate mappings from PSMs to domain data sources, and the
large number and complex interactions between the second im-
plementation’s PSMs drove the development of a software in-
frastructure to control the deployment and management of

Fig. 1. An example of task–method decomposition illustrating how task
models are constructed using PSMs as building blocks.

M.J. O’Connor et al.340

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

these PSMs. Both implementations serve to address common
problems in the development of PSM-based systems: how
PSM interact with their environment and how they interact
with each other in a deployed system.

The second iteration was particularly noteworthy becausewe
produced a clean sheet design that could correct the shortcom-
ings of the first implementation. The two BioSTORM imple-
mentations highlight the difficulties both of domain modeling
and software engineering in the creation of PSM-based sys-
tems. Our work demonstrates that, whereas PSMs are ex-
tremely useful as conceptual building blocks that can facilitate
task analysis and knowledge acquisition for intelligent systems,
considerable practical problems remain in the use of PSMs as
software components for implanting deployable applications.

2. BioSTORM: SYNDROMIC SURVEILLANCE
USING PSMs

In recent years, public health surveillance has become a na-
tional priority, driven by concerns of possible bioterrorist at-
tacks and disease outbreaks. Authorities argue that syndromic
surveillance, or the monitoring of prediagnostic health-re-
lated data for early detection of nascent outbreaks, is crucial
to preventing massive illness and death (Buehler et al.,
2003; Lombardo et al., 2003; Tsui et al., 2003). Rapid out-
break detection is important because public health interven-
tions generally are most effective when applied early in an
outbreak. In a bioterrorist attack involving anthrax, for exam-
ple, a delay of even hours in administering prophylactic anti-
biotics can reduce survival substantially. A syndromic sur-
veillance system could sound an early warning by detecting
an abnormal increase in clinic visits or pharmaceutical pur-
chases before the first definitive diagnoses are made. The de-
sire to improve approaches to syndromic surveillance and the
increasing availability of electronic data on which such sys-
tems might operate have resulted in a blossoming of projects
to develop new surveillance systems. Public health analysts,
however, face technical barriers to incorporating heteroge-
neous data sources into surveillance systems and, more
important, to integrating the data sources in a way that offers
semantic coherence and that improves decision making.

Syndromic surveillance systems have unique data analysis
requirements. For example, the straightforward time series al-
gorithms used to summarize traditional surveillance data are
unsuitable for integrating the data used in syndromic surveil-
lance. The data used for syndromic surveillance typically are
rich in spatial and temporal measurements, which analysts
must aggregate and interpret. The high dimensionality, het-
erogeneity, and unpredictable nature of the data and of dis-
ease outbreak patterns require that systems have a range of
analytic methods that can make sense out of data in numerous
contexts. Moreover, these systems must combine analytic
methods in potentially complex configurations. Analyzing
surveillance data is a problem solving process that necessarily
involves a set of methods tailored to numerous specific situ-
ations. Rather than using ad hoc approaches, surveillance

systems must have an infrastructure for applying different
analytic strategies to incoming data streams in a principled,
context-dependent manner.

To address these requirements of syndromic surveillance,
we have developed BioSTORM (Crubézy et al., 2005). Bio-
STORM is an experimental end-to-end computational frame-
work. It integrates disparate data sources and uses various
analytic methods to support interpretation of surveillance
data and the identification of disease outbreaks. Bio-
STORM’s goals are to provide a run time environment that
supports rapid data analysis and a modular mediation frame-
work that supports knowledge-based method selection. As
mentioned, we have implemented two versions of Bio-
STORM. The first version emphasized relatively simple anal-
yses of a large variety of data sources, whereas the second
version concentrated on elaborate analyses of a small number
of data source types. Broadly speaking, the focus of the first
version was to integrate a large number of diverse data
sources for analysis; the second version shifted the focus
with a much more ambitious goal of building an evaluation
infrastructure that could be used to determine the funda-
mental determinants of the performance of analysis algo-
rithms.

Our approach in both cases centered on using ontologies to
model syndromic surveillance data and knowledge, and using
PSMs to define the analytic methods needed to analyze sur-
veillance data. The effort in developing both systems can be
broadly divided into the processes of conceptual modeling
and of software development. For clarity, we use the notation
BioSTORMA and BioSTORMB to distinguish between the
first and second system versions, respectively.

3. FIRST BioSTORM IMPLEMENTATION: PSMs
AND DATA INTEGRATION

We built BioSTORMA around four main components: a data-
source ontology for describing and integrating the surveillance
data sources that may serve as input to the system, a library of
statistical and knowledge-based PSMs for analyzing the syn-
dromic surveillance data, a mediation component with a data
broker and a mapping interpreter for translating the input
data into a form usable by the PSMs, and a controller for de-
ploying PSM configurations to analyze incoming data streams.
The data broker integrates multiple related data sources de-
scribed by the data-source ontology, and the mapping inter-
preter feeds the integrated data to the appropriate PSMs.

3.1. Modeling: Data-source ontology

Public health surveillance data are diverse and are usually
distributed electronically in databases and files with little
common semantic or syntactic structure. Such data could in-
clude spreadsheets containing over-the-counter drug sales,
semiformatted text files containing records of emergency
calls or school and work absenteeism in a geographical
area, as well as more traditional sources such as electronic

Software-engineering challenges for problem solvers 341

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

medical records. Analyzing disparate data sources requires
precise specification of knowledge about how to characterize
and combine them. To apply appropriate analytical methods
to relevant outbreak-detection data, the data sources must
be related to one another, to descriptions of reportable condi-
tions, and to enumerations of the primitive data on which spe-
cific diagnoses can be made. We developed a template data
source ontology that allows coherent descriptions of these en-
tities (Pincus & Musen, 2003). The ontology makes data self-
descriptive by associating a structured, multilevel context
with each data source. Developers describe individual data
elements with metadata terms adopted from the Logical Iden-
tifier Names and Codes (LOINC; McDonald et al., 2003).
The LOINC approach describes a piece of data along five ma-
jor semantic axes, including “kind of property,” “time as-
pect,” and “scale” axes. Clinical pathologists, for example,
use LOINC to contextualize results reported by clinical la-
boratories. We generalized the LOINC axes from this role
into a generic set of descriptors for contextualizing many dif-
ferent types of data involved in syndromic surveillance. Our
five axes are: what is being measured? (e.g., “Robitussin
sales”); how is it measured? (e.g., “Cases sold per day”);
when/for how long? (e.g., “Averaged over a week”); where?
and what are the possible values? The data-source ontology
aims to describe data in a domain-independent way. Domain-
level concepts are described in domain ontologies, which may
bebasedon the informationencoded in thedata-sourceontology.

Our template data sources ontology describes contexts,
such as the locations in the community where individual
data streams may be derived. Each context can then be related
to multiple data sources (e.g., different data streams at a par-
ticular type of location). However, instead of defining the
structure of the data as a global model does, our template
data sources ontology defines the structure of the data sources
themselves and how metadata and explicit semantics should
be associated with a given data source and its data. For exam-
ple, with 911 dispatch data, patient data from an electronic
medical record, and data related to reportable diseases, the
data source ontology captures individual-level primitive
data (such as signs, symptoms, and laboratory tests) as well
as observable population-level data (such as aggregated syn-
drome counts and school absenteeism).

A developer then describes the context of a data source by
filling in a template, specifying the physical source of the
data, the ways in which related data are grouped, and the spe-
cific atomic data elements (Fig. 2, left). For example, an
atomic data element such as an integer can be represented
as a datum; it may then be associated with logically related
data using a data group. These entities are then associated
with a datum context and a data group context, respectively.
Our template data-source ontology, as customized for syndro-
mic surveillance, provides a taxonomy of data-source attri-
butes to describe such contexts (Fig. 2, right). These attributes
grouped into general categories from which users choose
when modeling a particular data source, data group, or
individual data type. For example, the template ontology

may require that an address be associated with every data
source context, but it is up to the user to choose from the pro-
vided subclasses of address, such as street address or Internet
address, and create an instance of the chosen address type. In
this manner, describing a set of data sources is reduced to
choosing attributes and values from lists, because the user
is freed from the requirement of defining the structure of
the descriptions when defining their content.

The template data-source ontology therefore describes ge-
neric data sources; instances of those generic data sources en-
code the types of data fields of particular data sources that are
processed by BioSTORMA. The ontology allows us to repre-
sent both primitive data relating to individuals (e.g., signs,
symptoms, and laboratory tests obtain from health care facil-
ities) and population-level data (e.g., aggregated syndrome
counts and measures of school absenteeism).

