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Scale analysis of unstable density-driven miscible convection in porous media is
performed. The main conclusions for instabilities in the developed (long time
scales) regime are that (i) large-scale structures are responsible for the bulk of
the production of concentration variance, (ii) variance dissipation is dominated by
the small (diffusive) scales and that (iii) both the production and dissipation rates
are independent of the Rayleigh number. These findings provide a strong basis for a
new modelling approach, namely, large-mode simulation (LMS), for which closure is
achieved by replacing the actual diffusivity with an effective one. For validation, LMS
results for vertical flow in a homogeneous rectangular domain are compared with
direct numerical simulations (DNS). Some of the analysis is based on the derivation
and closure of the concentration mean and variance equations, whereby averaging
over the ensemble of all possible initial perturbations is considered. While self-similar
solutions are obtained for vertical, statistically one-dimensional fingering, triple
correlation of concentration and scalar dissipation rate (rate at which the concentration
variance decays due to diffusion) have to be modelled in the general case. For this
purpose, an ensemble-averaged Darcy modelling (EADM) approach is proposed.
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1. Introduction
Geologic sequestration of carbon dioxide is one of the most promising technologies

for reducing CO2 emissions. After capturing the CO2 (e.g. from fossil-fuel-based
power plants), it is injected into suitable subsurface formations at depths greater than
approximately 800 m. At such depths, the CO2 is in a supercritical state, which
has a liquid-like density and a gas-like viscosity (see Holloway & Savage 1993;
Yang & Gu 2006). For the geologic storage of carbon dioxide, saline aquifers are
considered because of their high storage capacity. The supercritical CO2 is expected
to be immiscible with, and less dense than, the brine in the aquifer. As a result,
the injected CO2 tends to form a plume that overrides the brine and rises upward
until it reaches the top of the aquifer, which is assumed in the ideal case to have an
impermeable caprock (see Bachu, Gunther & Perkins 1994). However, saline aquifers
may not meet the ideal setting of a perfectly sealing caprock. As a result, in order to
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employ safe CO2 sequestration at a global scale, one has to rely on other mechanisms
that lead to a permanent trapping of the injected CO2.

An important permanent trapping mechanism is based on the dissolution of the
injected CO2 into the brinephase (IPCC 2005, figure 5.9). Here CO2 dissolves readily
in brine with a typical solubility of 5 % by volume (see Ennis-King & Paterson
2005). Since the density of brine increases monotonically with the CO2 concentration
(see Lindeberg & Bergmo 2003), then within the diffusive boundary layer, heavier
CO2-rich brine overlies brine with lower CO2 concentrations. This unstable density
stratification reaches critical conditions eventually, which lead to the onset of an
instability. Thereafter, the unstable modes evolve into large-scale CO2-rich fingers
that transport significant amounts of CO2 deeper into the formation (see Ennis-King
& Paterson 2005; Ennis-King, Preston & Paterson 2005; Riaz et al. 2006; Farajzadeh
et al. 2007; Kneafsey & Pruess 2010). As a result, this transport mechanism, referred
to as gravity fingering, leads to permanent trapping of CO2. Moreover, this convective
transport mechanism enhances the overall dissolution rate, or mass flux, of CO2 across
the CO2-brine interface compared with the stratified diffusion-driven case.

Miscible gravity fingering in porous media has been studied extensively. To
investigate the onset time of convective flow in a diffusive boundary layer and
the corresponding wavelength, linear stability analysis based on decomposition of the
concentration field into a base state and a perturbation has been employed, e.g. by
Ennis-King & Paterson (2005), Ennis-King et al. (2005), Riaz et al. (2006) and Pau
et al. (2010).

However, for practical applications, it is more important to predict the long-term
fate of the injected CO2. For the subsurface formations of interest, predictions
must be made using numerical simulation. Examples of high-resolution nonlinear
simulations of miscible density-driven convection in homogeneous domains include
Lindeberg & Bergmo (2003), Hesse, Tchelepi & Orr (2006), Farajzadeh et al. (2007),
Pau et al. (2010), Ghesmat, Hassanzadeh & Abedi (2011) and Hewitt, Neufeld &
Lister (2013). These studies show that the nonlinear dynamics are quite complex,
and that the numbers and patterns of the fingers are all strong functions of the
Rayleigh number, Ra, which quantifies the ratio of convective to diffusive transport.
Moreover, these investigations, especially those of Hesse et al. (2006) and Pau et al.
(2010), showed that the long-term CO2 mass flux (integrated across the full width
of the formation) is nearly constant and independent of Ra. Even though the Ra
range that can be modelled accurately is limited, the findings from high-resolution
numerical solutions are quite consistent with observations of miscible convection
in laboratory experiments, e.g. of Slim et al. (2013). It is worth noting that some
Ra dependence was postulated by Neufeld et al. (2010). In the experimental study
of Slim et al. (2013), long-term gravity-fingering was studied in a Hele-Shaw cell
with a fixed interface across which molecular diffusion takes place. In Neufeld et al.
(2010), a fluid system with similar properties to the brine/CO2 system was studied
both experimentally and numerically and good agreement was obtained. Unlike in
the set-up studied by Slim et al. (2013), however, no fixed dissolution interface
was enforced. Hidalgo et al. (2012) studied gravity fingering numerically in both
configurations. They analysed integral quantities like the overall dissolved CO2 or
the scalar-dissipation rate integrated over the computational domain. Like Hesse et al.
(2006) and others, but unlike Neufeld et al. (2010), they found that the long-term
CO2 mass flux is independent of Ra.

The accuracy of predictions of gravity fingering depends on the ability to resolve
the relevant length and time scales associated with the nonlinear finger dynamics and
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the size of the domain of interest, which can span extremely wide ranges. These
resolution requirements on the length and time scales pose serious challenges for
modelling the long-term evolution of subsurface CO2 plumes in the planning phase
of CO2 sequestration operations. If the small-scale structures, that drive gravity
fingering, which in turn enhances the CO2 mass flux, are underresolved, the CO2
storage capacity of potential geological sequestration sites may be underestimated;
more importantly, the details of the plume distribution in space and time can be quite
inaccurate. Thus, when simulating CO2 plumes in subsurface formations at high Ra,
we are faced with the challenge of developing coarse-scale approaches that capture
the subscale nonlinear dynamics accurately and efficiently.

Based on the findings that (i) the time for the onset of convection is relatively
short and that (ii) the CO2 flux in the nonlinear convective regime is nearly constant
over time, several investigators have proposed ‘upscaling’ strategies of density-driven
fingering when modelling CO2 migration in large subsurface formations, especially
in the long post-injection period. Pruess & Nordbotten (2011, p. 147) employed
coarse-scale numerical simulations with a subscale model based on the observation
that the long-term convection-enhanced flux is constant and independent of time.
The subscale model removes CO2 artificially at the top of the simulated CO2 plume
with a constant mass flux neglecting onset dynamics. The applied mass flux was
estimated based on a small-scale gravity-fingering simulation, where gravity fingers
were resolved. Gasda, Nordbotten & Celia (2011) developed a vertically integrated
sharp-interface numerical model for CO2 injection and long-term migration, which
accounts for residual and solubility trapping. The enhanced CO2 solubility due to
density-driven miscible convection at scales smaller than the numerical grid size is
captured using a relatively simple mass-transfer model. Their model also relied on
the assumptions that the instability onset time is short compared with the time scale
of interest and that the dissolution rate is constant. MacMinn, Szulczewski & Juanes
(2011, § 3.2) developed semi-analytical solutions of gravity currents, in which the
dissolution mass flux was represented with a simple algebraic expression that was
formulated based on scaling arguments.

In the simulation of CO2 plume migration in subsurface formations, resolving
the wide spectrum of scales associated with the miscible convection problem
is not feasible, and there is a need for reliable models that can capture the
statistical moments of the CO2 concentration without fully resolving the fine details,
i.e. gravity fingering. Here, the evolution dynamics of modes associated with different
wavenumbers are discussed. Theoretical results from our scale analysis and numerical
investigations are presented. These findings provide justification for a large-mode
simulation (LMS) strategy whereby a coarse-scale formulation that accounts for the
high-wavenumber dynamics is constructed without fully resolving the finest scales.
LMS enables accurate quantification of the gravity-fingering-enhanced CO2 mass flux
without the necessity to resolve the smallest fingering structures. For our scale analysis
of density-driven gravity fingering, a two-dimensional homogeneous porous formation
that spans many finger widths in the horizontal direction is considered, and ergodicity
in the horizontal direction is assumed. For this case, self-similar, one-dimensional
profiles of ensemble-averaged quantities (such as the mean concentration and variance)
can be derived.