Our ontology’s systematic, template-directed process al-
lows developers to create a customized local model of each
data source. Each description of a data-source instance shares
a common structure, space of attributes, and set of possible
attribute values. While capturing each data source’s specific
characteristics, the template data-source ontology provides a
framework for representing each data source in a uniform
way. More precisely, the ontology provides a hybrid approach
to data integration, in that it combines the semantic rigor of a
global, shared ontology with the flexibility and level of detail
that comes from devising customized, local ontologies for
each data source. Most important, it provides an abstract
view of data sources that is unconcerned with how the pri-
mary data actually are stored. This approach supports inte-
grating heterogeneous surveillance data at the level of seman-
tic reconciliation, allowing uniform application of PSMs to
each data source.

3.2. Software development: Deploying
surveillance PSMs

BioSTORMA has a library of PSMs that can analyze multiple,
varying data types. Our development of these PSMs was
guided by the Unified Problem Solving Method Description
Language (UPML) for modeling PSMs and the tasks for
which they are used (Fensel et al., 2002). The UPML frame-
work follows the task–method decomposition approach,
which models each PSM as potentially entailing several
subtasks. Each subtask is solved by a PSM that may, in
turn, entail new subtasks. Modeling continues until one or
more primitive methods can solve each subtask.

There originally was considerable excitement for UPML
when a consortium of investigators (including our group at
Stanford) founded an international collaborative project
known as IBROW3 (Benjamins et al., 1998), setting out in
the late 1990s to define an Internet-based architecture for
locating, selecting, and deploying PSMs over the World
Wide Web. UPML was a major deliverable of the IBROW3

project, and our implementation of BioSTORMA was the first
attempt to adopt UPML for use in a large-scale intelligent

M.J. O’Connor et al.342

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

system. As we now discuss in detail, our attempt to use
UPML to develop BioSTORMA was not entirely positive.
Despite our initial enthusiasm for the approach, our later de-
cision to reengineer our system as BioSTORMB was a direct
result of the limitations of UPML that became apparent em-
pirically when we built BioSTORMA.

BioSTORMA has a library of PSMs that address the anal-
ysis of multiple, varying types of data for detecting time-
oriented data aberrancies (Buckeridge, O’Connor, et al.,
2004). Its library includes both generic, disease-independent
statistical methods that analyze data as single or multiple time
series, and knowledge-based methods that specifically relate
detected abnormalities to knowledge about reportable dis-
eases. Relatively straightforward PSMs are implemented as
simple software routines, whereas complicated PSMs are in-
corporated into the system by “wrapping” existing software
libraries so that they conform to the requirements of our
method ontology (see below).

We developed an ontology for categorizing abnormality-
detection algorithms, which we used to structure the Bio-
STORMA PSM library. This framework is based on informa-
tion contexts commonly encountered in surveillance
work and the functional requirements of each abnormality-
detection algorithm (Buckeridge et al., 2002). We created
this framework through Chandrasekaran style task decompo-
sition by modeling the overall surveillance task as a set of
specific tasks, and by decomposing each task into subtasks.
We then created a surveillance PSM ontology, which models
and classifies the surveillance methods that may automate
each monitoring subtask (Fig. 3). With this ontology, our

library is available as a computer-processable repository of
PSMs that BioSTORMA can index, query, and invoke.

Following the UPML approach, we associate each PSM in
our library with a method ontology that defines the classes of
data and knowledge on which the given method operates. For
example, statistical PSMs have specific requirements for the
structure of the statistical models on which they operate,
such as whether they assume population data or individual
data. Many algorithms expect time-series data at varying
granularities, and certain ones require spatial data at several
levels of aggregation. Our method ontology makes explicit
a PSM’s data requirements, enabling BioSTORMA to apply
the method uniformly to various data sources. The method
ontology helps BioSTORMA map data sources to appropriate
PSMs and to reconcile the semantic differences between data
and methods. For example, when configuring one of our sur-
veillance methods to aggregate different data streams, where
each stream reported on different 911 dispatches, we created a
set of mappings to transform the contents of the different data
streams into individual events as required by the aggregation
method. Furthermore, the method ontology for a PSM can
facilitate interoperation with other analytic methods by
identifying appropriate interactions with other PSMs in the li-
brary. Overall, our framework provides a structure for incor-
porating surveillance algorithms into our system and for es-
tablishing their data and knowledge requirements. By
making each method’s characteristics explicit, the surveil-
lance problem-solving ontology helps BioSTORMA to iden-
tify suitable methods for a specific subtask in overall task de-
composition.

Fig. 2. The template data-source ontology for data and metadata, customized for syndromic surveillance. (Left) Data values are associated
with metadata describing the data and other relevant context. Arrows indicate one–one and many–one relationships between concepts.
(Right) Highlights show additions to our template data-source ontology that are specific to syndromic surveillance. The first snapshot
shows the structure of the template with our added context classes. The second snapshot shows the top levels of the taxonomy of
metadata attributes, expanded with our vocabulary of “Measurable Properties,” used to build LOINC objects.

Software-engineering challenges for problem solvers 343

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

BioSTORMA’s PSM library includes generic, domain-in-
dependent statistical methods that analyze data as single or
multiple time series, and knowledge-based methods that relate
abnormalities to knowledge about reportable diseases. We cat-
egorize our library’s PSMs by the tasks that they perform, by
the data types on which they operate, and by the types of signals
that they can detect. Making such knowledge explicit facilitates
system modification to enhance method portability and reuse,
and helps public health professionals and other potential users
to understand how the system operates.

3.3. Software development: Integrating
surveillance data

The template data-source ontology provides a mechanism for
describing external data and data elements in a way that al-
lows surveillance methods to process the data. The surveil-
lance PSMs that operate on these data may have varying input
requirements. These input requirements are independent of
particular data sources so that developers may reuse the
PSMs to automate different analytic tasks in a flexible fash-
ion. Each PSM in our library adheres to BioSTORMA’s de-
clarative method ontology, enabling the system to know the
data types of the inputs that each PSM can process. This
explicit information, combined with additional information

about the external data sources available to the data-source
ontology, allowed us to devise a uniform mechanism for me-
diating data from multiple sources to various methods at run-
time (Pincus & Musen, 2003). Our approach involves the use
of two specialized components called a data broker and a
mapping interpreter. These components reconcile syntactic
and semantic differences between the incoming data streams
and the data expectations of the PSMs. Together, the data
broker and the mapping interpreter provide a semantic bridge
between analytic PSMs and raw data. Our approach enables
BioSTORMA to make meaningful computations over dis-
parate types of data without the need for major reprogramming
whenever we incorporate a new data source or develop a new
PSM for the library.

3.3.1. Data broker

The data broker uses the template data-source ontology to
allow PSMs to read data from many diverse external sources
at run time. It queries the ontology to retrieve a data source’s
description and constructs a stream of uniform data objects
from the raw input data. First, the data broker accesses and re-
trieves data in the original location based on the ontology’s
description of the low-level data classes. Second, the broker
formats the data and groups them in a canonical structure
specified by the data-source ontology. It packages the data

Fig. 3. BioSTORMA’s surveillance problem solving ontology. (Left) A schematic representation of the refinement of the monitoring task into
subtasks defined by information scenarios in public health surveillance and the decomposition of standard temporal surveillance into further
subtasks. (Right, top) A snapshot of our resulting surveillance problem solving ontology that is focused on the ontology of surveillance methods.
(Right, bottom) Another snapshot of the problem solving ontology that is focused on the method ontology in which each problem solving
method declares its expectations on input and output data. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

M.J. O’Connor et al.344

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

with appropriate context annotations to create syntactically
uniform and semantically unambiguous data objects. The
data objects are then ready for the PSMs that operate on
them. In this way each PSM receives a customized set of
data objects and is insulated from idiosyncrasies in the format
of the raw data.