Next, the ensemble-averaged equations are derived and discussed. In § 3, the
characteristic length scales of our scale analysis and the scalar dissipation rate, which
is an important quantity in the variance equation of the CO2 concentration, are
analysed. The findings lead to strong arguments in favour of our LMS approach. In
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§ 4, numerical investigations are presented, which show comparisons of LMS results
with direct numerical simulations (DNS). The summary and conclusions are given
in § 5.

2. Ensemble-averaged equations
The scale analysis presented here relies in part on the ensemble-averaged equations.

They facilitate discussions not only of average (mean) concentration fields, but also
of the production and dissipation of concentration variance. It will be shown that
the only terms in the normalized equations that depend on the Rayleigh number
are diffusion of the mean and variance of concentration and the dissipation of
concentration variance. It is shown that the concentration variance evolution also
depends on the concentration triple correlation, which may depend on the Rayleigh
number. For very large Rayleigh numbers, the two diffusion terms become quite small
and can be neglected. The Rayleigh number dependence on the triple correlation term
and scalar dissipation rate must be quantified, which is the subject of the next section.

We consider incompressible miscible flow in porous media with density differences
due to concentration variation, i.e.

∂

∂xi

−ui︷ ︸︸ ︷(
k
µφ

(
∂p
∂xi
− ρ(C)g ∂z

∂xi

))
= 0 (2.1)

∂C
∂t
+ ∂uiC

∂xi
= ∂

∂xi

(
D
∂C
∂xi

)
, (2.2)

where p is the fluid pressure, ρ = ρ0 + C1ρ is the fluid density with the difference
1ρ between the heavy and light miscible fluids, µ the constant viscosity, D the
diffusion coefficient, φ the porosity (constant), k the permeability, g the gravitational
acceleration and z the depth. Here, C ∈ [0, 1] is the CO2 concentration or more
precisely the CO2 concentration normalized by the CO2 solubility. In (2.1) and (2.2),
the Boussinesq approximation was adopted.

For convenience, we choose the orientation of the Cartesian coordinate system such
that x= (x1 = x, x2 = y, x3 = z)T, and we apply the transformations

t̃= ū
H

t and x̃i = 1
H

xi, (2.3a,b)

with the reference velocity

ū= k̄g1ρ
µφ

, (2.4)

to obtain the dimensionless equations

∂ ũi

∂ x̃i
= 0 (2.5)

∂C
∂ t̃
+ ∂ ũiC

∂ x̃i
= 1

Ra
∂2C
∂ x̃i∂ x̃i

. (2.6)

The Rayleigh number is defined as

Ra= ūH
D
, (2.7)
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where H is a macroscopic length scale and k̄ is the average permeability. For the
dimensionless velocity, one obtains

ũi =−k̃
(
∂ p̃
∂ x̃i
− (ρ0/1ρ +C)

∂ z̃
∂ x̃i

)
(2.8)

with
p̃= p

Hg1ρ
, k̃= k

k̄
and z̃= z

H
. (2.9a–c)

From now on, we consider homogeneous porous media with gravitationally unstable
flow at large Rayleigh numbers. For such flows, each independent realization with
slightly different initial perturbations leads to a different outcome. Detailed solution
of the problem for a particular realization is not the objective. Instead, we are
interested in the long-term concentration statistics across the ensemble of all possible
realizations subject to different initial (small and random) perturbations. Next, we
derive the ensemble-averaged equations for the expectation and variance of C, i.e. 〈C〉
and 〈C′C′〉, respectively, where C′ = C − 〈C〉 is the perturbation around the mean.
Unlike in the work of Hidalgo et al. (2012), where angular brackets correspond
to volume averaging over the entire computational domain, in this work, angular
brackets refer to averages over an ensemble of realizations with differently perturbed
initial conditions.