3.3.2. Mapping interpreter

Some PSMs can operate directly on data transmitted from
the data broker. However, many surveillance methods in our
library expect data in a syntax, structure, or level of granular-
ity that is different from the data broker’s lower level data ob-
jects. In these cases, BioSTORMA must supply data to the
PSMs in the appropriate representation. The system therefore
requires a means to transform the data output by the data
broker and to map those transformations to the inputs of desig-
nated PSMs. We developed a mapping interpreter that uses
an ontology of transformation types or mapping relations to
transmute data sources and data elements to match the data re-
quirements of different PSMs. For each data group in the data-
source ontology, there are specific mapping relations that de-
fine the transformation of canonical data elements into the
runtime inputs of PSMs. These transformations range from
simply renaming the atomic values of data elements to terms
that a PSM happens to expect to composing lexical or func-
tional expressions of data elements to match the type of com-
plex input data assumed by the target PSM. For example,
when configuring a surveillance PSM to aggregate different
data streams, we created a set of mappings to transform con-
tinuously sampled data-stream content into discrete individ-
ual events, as required by the aggregation PSM. Based on a
set of data–method mapping relations that we created in the
mapping ontology, BioSTORMA translates incoming data
elements to a set of input data instances for the particular
PSM to use. The mapping interpreter performs this task by
processing mapping relations for each input data group and
each target PSM, and thereby generating streams of canonical
data structures processable by the PSMs.

3.4. Software development: Deploying PSMs

We developed a deployment controller to invoke and manage
BioSTORMA’s PSMs (Buckeridge, O’Connor, et al., 2004).
The deployment controller activates the PSMs to conduct sur-
veillance and coordinates data flow from the data sources to
appropriate PSMs via the data broker and mapping inter-
preter. It uses the data source and surveillance PSM ontolo-
gies that describe the surveillance data and the analytic
methods to configure and deploy system components. The
deployment controller ensures that the data broker moves
the correct data at the correct time. The entire process must
execute efficiently, as many data sources may be sent to var-
ious PSM configurations operating in parallel. We imple-
mented the deployment controller using the JavaSpaces ren-
dering (Halter, 2002) of the Linda coordination language
(Carriero & Gelertner, 1989). Linda was designed to enable

users to create parallel programs. It is based on logically
global, associative object memory space called a tuple space.
This tuple space is analogous to a blackboard. Linda provides
interprocess communication and synchronization facilities
via the insertion and removal of tuples from the tuple space.
It effectively implements parallelism with a small number of
simple operations on the tuple space to create and coordinate
parallel processes. The tuple space looks like a single global
memory space to component processes. JavaSpaces Linda
implementation thus provides a distributed parallel mecha-
nism for PSM communication (see Fig. 4).

Our approach allows BioSTORMA to use the Linda mod-
el’s tremendous efficiencies while enabling it to scale up to
large data sets. Our solution also allows PSMs to exchange
data using high-level terms provided by the data-source ontol-
ogy, freeing PSMs from low-level data formatting concerns.
When PSMs require data in a form that is not provided by
the data-source ontology, the controller invokes the mapping
interpreter, which uses the appropriate mapping ontology in-
stance to perform the required tailoring. The controller thus
provides a coherent, efficient runtime system that unifies
data sources, knowledge bases, and PSMs. It is the basis of
BioSTORMA’s ability to support modular systems, concur-
rent applications, and structured evaluation of multiple
knowledge-based analytic methods encoded as PSMs.
Figure 5 shows a screenshot of a graphical monitoring tool
displaying an example deployment of a set of temporal
PSMs. This tool monitors all tuple space activity allowing
it to display interactions among systems components.

3.5. BioSTORMA system summary

The BioSTORMA system provides a computational framework
to meet performance and flexibility demands of emerging

Fig. 4. An overview of BioSTORMA’s architecture and components. Using a
blackboard mechanism, the deployment controller orchestrates the problem
solvers’ deployment. It also instructs the Data Broker to process incoming
data streams. These processed streams are then fed to the Mapping Interpreter,
which routes them through the blackboard to the appropriate PSMs. [A color
version of this figure can be viewed online at journals.cambridge.org/aie]

Software-engineering challenges for problem solvers 345

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

disease and bioterrorism surveillance systems. It demonstrates
an end-to-end solution to many problems associated with data
acquisition, integration, and analysis for public health surveil-
lance. It leverages long-standing work in AI concerning the use
of ontologies for semantic integration, deployment of reusable
PSMs, and mapping of PSMs to domain. The system demon-
strates how these methods can support both data integration
and the rapid configuration of PSMs for analyzing large vo-
lumes of disparate, noisy data.

The main contribution of BioSTORMA is a scalable, uni-
form method for feeding heterogenous, real-time data sources
to a coherent assembly of reusable PSMs. This feature of the
system also exposes its greatest weakness: the engineering
overhead associated with creating the ontologies required
for integrating diverse data sources. Whereas the data-source
ontology provides a convenient template to support this inte-
gration process, the manual operation of creating the neces-
sary data descriptions is cumbersome, time-consuming, and
requires considerable domain expertise and familiarity with
the peculiarities of each data source. Once the data are descri-
bed using the data-source ontology, however, using the map-
ping interpreter to generate custom mappings for individual
PSMs is relatively straightforward. Nevertheless, the lack of
robust tools to support data integration remains a challenge.
An additional limitation of this implementation is the relative
simplicity of the surveillance PSM ontology. This ontology
did not easily support the creation of nuanced algorithms
that can use deep decompositions of PSMs, so only relatively

simple algorithms could be modeled in the system. Our sec-
ond implementation of BioSTORM addressed this limitation
head on.

4. SECOND BioSTORM IMPLEMENTATION:
EMPHASIZING INTERACTION AMONG PSMs

The last decade has seen the introduction of aberrancy-detec-
tion algorithms for screening large volumes of time-ordered
data. Some of these algorithms were developed specifically
for surveillance, although most were adapted from other
fields, such as industrial process control and cancer epi-
demiology. Theoretical considerations and empirical results
suggest that algorithm accuracy and timeliness in detecting
disease outbreaks are quite variable. For example, differences
in performance have occurred when two algorithms are ap-
plied to the same data, and when the same algorithm is ap-
plied to different data sets. Although variations in algorithm
performance are acknowledged in general, specific descrip-
tions of how algorithms differ in practice are fragmented
and difficult to interpret, generally because of the absence
of a conceptual framework to support their consistent descrip-
tion and the lack of mechanisms to synthesize the reasons for
variations. This lack of focus on critically modeling these al-
gorithms hinders research, leads to confusion and variation in
surveillance practice, and threatens the return on the consider-
able investment in surveillance systems and aberrancy-detec-
tion methods.

Fig. 5. A screenshot of a BiOSTORMA monitoring tool showing a deployment of a set of PSMs. The tool displays groups of PSMs tackling
a particular task (temporal, magnitude, and clustering in this example) and shows the communication paths between them. The tool
monitors all communication between entities in a deployed system and visually displays these interactions. [A color version of this
figure can be viewed online at journals.cambridge.org/aie]

M.J. O’Connor et al.346

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

BioSTORMB focused on the need to identify specific rea-
sons for these performance variations consistently by devel-
oping an explicit model of aberrancy-detection algorithms
and by developing a software infrastructure for rapidly con-
ducting studies using elaborate PSM configurations. The
BioSTORMB model aimed to clarify common features and
meaningful distinctions among different algorithms and pro-
vides an extensible framework for gathering evidence about
relative performance. Our objective was to identify funda-
mental reasons for differences in algorithm performance.
We also aimed to enable consistent reporting of results
from studies, synthesis of results across different studies,
and generation of empirical evidence to support surveillance
practice and research. Accordingly, the BioSTORMB system
allows users to configure and evaluate alternative aberrancy-
detection algorithms in a systematic manner. The PSM de-
ployment infrastructure of BioSTORMA could not support
these studies. Its relatively simple analyses used few PSMs
and these analyses were time-consuming to construct. This
shortcoming was a result of the system’s emphasis on inte-
grating domain data with PSMs. BioSTORMB required far
more flexible PSM configuration and deployment software.
It required software that would easily support the deploy-
ment of a large number of studies, each of which could re-
quire a variety of PSMs. The emphasis was thus shifted
from PSM–data interaction to interactions between the PSMs
themselves.

4.1. Model development: Using the task-analytic
methodology to model surveillance algorithms

The task–analytic methodology has many desirable features
for modeling surveillance algorithms. In this section, we
describe how we have drawn on this methodology to extend
our earlier work in modeling surveillance methods and how
we have created an explicit representation of aberrancy-detec-
tion algorithms. We have focused our modeling efforts on a
subset of algorithms developed for public health surveillance,
specifically temporal aberrancy-detection algorithms. Our
model, however, is extensible, and can include other types
of algorithms as well. At the highest level of decomposition,
our model identifies the subtasks involved in aberrancy detec-
tion and a number of methods described in the literature that
are suitable for accomplishing these subtasks. In addition, the
model identifies concepts related to data flow between sub-
tasks and the properties of each method that may influence
detection performance. Most importantly, it makes explicit
the structural similarities and differences that may have impli-
cations for algorithm performance. It also clarifies the roles of
different PSMs in the overall aberrancy-detection process and
identifies when one PSM can be used for multiple tasks.