We can formally express the expectation of a quantity F as

〈F〉 = lim
n→∞

1
n

n∑
j=1

Fj =
∫ 1

0
Ff (c) dc, (2.10)

where f (c) is the probability density function (PDF) of C, which depends on the
location x and time t. Note that C is the concentration of a realization, and c is the
independent concentration sample space variable. Here, the superscript j ∈ {1, . . . , n}
denotes the jth realization. Thus, we obtain

〈C〉 =
∫ 1

0
cf (c) dc and 〈C′C′〉 =

∫ 1

0
c2f (c) dc− 〈C〉2 (2.11a,b)

and averaging the concentration transport equation leads to

∂〈C〉
∂ t̃
+ ∂〈ũiC〉

∂ x̃i
= 1

Ra
∂2〈C〉
∂ x̃i∂ x̃i

. (2.12)

Note that (2.12) follows from (2.6), relation (2.11) between moments of C and f (c),
and the fact that spatial, as well as temporal, derivatives commute with integration
over the c-space. Multiplication of (2.6) with 2C, and averaging leads to

∂〈C2〉
∂ t̃
+ ∂〈ũiC2〉

∂ x̃i
= 1

Ra
∂2〈C2〉
∂ x̃i∂ x̃i

− 2
Ra

〈
∂C
∂ x̃i

∂C
∂ x̃i

〉
(2.13)

and multiplying (2.12) with 2〈C〉 yields

∂〈C〉2
∂ t̃
+ ∂2〈C〉〈ũiC〉

∂ x̃i
= 1

Ra
∂2〈C〉2
∂ x̃i∂ x̃i

− 2
Ra
∂〈C〉
∂ x̃i

∂〈C〉
∂ x̃i
+ 2〈ũiC〉∂〈C〉

∂ x̃i
. (2.14)
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Subtraction of (2.14) from (2.13) leads to

∂〈C′C′〉
∂ t̃

+ ∂

∂ x̃i

(
〈ũiC′C′〉 − 1

Ra
∂〈C′C′〉
∂ x̃i

)
︸ ︷︷ ︸

F̃cc
i

=−χ̃ + P̃. (2.15)

This is a balance equation for the concentration variance, 〈C′C′〉, in which the variance
flux is F̃cc

i . The scalar variance production, P̃ , and dissipation rate, χ̃ , are defined as

P̃ =−2〈ũ′iC′〉
∂〈C〉
∂ x̃i

and χ̃ = 2
Ra

〈
∂C′

∂ x̃i

∂C′

∂ x̃i

〉
. (2.16a,b)

The corresponding dimensional counterparts for P̃ and χ̃ are

P = ū
H

P̃ and χ = ū
H
χ̃ . (2.17a,b)

Note that in the absence of P and χ , the rate of variance would be balanced by the
divergence of the flux of the concentration variance, F̃cc

i .
Next, we show how transport (i.e. concentration evolution) can be decoupled from

flow (i.e. pressure) based on the established observation that for our setting |∇̃p̃′| �
|∇̃〈p̃〉| (see Lake 1989; Yortsos 1995; Yang & Yortsos 1997). Note that p̃= 〈 p̃〉 + p̃′.
First, we express u based on (2.8) and |∇̃p̃′| � |∇̃〈p̃〉| as

〈ũi〉 =−k̃
(
∂〈p̃〉
∂ x̃i
− (ρ0/1ρ + 〈C〉) ∂ z̃

∂ x̃i

)
. (2.18)

Taking the divergence of this expression and combining it with ∇̃ · 〈ũ〉 = 0, which
results from (2.5), leads to an equation for the mean pressure 〈p̃〉. Therefore, if 〈C〉
is provided, the mean pressure and velocity fields can be calculated. Equation (2.18)
together with (2.8) lead to

ũi = 〈ũi〉 + k̃
∂ z̃
∂ x̃i︸︷︷︸
α̃i

C′. (2.19)

This equation suggests that the velocity fluctuations can be expressed in terms of
concentration fluctuations. Using (2.19), one can reformulate (2.12) and (2.15) to
obtain

∂〈C〉
∂ t̃
+ ∂〈ũi〉〈C〉

∂ x̃i
+ ∂α̃i〈C′C′〉

∂ x̃i
= 1

Ra
∂2〈C〉
∂ x̃i∂ x̃i

and (2.20)

∂〈C′C′〉
∂ t̃

+ ∂〈ũi〉〈C′C′〉
∂ x̃i

+ ∂α̃i〈C′C′C′〉
∂ x̃i

= 1
Ra
∂2〈C′C′〉
∂ x̃i∂ x̃i

− χ̃ + P̃ (2.21)

with the scalar variance production

P̃ =−2α̃i〈C′C′〉∂〈C〉
∂ x̃i

. (2.22)