Our model of aberrancy-detection algorithms includes
three major parts. First, it identifies the hierarchical task struc-
ture of the aberrancy-detection process and shows how it
applies to individual algorithms used in public health sur-
veillance. Second, it augments this representation with

descriptors related to control and data flow, which we use
to specify subtask ordering, iteration, and input–output rela-
tions among subtasks. Third, the model identifies properties
that characterize the individual PSMs used to accomplish
the subtasks.

The surveillance literature consistently describes temporal
aberrancy-detection algorithms as procedures that evaluate
the incidence of health events sequentially, in terms of differ-
ences between observed incidence and normal historical inci-
dence. In task-analytic terms, these algorithms can be viewed
as instances of a single task–decomposition method, which
performs the task of detecting aberrations in surveillance
data. We call this task–decomposition method the temporal
aberrancy detection method. Aberrancy detection entails at
least three key subtasks: compute expectation (typically de-
rived from historical observations), obtain current observa-
tion of the health event, and compute test value (significance
of the current value’s deviation from expectations). These
steps are subtasks of the top-level aberrancy-detection task
as performed by the temporal aberrancy detection method.
We use one more subtask, evaluate test value, because
many algorithms perform transformations on current obser-
vations to compute a test value or detection statistic (i.e., cu-
mulative summation, moving average) instead of using raw
data directly. Figure 6 displays methods eligible to perform
each subtask.

Temporal algorithms are represented as instances of a
task–decomposition method, aberrancy detection (tem-
poral), that performs the task of detecting aberrations in the
surveillance data by decomposing this task into four subtasks
(ellipses). Each subtask can be accomplished by different
methods (rectangles), some of which perform the task di-
rectly (primitive methods, shown as dark rectangles), and
some further decompose the task into subtasks (task decom-
position methods, shown as light rectangles). For instance,
the compute expectation task, which constitutes one of the
steps (subtasks) of aberrancy detection, can, in turn, be de-
composed into four subtasks, if an empirical forecasting
method is used. Alternatively, this task can be accomplished
directly by a primitive method: theory-based forecasting.
Similar alternatives exist for the evaluate test value task.

Obtain current observation is a simple and straightforward
subtask that is typically performed by querying a database.
For the three other subtasks, multiple methods exist. Some
are primitive, whereas the others are complex. For example,
the evaluate test value task, which is responsible for generating
outbreak alarms, can be accomplished by comparing an ob-
served value to an expected value using a predefined threshold
(via a primitive method known as Binary Alarm), or by passing
the residual of such a comparison through a control chart (via a
complex method known as Residual Based). The compute ex-
pectation subtask and the evaluate test value subtask can be
further decomposed into constituents. To represent any particu-
lar aberrancy-detection algorithm, a single method must be se-
lected for each subtask from the list of eligible methods, pro-
ducing a task–decomposition hierarchy. The differences in the

Software-engineering challenges for problem solvers 347

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

PSMs that may be used to automate particular subtasks allow
developers to model the observed variety in existing aber-
rancy-detection algorithms.

4.1.1. Modeling individual methods

We also encoded additional knowledge about individual
PSMs. One important property of a PSM is its role in the over-
all aberrancy-detection process, which can be inferred di-
rectly from the location of the method in the task–decompo-
sition structure. Although some methods are relatively
specialized, others may be used for several different tasks.
An example of such a reusable method is the exponentially
weighted moving average method, which may function either
as a forecasting technique or as a means to transform raw ob-
servations into test values.

Another group of PSM properties is related to the data and
objects on which the PSM operates include data processed,

the results of computations performed by the method, and,
sometimes, internal state information. For example, the prim-
itive method cumulative sum takes a new observation as an
incoming data object. It computes the values of upper and
lower running sums using the observation and an inter-
nally stored sum from previous invocations of the PSM.

Configuration properties, or parameters, control exactly how
a method should perform a task. These properties can charac-
terize both primitive PSMs and task–decomposition PSMs,
but obviously, they apply only to methods allowing variations
in their internal procedures. Finally, a number of nonfunctional
properties can be useful in describing methods, such as their
performance characteristics (e.g., time and space requirements)
or any helpful meta-information (Gennari et al., 1994).

The task–decomposition hierarchy in Figure 6 is not a
complete representation of our model of aberrancy detection,
as it does not specify the ordering of subtasks or the details of

Fig. 6. The general task structure of temporal aberrancy detection algorithms. Temporal algorithms are represented as instances of a task–
decomposition method, Aberrancy Detection(Temporal), that performs the task of detecting aberrations in the surveillance data by decomposing
this task into four subtasks (ellipses). Each subtask can be accomplished by different methods (rectangles), some of which perform the task
directly (primitive methods, dark rectangles), and some further decompose the task into subtasks (task decomposition methods, light rectangles).
For instance, the compute expectation task, which constitutes one of the steps (subtasks) of aberrancy detection, can in turn be decomposed into
four subtasks if the empirical forecasting method is used. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

M.J. O’Connor et al.348

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

data flow. Our model also includes encodings of these control
flow and data flow characteristics. These encodings are ap-
plicable only to task–decomposition methods. Although
primitive methods also have internal algorithmic flow, there
is no need to encode these elements explicitly in our model.

4.1.2. Modeling control flow

A key element in representing flow inside task–method de-
compositions is an algorithm, which is a collection of tasks
and control elements as a directed graph. For the purpose of
modeling aberrancy detection, we distinguish between two
types of nodes in an algorithm graph: subtasks and iterations.
These nodes are shown in a task–decomposition tree (see
Fig. 6). Iteration represents control flow when a set of sub-
tasks in a task–method decomposition should be repeated
multiple times. For example, one sequence of computations
and alerting decisions is usually repeated daily in a surveil-
lance time series. A sequence of subtasks inside an iteration
generates a set of intermediate results that are aggregated
with intermediate results from other repetitions of the same
subtasks. Figure 7 illustrates the relationships among algo-
rithms, tasks, iterations, and methods.

The arcs of a graph are called connectors. Connectors
represent data flow through tasks and iterations. Specifically,
a connector between two nodes indicates that the predecessor
node’s output is used by the successor node as input. Al-
though not intended to model control flow directly, connec-
tors represent data dependencies between tasks and iteration
units. In this sense, they provide information necessary for
inferring control flow knowledge from a graph.

4.2. Software development: Deploying a study

In BioSTORMB we used the Web Ontology Language (OWL,
2004) to encode our model of aberrancy-detection algorithms.
The ontology defines a typology of the subtasks and candidate
PSMs as a hierarchy of classes, denotes potentially appropriate
methods for each subtask, describes salient characteristics of
individual PSMs as declarative method properties, and in-
cludes properties that encode control flow and data flow rela-

tionships among the tasks. To integrate aberrancy-detection
algorithms consonant with this model with other operational
components of the BioSTORMB system, we extended our rep-
resentation to include elements that describe properties of sur-
veillance data and the configuration of study.

To support the significant processing requirements of
running studies, we implemented an agent-based software
system that can support complex deployments of methods
and that can handle large quantities of data. We developed
this parallelized version of BioSTORMB with the Java Agent
Development Framework (JADE; Bellifemine et al., 2007),
an open-source platform for building distributed applications.
The basic distribution unit in JADE is an agent, a stand-alone
module that performs a particular job. Agents are assigned to
a platform, which is a logical space that can be distributed
across machines. Agents communicate with one another by
passing messages.

We defined the subtasks in aberrancy-detection algorithms
as JADE agents (Fig. 8). These subtask agents were con-
figured to use a particular implementation of a PSM to per-
form their actions. BioSTORMB provides a problem solving
method application programming interface (API) in Java that
the generated task agents use to interact with their corre-
sponding PSMs (Nyulas et al., 2008). Using this API, we
have built a Surveillance Method Library as an extensible
Java package containing a set of surveillance PSMs. This li-
brary uses the R statistical software package (R, 2009; rJava,
2009). R is a powerful open-source environment for statistical
computing that provides a variety of analytical techniques
and includes over a thousand contributed packages. R fea-
tures implementations of most of the temporal methods we
wish to incorporate into BioSTORMB, and is thus used for
any nontrivial statistical computations performed by our
methods. Simpler methods are encoded directly in Java.

Three other important components of the system are also
implemented as agents. A controller agent deploys an aber-
rancy-detection algorithm by creating and configuring all
the relevant subtask agents. A configurator agent reads the
configuration of an evaluation analysis from the ontology
and sends necessary initial configuration information to the

Fig. 7. The relationships among tasks, methods, iterations, and algorithms. When a task is accomplished by a task–decomposition method
(TDM), this implies that the method performs several steps in a particular order; that is, the method has an algorithm associated with it. An
algorithm in turn consists of interconnected tasks (these are the subtasks of the original, higher level task) and iterations. An iteration spec-
ifies repetition of a sequence of tasks (or other, nested iterations); this sequence is also represented by an algorithm. [A color version of this
figure can be viewed online at journals.cambridge.org/aie]

Software-engineering challenges for problem solvers 349

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

controller agent. A blackboard agent implements a black-
board; it is the only agent known to all other agents. Subtask
agents send messages containing data reading and writing re-
quests only to the blackboard agent and are therefore insulated
from having to know about other subtask agents, the origin of
their input data, and the ultimate destination of their outputs.

4.3. BioSTORMB system summary

BioSTORMB extended BioSTORMA’s computational frame-
work to provide a more elaborate, scalable, and easily con-
figurable deployment mechanism for performing surveillance
analyses and evaluating aberrancy detection performance.
The emphasis shifted from the data-integration strategies of
BioSTORMA and instead focused on the development of a ro-
bust software infrastructure for deploying the PSMs to execute
these studies. Its architecture offers a flexible framework into
which developers can drop new PSMs and new data sources,
and then measure system performance. Other surveillance sys-
tems, such as RODS (Tsui et al., 2003) and ESSENCE (Lom-
bardo et al., 2003), do not support an open architecture, and
adding new methods or data sources requires custom program-
ming, which is a significant obstacle to experimentation. The
ability to experiment with multiple PSMs applied to different

data sources is crucial for the next generation of surveillance
systems, and was a major motivation for our development of
BioSTORMB.

Our goal of fully describing all the parameters of real-
world surveillance studies in BioSTORMB was ambitious.
We believe that our implementation served to further high-
light both the strengths and weaknesses of using PSMs to de-
velop software systems. Its use of PSMs and, in particular, the
task–method decomposition approach proved invaluable in
managing the complexity of BioSTORMB’s design and im-
plementation. Indeed, it is difficult to imagine suitable alter-
nate approaches to manage this process. The downside is that,
as in the development of BioSTORMA, we needed to encode
a significant amount of novel, nontrivial software compo-
nents and ontologies for managing PSM deployment. This
software engineering was in addition to the development ef-
forts required for BioSTORMA, which centered primarily on
integrating PSM with domain data.

5. SOFTWARE REQUIRED FOR PSM-BASED
SYSTEMS

Our workon the different versions of BioSTORM was conceived
as an opportunity to validate our approach to knowledge-system

Fig. 8. The BioSTORMB system architecture illustrating the ontology-driven deployment of PSMs as JADE agents. The architecture has
three layers: (1) a knowledge layer, containing all of the ontologies that describe the problem decomposition; (2) an agent platform, which
contains the deployed agents in a system; and (3) a data-source layer, which represents a semantically characterized view of the external
environment of the agents.

M.J. O’Connor et al.350

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

architecture in a complex domain where the decomposition of
the surveillance task into a hierarchy of problem solving compo-
nents offered a particularly cogent solution. The conceptual
framework provided by the PSM approach, particularly the
task–method decomposition process, proved invaluable when
developing these systems, providing powerful building blocks
for managing a significant amount of complexity. Both versions
of BioSTORM had ambitious architectural goals, aiming to
provide end-to-end support for configuration and deploy-
ment of real-world surveillance studies. The goal was to drive
the specification and execution studies solely from system
models encoded in ontologies and to require little or no manual
programming steps. To meet this goal, we developed a variety of
specialized software components and ontologies. Although
some of this development effort centered on surveillance-
specific functionality, considerable resources were necessary
to build tools and ontologies to support the PSM approach. There
are essentially no off-the-shelf tools for developing PSM-
based software, so we had to create components to support all
system-development stages.

Both implementations of BioSTORM were written using a
mixture of Java-based, open-source components and a suite
of ontology-development tools based on the Protégé ontol-
ogy-development environment (Gennari et al., 2003). In
BioSTORMA, data-analysis tasks were straightforward and
used relatively simple PSMs that needed to interoperate
with a large variety of data sources. As a consequence, data
mapping was central, and our development efforts concen-
trated on building mapping tools to support mapping domain
models to PSM inputs. BioSTORMB focused on more elabo-
rate analyses using a higher number of PSMs and required
more complex interactions between PSMs, so its PSM config-
uration and deployment components were considerably more
complex. The work to build BioSTORM served to identify a
core set of required ontologies and tools that are necessary
when developing a PSM-based system. These include a
data-source ontology, data-integration software, PSM config-
uration ontologies, PSM-deployment software, and inter-
PSM communication software.

5.1. Data-source ontologies

The information used by PSMs is typically described by data-
source models, which model all relevant information in the
inputs that PSMs use. In BioSTORMA we developed a rich
data-source ontology to describe the possible sources of in-
formation that could be encountered by surveillance systems.
Although we created this ontology to be as generic as possi-
ble, we needed to tailor the descriptions of data streams to the
surveillance domain. This process typically requires exten-
sive familiarity of both domain knowledge and data sources.
Most of our development effort centered around defining
these customizations. The lack of robust tools to support
this customization is a source of difficulty. Most nontrivial
PSM-based systems will require significant domain- and
data-specific refinements of this type.

5.2. Data-integration software

In a PSM-based system, the abstract inputs of PSMs must be
mapped to actual domain data. Data-integration software is
thus necessary to supply streams of data in an appropriate for-
mat to system PSMs. This mapping process requires integrat-
ing individual PSMs with those data streams. In addition to
constructing detailed domain models during the development
phase, this process at run time typically requires preproces-
sing of source data, annotating those data with metadata de-
scribing their content, and transforming the data into a form
that can be reconciled with the domain model. We devel-
oped the mapping interpreter for BioSTORMA to address
the data transformation task (Fig. 4). The mapping interpreter
takes as input the data source models and instances of those
data sources and produces as output integrated data streams.
It supports a large array of transformations to allow integra-
tion of a wide variety of data sources.

Mapping between the generic data and knowledge require-
ments of PSMs and specific domain ontologies remains a par-
ticularly challenging task. There is a pressing need for end-to-
end tools that support the interactive exploration of the data to
be integrated, the annotation of those data, and the detailed
specification of a range of possible data transformations. There
also is a need for software libraries to invoke these real-time
data transformations from PSMs. The software that we devel-
oped for BioSTORMA to aid system builders in mapping
source data to PSMs supported some of these activities, but
it would be hard to argue that it provides a robust solution (Cru-
bézy & Musen, 2004). We finessed the data-to-PSM mapping
problem in BioSTORMB: instead of allowing mappings from
arbitrary domain models to arbitrary PSMs, we designed a sim-
ple input specification for PSMs that had to be satisfied by the
source data. We effectively bypassed the mapping problem by
developing a stripped-down method ontology that did not sup-
port mappings from arbitrary domain ontologies. Instead, users
are required to transform their data manually to conform with
the method ontology. The task of mapping domain concepts
and data to PSM inputs was thus effectively left to the de-
veloper. This shift was partly a result of our less ambitious
data-integration goals for BioSTORMB but also reflected a de-
sire to avoid the anticipated large amount of effort needed to
implement a comprehensive mapping solution. Nevertheless,
the general problem of mapping entities described by domain
ontologies to the generic data types on which PSMs operate
has to be addressed to facilitate the wider adoption of PSM-
based systems, as the reconciliation between PSMs and domain
models is a central requirement.

5.3. PSM configuration ontologies

The task–method decomposition approach adopted by Bio-
STORM provided a structuring mechanism for describing the
arrangement of PSMs in the system. We developed several
ontologies that provided detailed computer-interpretable de-
scriptions of all PSMs in a system and their interrelationships.

Software-engineering challenges for problem solvers 351

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

The model development process benefited from the availabil-
ity of robust ontology-authoring tools. In particular, the Pro-
tégé tool and associated plug-ins were invaluable. However,
the level of detail required to fully specify all aspects of an on-
tology-driven application requires considerable ontology de-
velopment and encoding efforts. Also, because these ontolo-
gies directly control all components in the system, iterating
through different versions of a design may require parallel
changes in both software and ontologies. For example, if an
ontology is significantly modified to reflect a new design em-
phasis, the associated software component may have to be re-
implemented as well. When the design stabilizes, the system
should be reconfigurable by ontology modifications only, but
until that point is reached the parallel development of soft-
ware and ontologies can be a challenge. In BioSTORMB at
least, the benefits of this approach outweigh the initial spec-
ification overhead because of the ultimate ease of configura-
tion and reconfiguration of PSMs. The surveillance studies
carried out using BioSTORMB required the deployments of
a large number of PSM configurations and hand-configuring
each study manually would have been prohibitively expen-
sive. The use of a configuration ontology to specify studies
allowed new studies to be deployed with minor modifications
to existing configurations.