Note that P̃ is now closed, since (2.22) depends only on the dependent variables 〈C〉
and 〈C′C′〉 and the known vector α̃. The remaining unclosed terms are 〈C′C′C′〉 and
χ̃ in (2.21), which are addressed below.
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3. Length scales and dissipation rate
Here, we investigate the scaling of the dissipation rate, χ̃ , the smallest and largest

length scales, and the spectrum of the concentration variance. Practical consequences
for numerical simulations are then discussed, and the LMS approach is introduced.

3.1. One-dimensional averaged equations
Our scale analysis starts with the ensemble averaged equations. For simplicity, a
two-dimensional domain (x̃–z̃-plane) that is L̃x-periodic in the x̃ direction and extends
to ±∞ in the z̃ direction is considered. For convenience, we take k̃ = 1. At time
t̃ = 0, the concentration C(x̃, z̃, t̃) has a sharp interface at a constant z̃, where it
changes from zero to unity for decreasing z̃. Since our two-dimensional domain is
statistically homogeneous in the horizontal x̃ direction, and if we assume that we
sample a sufficiently large number of fingers in that direction, then we can assume
spatial ergodicity. These assumptions lead to

〈C(z̃, t̃)〉 = lim
L̃x→∞

1
L̃x

∫ L̃x

0
C(x̃, z̃, t̃) dx̃ (3.1)

and 〈ũi(z̃, t̃)〉 = lim
L̃x→∞

1
L̃x

∫ L̃x

0
ũi(x̃, z̃, t̃) dx̃= 0 (3.2)

for all time. The last equality, i.e. 〈ũ〉 = 0, results from ∇̃ · 〈ũ〉 = 0 and 〈ũ〉
being independent of x̃. At later times with high Ra, one obtains the simplified
one-dimensional averaged equations

∂〈C〉
∂ t̃
+ ∂〈C

′C′〉
∂ z̃

= 0 (3.3)

and
∂〈C′C′〉
∂ t̃

+ ∂〈C
′C′C′〉
∂ z̃

= −χ̃ − 2〈C′C′〉∂〈C〉
∂ z̃

. (3.4)

Closure is required for the triple correlation and χ̃ in (3.4). Here, we assume that the
PDF f (c) can be parameterized in terms of 〈C〉 and 〈C′C′〉 independent of Ra. Now,
if one can show that χ̃ is independent of Ra, then the system (3.3)–(3.4) would admit
a self-similar solution.

To see this, we consider 〈C〉 and 〈C′C′〉 at location z and time t. With the reference
length scale H, one obtains the Rayleigh number Ra= ūH/D and the non-dimensional
location z̃ = z/H and time t̃ = tū/H. For another length scale H∗ = βH (with β >
0), one obtains the Rayleigh number Ra∗ = ūH∗/D = βRa. From Rayleigh number
independence (assuming that both Ra and Ra∗ are large), it follows that the same
solution is recovered at z̃= z/H = z∗/H∗ and t̃= tū/H = t∗ū/H∗ with either reference
length scale H or H∗. Therefore, in z–t space, one obtains 〈C〉(z, t)=〈C〉(z∗=βz, t∗=
βt) and 〈C′C′〉(z, t)= 〈C′C′〉(z∗, t∗), which leads to

〈C〉(z̃, t̃) = 〈C〉(β z̃, β t̃) (3.5)
〈C′C′〉(z̃, t̃) = 〈C′C′〉(β z̃, β t̃) (3.6)

in the z̃–t̃ space. For β = t̃−1 and with the similarity variable ξ = z̃/t̃, one obtains the
similarity relation

〈C〉(z̃, t̃) = 〈C〉(ξ , 1)= 〈C〉(ξ), (3.7)
〈C′C′〉(z̃, t̃) = 〈C′C′〉(ξ , 1)= 〈C′C′〉(ξ). (3.8)

Next, we introduce the concept of the variance spectrum. Then, we show that χ̃ is
indeed independent of Ra for high Rayleigh numbers.
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3.2. Variance spectrum
The starting point is a cascade process for the variance density

V3D(κ) with 〈C′C′〉 =
∫
R3

V3D(κ) dκ1 dκ2 dκ3 (3.9)

in wavenumber space. This expression is similar to that proposed by Richardson
(1922) for the spectrum of turbulent energy. Note that κ = (κ1, κ2, κ3)

T is the
three-dimensional wavenumber vector. However, for the following discussion, the
one-dimensional spectrum

V(κ) with 〈C′C′〉 ≈
∫
R

V(κ) dκ, (3.10)

where κ = |κ |, is employed. The scale l = 2π/κ , which has to be understood in a
spectral sense, characterizes variations predominantly in the horizontal direction.

We now assume that scalar variance production occurs mainly at wavenumbers
smaller than κcoarse. This assumption is justified below. With that, the average
rate χc(κ) of nonlinear transfer of V from modes with length scale l = 2π/κ and
characteristic velocity ul to higher wavenumber modes is caused by the convective
term in (2.2). Therefore,

χc(κ)∼ ul

l
. (3.11)

From (2.19), we can see that the fluctuating velocity is proportional to C′; therefore, it
scales with 〈C′C′〉1/2. The characteristic velocity associated with a given wavenumber,
κ , is therefore proportional to the square root of V , and in order to have the correct
dimensions, it must also be proportional to κ1/2. Thus, ul∼ (V(κ)κ)1/2ū. The diffusion
term in (2.2), on the other hand, is responsible for (scalar) variance dissipation, which
can be estimated as

χd(κ)∼ D
l2
. (3.12)

The ratio
χd(κ)

χc(κ)
∼ D

ull
= 1

Ral
, (3.13)

shows that for large Ral, nonlinear convective transfer is dominant compared with
diffusive dissipation. We further assume that production of V is negligible at high
wavenumbers (confirmed later). Now, since χd scales with κ2 (see (3.12)), then if Ra
is large enough, there exists an intermediate wavenumber range, say between κcoarse
and κfine, where both production and dissipation of variance can be neglected. For
this intermediate range, we show later that Ral scales with κ−2, i.e. that χd/χc is
negligible for small wavenumbers. On the other hand, for large wavenumbers (i.e. κ >
κfine), diffusive dissipation is dominant. Based on this conceptual framework and under
the assumption of equilibrium between κcoarse and κfine, χc(κ) must be approximately
constant in the intermediate wavenumber range, which is illustrated in figure 1. So,
we write

χc(κ)≈ χ. (3.14)

In the case of such a separation between variance production and dissipation, and
if one can assume equilibrium for the fine scale dynamics, i.e. for κ > κcoarse, the
variance flux across κcoarse (from left to right in the κ space) must match the flux
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FIGURE 1. Sketch of variance production, dissipation and nonlinear transfer rates as
functions of the wavenumber κ .

across κfine and must be equal to the total dissipation χ = ∫∞
κfine
χd dκ . From this it can

be concluded that χ is determined at κ <κcoarse. The length and velocity scales of the
large modes at κ = κcoarse can be estimated as

lcoarse ∼H and ulcoarse ∼ ū〈C′C′〉1/2, (3.15a,b)

and thus one obtains
χ ∼ 〈C′C′〉1/2 ū

H
. (3.16)

From (2.17), it follows that χ̃ ∼ 〈C′C′〉1/2, and thus independent of Ra in agreement
with Hidalgo et al. (2012).

3.3. Universal spectrum and similarity hypotheses
For modes with wavenumbers between κcoarse and κfine, the length and velocity scales
are

l∼ κ−1 and ul ∼ (V(κ)κ)1/2ū, (3.17a,b)

and from
χ(κ)∼ ul

l
(3.18)

one obtains

V(κ)∼ χ 2ū−2κ−3 ∼ 〈C
′C′〉

H2
κ−3 (3.19)

for the scaling of the variance spectrum. Owing to the κ−3 dependence, most of the
scalar variance is contained in the large-scale modes. Since the variance production,
P̃ , is directly proportional to the variance, one can conclude that V is produced at a
rate proportional to κ−3, which supports the assumption made earlier that the scalar
variance production occurs mainly in the small-wavenumbers part of the spectrum.

Now, based on the above discussion, we postulate the following two hypotheses
similar to those by Kolmogorov (1941) proposed in the context of turbulent flows for
the velocity spectrum (see appendix A).