5.4. PSM deployment software

Deployment software must take a configuration model and a
set of PSM implementations and deploy the PSMs to produce
a running system. Although there are many tools that help
developers to author ontologies, there are few widely adopted
techniques or tools for constructing component-based appli-
cations that use ontologies. Furthermore, existing tools do
not typically provide the fundamental infrastructure com-
ponents necessary to construct ontology-oriented systems.
There are no ontology-based equivalents of CORBA or
J2EE, for example. Hence, developers are on their own
when implementing their systems. In many cases, the lack
of tools is a reflection of the modest goals for use on ontolo-
gies in many contemporary knowledge-based systems: many
ontologies are developed to formalize basic terms and con-
cepts in specific parts of a domain; there is often little or no
effort to design ontologies to be usable with external analytic
methods. As a result, there has not yet been significant indus-
trial effort to develop software environments for building
large-scale ontology-based applications. UPML (Fensel
et al., 2002) attempted to provide a high-level markup for
consistently describing interfaces to components in a PSM-
based system, but there are no known implementations of
UPML-based tools. Thus, in both versions of BioSTORM
we developed custom deployment software. This software in-
cluded a number of interactive tools to support PSM config-
uration and deployment and real-time system debugging. De-
veloping the configuration and deployment software involved
challenges common to all component-based systems. How-
ever, the process was complicated by the need to develop cus-

tom middleware for many tasks. The configuration software
for the JavaSpaces and JADE systems and the inter-PSM
communication process were developed from scratch.

5.5. Inter-PSM communication software

Communication software is required to control the flow of in-
formation among PSMs in a deployed system. Such software
must ensure that all components are delivered their requisite
data. Efficiently routing data from secondary storage to pos-
sibly distributed PSMs in a deployed system is important,
particularly if scalability is a concern. Because data integra-
tion and mapping may add significant overhead, streaming
software may have to adopt specialized optimization tech-
niques. Mapping adds a layer of indirection, which also
may be a problem with large data sets. We tackled this prob-
lem in BioSTORMA by developing a novel mapping software
to optimize data access (Buckeridge, Burkom, et al., 2004).
BioSTORMB used a simple data annotation ontology that
could be custom-tailored by system developers, and that sup-
ported direct (and thus more efficient) data access. Irrespec-
tive of the approach adopted, efficient data access is essential
to ensure scalability.

Both versions of BioSTORM required the development or
extension five nontrivial software components and ontolo-
gies. In particular, as described above, the data-integration
and mapping components in BioSTORMA demanded major
development resources. In the construction phase, for exam-
ple, mapping an arbitrary domain ontology to match the in-
put–output specifications of a decomposition of tasks in a
typical PSM can be time consuming, labor intensive, and er-
ror prone. Robust semiautomated mapping tools to support
this process could make it more tractable, but current tools
are not flexible enough. This shortcoming also occurs in
run-time PSM deployment. After specification, PSMs must
be deployed in a running system, and the data on which
they operate must be supplied as required. Again, there is a
lack of software tools to automate this process. There are
also efficiency considerations if systems have to deal with a
lot of data, because of levels of indirection created by the do-
main mapping process. It is worth noting that the BioSTORM
development team has an ideal software-engineering environ-
ment, given both the availability of experienced, knowledge-
able practitioners, and access to a variety of tools based on
PSM principles. Despite these resources, we faced significant
challenges in our work. The corresponding effort and the in-
itial learning curve may be greater elsewhere.

6. DISCUSSION

PSMs were developed by the artificial intelligence commu-
nity as a technique to model procedural knowledge within
intelligent systems. Despite considerable early promise,
PSM-based techniques have not achieved widespread adop-
tion. Various reasons have been proposed for this low adop-
tion rate. Chandrasekaran (2009, this issue) argues that the

M.J. O’Connor et al.352

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

approach fails to consider cognitive processes, and thus pro-
vides an incomplete picture of the problem solving task. He
argues that there is a poor match between the techniques pro-
vided by PSMs and the way in which human cognition oper-
ates. Clancey et al. (2009, this issue) assert that the PSM ap-
proach fails to consider the workflow processes in system
design. He claims that the approach assumes that PSMs are em-
bedded in relatively static systems and that, as a result, the sys-
tems that they automate are not sufficiently flexible to address
the situated behavior of many computational systems.

Although both perspectives are valid, our view of PSMs as
software-engineering building blocks is more pragmatic. We
do not suggest that PSMs offer a general theory of intelligent
problem solving. Rather, we view the use of PSMs as an ap-
proach to manage complexity in the design and implementa-
tion of software systems. To argue that PSMs do not model
true cognitive behavior or the nuances of workflow is to
miss their contribution to the engineering of software sys-
tems. Research on PSMs has provided tractable methods
for human engineers to decompose complex problems. Al-
though there is great value in a theory of intelligence that
can be tied to computational mechanisms that would allow
PSMs to operate as situated agents, such approaches are not
required for many systems. Not all computational artifacts re-
quire this level of generality and not all PSMs need to be
agents in the world. BioSTORM, for example, provides an in-
teractive laboratory for experimenting with surveillance algo-
rithms. It does not require agents that are situated in the real
world. In BioSTORM, it is the interaction among PSMs
that provides the greatest challenges, not the system’s interac-
tion with the environment. Workflow, for example, is outside
of the system’s scope.

The PSM approach provides a powerful set of techniques
that can give software engineers a handle on managing com-
plexity. Our work on BioSTORM and other systems shows
how PSMs can assist developers in managing that complex-
ity. In the BioSTORM system, PSMs allowed us to do what
others have not attempted to do in designing systems for syn-
dromic surveillance: modeling the intricate problem solving
elements needed to define surveillance algorithms. Other sur-
veillance systems are essentially monolithic black boxes.
They do not provide systematic ways of updating algorithms
or of measuring the effects of substituting one problem solv-
ing component for another. These shortcomings have conse-
quences that extend beyond the obvious difficulties of system
development. The “black box” approach makes it difficult to
carry out experiments to identify and categorize the subtasks
required to execute surveillance algorithms, which limits ad-
vances in the field. We believe that BioSTORM can make
fundamental contributions to epidemiology and public health
by providing a laboratory environment for evaluating aber-
rancy-detection algorithms.

We concur with Domingue and Fensel (2009, this issue)
that PSMs provide a useful approach for dealing with the
new demands of building intelligent applications for the
Web. Our experiences developing several systems, however,

makes us concerned about the practicalities and scalability of
this approach without sufficiently robust tools for managing
the software-engineering process. The development of both
versions of BioSTORM has convinced us that there are
significant software-engineering and modeling difficulties
when building PSM-based systems. The time and effort re-
quired for end-to-end design and deployment are nontrivial.
Simply put, the complexity of modeling domain data sources
in BioSTORMA and the complexity of modeling the charac-
teristics that determined appropriate selection of PSMs in
BioSTORMB could not be anticipated from an initial analysis
of the syndromic surveillance domain. It was not until we be-
gan to model the details of the underlying systems in each
case that the consequent engineering effort became apparent.
A systems designer faced with the task of creating any com-
puter program from reusable software components must de-
termine whether the effort is worthwhile for a single system
or even if it is worthwhile when amortized over multiple sys-
tems. With current tools and methodologies, it is extremely
difficult to measure the required effort in advance. In the
case of the BioSTORM project, however, the benefits of
the PSM-based approach coupled with the extensive use of
ontologies proved advantageous. The PSM-based approach
allowed us to construct and reconfigure alternative surveil-
lance algorithms rapidly. More important, we found no other
tools that would have allowed us to develop sufficiently de-
tailed models to support the description and automated de-
ployment of these algorithms. Thus, it is unclear how we
could have implemented either version of BioSTORM with-
out the architectural clarity that the use of PSMs and explicit
ontologies offer.