First similarity hypothesis for miscible gravity fingering. In homogeneous porous
media at sufficiently high Rayleigh numbers Ra, there exists a wavenumber, κcoarse,
beyond which the statistics of the modes depend only on χ and D.
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FIGURE 2. Sketch of validity range for the two similarity hypotheses.

V
ar

ia
nc

e
pr

od
uc

tio
n

V
ar

ia
nc

e
di

ss
ip

at
io

n

V
ar

ia
nc

e
di

ss
ip

at
io

n

Variance transfer

FIGURE 3. Illustration of dependence on D. The dashed lines indicate the shift of diffusive
dissipation towards lower wavenumbers, if D is increased, and that χc in the intermediate
range essentially remains unaffected.

Second similarity hypothesis for miscible gravity fingering. In homogeneous porous
media at sufficiently high Rayleigh numbers Ra, there exists a wavenumber range
between κcoarse and κfine, for which the statistics of the modes depend only on χ .

The applicability range for the two hypotheses is depicted in figure 2. From the
first similarity hypothesis, it follows that lfine is a function of χ and D, and simple
dimensional analysis leads to

lfine ∼
(

D
χ

)1/2

=
(

HD
ū〈C′C′〉1/2

)1/2

. (3.20)

For the ratio of the smallest to the largest length scales, one obtains

lfine

lcoarse
∼
(

ūH
D

)−1/2

〈C′C′〉−1/4 = Ra−1/2〈C′C′〉−1/4. (3.21)

Note that as long as the κfine modes do not interfere with the κcoarse ones, then
changing Ra (e.g. by increasing D) changes the ratio lfine/lcoarse, but it does not affect
the large-scale behaviour. This is illustrated by the sketch in figure 3.

In the following section we provide confirmation for the theoretical scale analysis
regarding the variance spectrum. First, it is shown that for large enough Rayleigh
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numbers, the mean concentration profiles obtained for the set-up introduced in § 3.1
are self-similar. From that one can conclude that χ is independent of Ra, which
confirms that the production and dissipation spectra are separated in wavenumber
space. Note that the latter property was the main assumption in the spectral analysis.
Further, it is shown that the scaling of the finger width is as predicted by the analysis.

More explanations regarding Kolmogorov’s similarity hypotheses for turbulent flows
and the analogy between the spectral analysis presented above and the turbulence
energy spectrum are provided in appendix A.

3.4. Practical consequences for numerical simulation
Our findings have the important consequence that one can consider the same scenario,
but for a lower Ra than the actual one, such that all of the relevant modes can be
resolved adequately on a coarser computational mesh. Therefore, we suggest replacing
(2.1) and (2.2) with

∂

∂xi

−ûi︷ ︸︸ ︷(
k
µφ

(
∂ p̂
∂xi
− ρ(Ĉ)g ∂z

∂xi

))
= 0 (3.22)

∂Ĉ
∂t
+ ∂ ûiĈ

∂xi
= ∂

∂xi

(
DLMS

e
∂Ĉ
∂xi

)
, (3.23)

where Ĉ can be interpreted as the spatially coarsened scalar field considering a
‘resolution’ length-scale ∆, and where DLMS

e is the effective diffusion coefficient. This
approach, which we refer to as LMS, involves performing a numerical simulation
at a different (lower) Rayleigh number, which can be done using coarse grids that
resolve ∆. The modification is similar to the subgrid-scale modelling approach by
Smagorinsky (1963) for large eddy simulation (LES) of turbulent flows. Here, we
suggest modifying Ra by choosing the effective diffusion coefficient as

DLMS
e =max(D, (cLMS∆)2ū|∇Ĉ|), (3.24)

where cLMS is a model constant. Note that (3.24) is a closure model. It is motivated
by a similar model, i.e. (B 1), which is often used in LES (Smagorinsky model)
to capture the effective viscosity (residual plus fluid viscosity). The model constant
cLMS has to be chosen such that DLMS

e = D, where the resolution length scale ∆
(proportional to the grid spacing) is sufficiently small to resolve the diffusive flux. On
the other hand, a properly chosen model constant also ensures that the concentration
gradients remain limited by using DLMS

e = (cLMS∆)2ū|∇Ĉ| > D wherever necessary.
In other words, with an ideal choice of cLMS, as much as possible of the fine-scale
concentration variations are captured by increasing the diffusion coefficient from D
to DLMS

e . The choice of cLMS ensures that the discretization of the diffusive term is
accurate everywhere. Therefore, its optimal value depends on both the scheme and
the grid (stretched, structured, unstructured, etc.). Since the effective local Rayleigh
number scales with 1/DLMS

e and thus is smaller for coarse grids, the required grid
resolution is directly linked to the question of the minimal Rayleigh number beyond
which the coarse-scale dynamics become independent of Ra. This is investigated to
some extent in § 4.1, but more systematic studies are required to quantify the minimal
grid resolution in combination with the proposed model.