The emergence of component-based systems may provide
an impetus for tool development that will assist in the
construction of intelligent systems. In particular, there are
many parallels between the PSM-based approach and the ap-
proach used in developing component-based software, both
of which have similar goals of software reuse. A large number
of component-based environments have been developed,
including CORBA, J2EE, .NET, and Eclipse. The Object
Management Group is also developing domain standards in
various industries such as health care, transportation, and
life sciences research. However, the level of abstraction for
describing components in current systems is usually very
low. Components are primarily characterized at the interface
level, with minimal encoding of higher level information. As
a result, there is little automation in system assembly. Typi-
cally, developers piece together components manually and
write “glue code” to integrate the various components.
Nevertheless, these software platforms provide a strong basis
for deploying PSM-based software. In BioSTORMB, for ex-
ample, JADE’s highly flexible agent deployment platform
dramatically simplified the configuration, deployment, and
run-time monitoring of PSMs. However, we had to develop
tools to support the richer markup required for PSM-based
development because JADE provides only very coarse-
grained agent characterization.

Software-engineering challenges for problem solvers 353

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

The Object Management Group’s model-driven architec-
ture (IBM, 2006) approach is addressing some of these
shortcomings. Instead of manually assembling and integrat-
ing components, programmers use design languages such
as UML (UML, 2009) to specify high-level models of a soft-
ware application, from which tools can generate system con-
figurations automatically. This model allows easier recon-
figuration and reduces the need to write glue code. The
Eclipse EMF, for example, is one of the more commonly
used model-driven approaches (Steinberg et al., 2008). It
has had widespread industry adoption and provides a rich
set of support tools. However, despite significant tool sup-
port, the models developed using this approach typically
describe only structural aspects of the system. There is little
or no semantic markup of component interfaces or of infor-
mation exchanged among components. More important, the
systems do not use composition techniques provided by
PSMs.

The Semantic Web initiative may also drive the develop-
ment of tools for building PSM-based systems (Domingue
& Fensel, 2009, this issue). Most application development
for the Web involves assembling large systems from existing
components, a process that could benefit from reuse and
knowledge-level analysis techniques offered by PSMs. There
has been some work on using PSMs in developing Semantic
Web applications. The IBROW3 project (Benjamins et al.,
1998), for example, spawned the Internet Reasoning Service
(IRS), which aimed to provide a framework for component
discovery and composition on the Web (Crubézy et al.,
2003). The ultimate goal of the IRS project was to make
PSMs available as Web resources. Later, OWL-S (Martin
et al., 2004) also aimed to add semantic descriptions to
Web components, although its goals were not as ambitious
as those of the IRS system. In particular, the semantic markup
possible with OWL-S is at a very high level of abstraction.
The resultant coarse granularity is a common feature of
most current Web-service descriptions: tasks are described
very broadly, often in domain-specific terms, and thus the op-
portunities for reuse are very small. PSMs provide the oppor-
tunity to capture problem solving at a finer level of granularity
than current Web services, and thus offer the possibility of
software reuse on the Web. Support for these knowledge-
level descriptions would also facilitate service discovery
and composition. The use of knowledge-based component
composition techniques on the Semantic Web is currently
in its infancy, however. PSMs offer a mechanism that could
provide building blocks for this approach (Benjamins,
2008). In particular, the task-decomposition approach can
be used to construct knowledge-based Web applications. Be-
cause most Web applications are component-based, there
should be a natural fit. The increased adoption of OWL as
the Semantic Web’s standard ontology language may ease de-
velopment effort and interoperability requirements of PSM-
based tools.

These developments present new opportunities to reduce
the engineering costs of building PSM-based systems. As

we have shown in this paper, the fundamental PSM construc-
tion techniques used when developing new applications are
sufficiently powerful and flexible to build very complex
systems. The problem lies in the practical difficulty of using
these techniques because of poor tool support. We believe
that a renewed effort to construct tools specifically enabling
this process will lower costs and will allow the leveraging
of the considerable power of the PSM-based approach to sup-
port the building of knowledge-based technologies, both on
the Web and in conventional software.

ACKNOWLEDGMENTS

This research was supported by Grant HK000019 from the Centers
for Disease Control and Prevention under the BioSense Initiative to
improve early event detection and by a contract supported by the De-
fense Advanced Research Projects Agency. Additional assistance
was provided by the Protégé Resource supported by the National Li-
brary of Medicine under Grant LM007885. David Buckeridge is
supported by a Canada Research Chair in Public Health Informatics.
The authors gratefully acknowledge the contributions of Zachary
Pincus and other former members of the BioSTORM team. The
paper also benefited from discussions with William Grosso. We thank
Valerie Natale for her valuable editorial advice. We also thank David
C. Brown for organizing the AI EDAM Special Issue on PSMs and
for his considerable patience throughout the review process.

REFERENCES

Bellifemine, F.L., Caire, G., & Greenwood, D. (2007). Developing Multi-
Agent Systems with JADE. Hoboken, NJ: Wiley.

Benjamins, R. (2008). Near term prospects for semantic technologies. IEEE
Intelligent Systems 23(1), 76–88.

Benjamins, R., Decker, S., Fensel, D., Motta, E., Schreiber, G., Studer, R., &
Wielinga, B. (1998). IBROW3—An intelligent brokering service for
knowledge-component reuse on the World Wide Web. Proc. 11th Banff
Knowledge Acquisition for Knowledge-Based Systems Workshop.

Buckeridge, D.L., Okhmatovskaia O., Tu, S.W., O’Connor, M.J., Nyulas, C.I.,
& Musen, M.A. (2008). Understanding detection performance in public
health surveillance: modeling aberrancy-detection algorithms. Journal of
the American Medical Informatics Association 15(6), 760–769.

Buckeridge, D.L., Burkom, H., Moore, A.W., Pavlin, J.A., Cutchis, P.N., &
Hogan, W. (2004). Evaluation of syndromic surveillance systems: devel-
opment of an epidemic simulation model. Syndromic Surveillance: Re-
ports from a National Conference. Morbidity and Mortality Weekly Re-
port 53(Suppl.), 137–143.

Buckeridge, D.L., Graham, J., O’Connor, M.J., Choy, M.K., Tu, S.W., &
Musen, M.A. (2002). Knowledge-based bioterrorism surveillance. AMIA
Annual Symp., pp. 76–80. Bethesda, MD: American Medical Informa-
tics Association.

Buckeridge, D.L., O’Connor, M.J., Xu, H., & Musen, M.A. (2004). A knowl-
edge-based framework for deploying surveillance problem solvers.
Int. Conf. Information and Knowledge Engineering (IKE ’04), Las
Vegas, NV.

Buehler, J.W., Berkelman, R.L., Hartley, D.M., & Peters, C.J. (2003). Syn-
dromic surveillance and bioterrorism-related epidemics. Emerging Infec-
tious Diseases 9(10), 1197–1204.

Carriero, N., & Gelertner, D. (1989). How to write parallel programs: a guide
to the perplexed. ACM Computing Surveys 21(3), 323–357.

Chandrasekaran, B. (1986). Generic tasks in knowledge-based reasoning:
high-level building blocks for expert systems design. IEEE Expert 1(3),
23–30.

Chandrasekaran, B. (2009). Problem solving methods and knowledge sys-
tems: a personal journey to perceptual images as knowledge. Artificial In-
telligence for Engineering Design, Analysis and Manufacturing 23(4),
331–338 [this issue].

M.J. O’Connor et al.354

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

Chandrasekaran, B., Johnson, T., & Smith, J.W. (1992). Task structure analysis
for knowledge modeling. Communications of the ACM 33(9), 124–136.

Clancey, W.J. (1986). From GUIDON to NEOMYCIN to HERACLES in
twenty short lessons. AI Magazine 7(3), 40–60.

Clancey, W.J., Sierhius, M., & Seah, C. (2009). Workflow agents versus ex-
pert systems: problem solving methods in work systems design. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing 23(4),
357–371 [this issue].

Crubézy, M., Motta, E., Lu, W., & Musen, M.A. (2003). Configuring online
problem-solving resources with the internet reasoning service. IEEE In-
telligent Systems 18(2), 34–42.

Crubézy, M., O’Connor, M.J., Buckeridge, D.L., Pincus, Z., & Musen, M.A.
(2005). Ontology-centered syndromic surveillance for bioterrorism.
IEEE Intelligent Systems 20(5), 26–35.

Crubézy, M., & Musen, M.A. (2004). Ontologies in support of problem
solving. In Handbook on Ontologies (Staab, S., & Studer, R., Eds.),
pp. 321–342. Berlin: Springer.

Domingue, J., & Fensel, D. (2009). Problem solving methods in a global net-
worked age. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 23(4), 373–390 [this issue].

Eriksson, H., Puerta, A.R., Gennari, J.H., Rothenfluh, T.E., Tu, S.W., & Mu-
sen, M.A. (1995). Custom-tailored development tools for knowledge-
based systems. Proc. 9th Banff Knowledge Acquisition for Knowledge-
Based Systems Workshop.

Fensel, D., & Groenboom, R. (1997). Specifying knowledge-based systems
with reusable components. Proc. 9th Int. Conf. Software Engineering,
pp. 18–20.

Fensel, D., Motta, E., Benjamins, V.R., Crubézy, M., Decker, S., Gaspari,
M., Groenboom, R., Grosso, W., van Harmelen, F., Musen, M.A., Plaza,
E., Schreiber, G., Studer, R., & Wielinga, B. (2002). The unified prob-
lem-solving method development language UPML. Knowledge and In-
formation Systems 5(1), 83–131.

Gennari, J.H., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriksson, H.,
Noy, N., & Tu, S.W. (2003). The evolution of Protégé: an environment
for knowledge-based system development. International Journal of Hu-
man–Computer Studies 1(58), 89–123.

Gennari, J.H., Tu, S.W., Rothenfluh, T.E., & Musen, M.A. (1994). Mapping
domains to methods in support of reuse. International Journal of Hu-
man–Computer Studies 41, 399–424.

Halter, S. (2002). JavaSpaces Example by Example. New York: Prentice Hall.
IBM. (2006). Model-driven software development. IBM Systems Journal

45(3), 449.
Knublauch, H., Fergerson, R., Noy, N.F., & Musen, M.A. (2004). The Pro-

tégé OWL plugin: an open development environment for Semantic Web
applications. Third Int. Semantic Web Conf., pp. 229–243, Hiroshima.

Lombardo, J., Burkom, H., Elbert, E., Magruder, S., Lewis, S.H., Loschen,
W., Sari, J., Sniegoski, C., Wojcik, R., & Pavlin, J. (2003). A systems
overview of the electronic surveillance system for the early notification
of community-based epidemics (ESSENCE II). Journal of Urban Health
80(2, Suppl. 1), i32–i42.

Marcus, S., Stout J., & McDermott, J. (1988). VT: an expert elevator designer
that uses knowledge-based backtracking. AI Magazine 9(1), 95–111.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith,
S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Sriniva-
san, N., & Sycara, K. (2004). OWL-S: semantic markup for Web ser-
vices. Proc. W3C. Accessed at http://www.w3.org/Submission/2004/
SUBM-OWL-S-20041122/

McDermott, J.P., & Bachant, J. (1984). R1 revisited: four years in the
trenches. AI Magazine 5(3), 21–32.

McDonald, C.J., Huff, S.M., Suico., J.G., Hill, G. Leavelle, D., Aller, R., For-
rey, A., Mercer, K., DeMoor, G., Hook, J., Williams, W., Case, J., & Ma-
loney, P. (2003). LOINC, a universal standard for identifying laboratory
observations: a 5-year update. Clinical Chemistry 49, 624–633.

Musen, M.A., & Schreiber, G. (1995). Architectures for intelligent systems
based on reusable components. Artificial Intelligence in Medicine 7(3),
189–199.

Nyulas, C.I., O’Connor, M.J., Tu, S.W., Okhmatovskaia, A., Buckeridge, D.,
& Musen, M.A. (2008). An ontology-driven framework for deploying
JADE agent systems. IEEE/WIC/ACM International Conf. Intelligent
Agent Technology, pp. 573–577, Sydney, Australia.

OWL. (2004). Accessed at www.w3.org/TR/owl-ref
Pincus, Z., & Musen. M.A. (2003). Contextualizing heterogeneous data for

integration and inference. AMIA Annual Symp., pp. 514–518. Bethesda,
MD: American Medical Informatics Association.

R. (2009). Accessed at http://www.r-project.org in January 2009.
rJava. (2009). Accessed at http://rosuda.org/rJava/ in January 2009.
Rothenfluh, T.E., Gennari, J., Eriksson, H., Puerta, A.R., Tu, S.W., & Musen,

M.A. (1995). Reusable ontologies, knowledge-acquisition tools, and per-
formance systems: PROTEGE-II solutions to Sisyphus-2. International
Journal of Human–Computer Studies 44(3–4), 303–332.

Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N.,
Van de Velde, W., & Wielinga, B. (1999). Knowledge Engineering and
Management: The CommonKADS Methodology. Cambridge, MA: MIT
Press.

Steels, L. (1990). Components of expertise. AI Magazine 11(2), 30–49.
Steinberg, D., Budinsky, F., Paternostro, M., & Merks, E. (2008). EMF:

Eclipse Modeling Framework, 2nd ed. Reading, MA: Addison–Wesley.
Tu, S.W., Eriksson, H., Gennari, J.H. Shahar, Y., & Musen, M.A. (1995).

Ontology-based configuration of problem-solving methods and genera-
tion of knowledge-acquisition tools: application of PROTÉGÉ-II to
protocol-based decision support. Artificial Intelligence in Medicine
7(3), 257–289.

Tsui, F.C., Espino, J.U., Dato, V.M., Gesteland, P.H., Hutman, J., & Wagner,
M.M. (2003). Technical description of RODS: a real-time public health
surveillance system. Journal of the American Medical Informatics Asso-
ciation 10(5), 399–408.

UML. (2009). Accessed at http://www.uml.org/ in January 2009.

Martin O’Connor received his BA and MS degrees in com-
puter science from the University of Dublin, Ireland. Before
joining Stanford Center for Biomedical Informatics Research,
he worked for several years at IBM’s T.J. Watson Research
Center in Yorktown Heights, NY. Since coming to Stanford,
he developed the Chronus II temporal query system, which
is used to perform temporal queries on biomedical data.
His current research centers on the development of technolo-
gies to support querying, data integration, and analytic
method deployment on the Semantic Web.

Csongor Nyulas received a degree in computer science from
the Technical University of Cluj-Napoca, Romania. Before
joining Stanford Center for Biomedical Informatics Research,
he was employed at DaimlerChrysler Research in Berlin for
several years, where he worked on the development of several
ontology-driven tools. Since coming to Stanford, he has im-
plemented the primary components of the BioSTORM sys-
tem using the JADE agent environment.

Samson Tu is a Senior Research Scientist at the Stanford
Center for Biomedical Informatics Research, where he has
worked for almost 20 years on the development of domain
models and reasoning components for general knowledge-
based architectures. He is recognized internationally for his
seminal contributions related to automation of medical ther-
apy planning and to the modeling of protocols and guidelines.
With colleagues from major academic institutions and from
industry, both in the United States and abroad, he has succes-
sively developed a number of guideline models. Mr. Tu has
been elected to the American College of Medical Informatics.

David L. Buckeridge is an Assistant Professor of epidemiol-
ogy and biostatistics at McGill University. He developed a
simulation model for evaluating outbreak detection for his
doctoral dissertation at Stanford before moving to McGill
University, where he holds a Canada Research Chair in

Software-engineering challenges for problem solvers 355

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

Public Health Informatics. Dr. Buckeridge is a Board Mem-
ber of the International Society for Disease Surveillance
and is the editor of a recently published book on the informat-
ics of disease surveillance. He currently has funding from the
CDC, the Canadian Institutes of Health Research, and other
agencies to evaluate automated surveillance systems.

Anna Okhmatovskaia is a Research Associate in the De-
partment of Epidemiology and Biostatistics of McGill Uni-
versity. She received BS and PhD degrees in psychology
from Moscow University and an MS in computer science
from the University of Southern California. She joined the
Health Informatics Research Group at McGill University
after working at the University of Southern California
Institute for Creative Technologies, where she focused on
computational modeling of emotion. Dr. Okhmatovskaia’s

research interests lie in applied artificial intelligence, par-
ticularly knowledge modeling.

Mark A. Musen is a Professor of medicine and computer
science and Head of the Stanford Center for Biomedical In-
formatics Research. He has been investigating issues related
to intelligent systems in biomedicine since the 1980s. His
work was recognized by the American Association for Med-
ical Systems and Informatics, which presented him with its
Young Investigator Award for Research in Medical Knowl-
edge Systems in 1989. He received an NSF Young Investiga-
tor Award in 1992 for his fundamental research in computer
science. Dr. Musen was elected to the American College of
Medical Informatics and to the American Society for Clinical
Investigation. He is Co-Editor-in-Chief of the new journal
Applied Ontology.

M.J. O’Connor et al.356

https://doi.org/10.1017/S0890060409990047 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990047