The similarity of LMS with LES for turbulent flows is described in appendix B.
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Ra Lx Lz Grid (x× z)

2 000 4H H 1600× 400
5 000 2H H 1600× 800

10 000 H H 1600× 1600
20 000 H H 1600× 1600
40 000 H 2H 1600× 3200
80 000 H H 3200× 3200

TABLE 1. Domain sizes and grid resolutions for different simulations of the case
depicted in figure 4.

4. Numerical investigation
In this section, results that support the scale analysis are provided. It is shown that

(i) χ is independent of Ra, if the Rayleigh number is large enough, (ii) the scaling
of the finger width with Ra and time is consistent with the analysis, (iii) the smallest
length scales grow with Ra−1/2 and (iv) evidence is provided that the coarse-scale
fingering behaviour becomes essentially independent of Ra. Moreover, for the one-
dimensional test case of § 3.1, simple closure of the ensemble averaged equations is
proposed and validated using DNS.

4.1. DNS and LMS
Unlike in § 3.1, where a vertically infinite domain was considered, we employ a finite
domain to enable a computational analysis and verification of the proposed theory.
Equations (2.1) and (2.2) are solved for different Rayleigh numbers on a domain with
extensions Lx and Lz in the x and z directions, respectively, as listed in table 1. At
the top and bottom of the domain, we have no flow. Periodic boundary conditions
are applied on the sides. For the finite-volume computations, Cartesian grids with
resolutions listed in table 1 are employed. A sketch of the test case is shown in
figure 4. For the most challenging case with Ra= 80 000, the selected discretization
parameters lead to a resolution with 11 and 44 grid cells on average per finger at
the beginning (t̃= 0.1) and the end of the simulation (t̃= 1.5), respectively. Moreover,
coarsening the grid resolution by half, i.e. 1600 × 1600 cells for Ra = 80 000, does
not change the reported statistical quantities significantly.

Note that these studies focus on the long-term fingering behaviour and not on
the onset period. Therefore, the details of the initial perturbations are of little
importance; here random concentration values (between zero and one) are assigned
in a thin band around the initial discontinuity. Figure 5 shows simulation results at
t̃ ∈ {0.25, 0.5, 0.75, 1.25} for Ra= 80 000 (a) and Ra= 20 000 (b). One can observe
that the long-term nonlinear behaviours are quite similar between the two simulations.
This is consistent with observations by previous investigators that the nonlinear flux
becomes constant with time and independent of Ra (see Hesse et al. 2006; Pau et al.
2010). For example, the results in figure 5 demonstrate that the mean behaviour
does not change, if Ra is reduced in an LMS from 80 000 to 20 000. This enables
a reduction of the computational burden, since a coarser grid can be used. Here, in
figure 6, we provide more quantitative evidence for the flux at three different times
t̃ ∈ {0.25, 0.75, 1.25}. Figure 6(a) shows 〈C〉 and figure 6(b) shows 〈C′C′〉, both as
functions of z̃ and t̃ for Ra= 20 000, 30 000 and 80 000. Note that 〈C′C′〉 is in fact
the ‘flux’ in the mean concentration transport equation (3.3).
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FIGURE 4. Sketch of the statistically one-dimensional test case with initial conditions.
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FIGURE 5. Time evolution of gravity fingers for two different Rayleigh numbers.

For the scale analysis, we made the assumption that the dissipative and variance
containing subranges are separated, but the analysis does not provide an indication
of the Ra threshold beyond which this is indeed the case. However, the analysis
predicts that the separation becomes more distinct as Ra increases. To demonstrate
the limit, i.e. to get an idea beyond which Ra value the similarity (conclusion from
the analysis) holds, results for Ra= 2000, 5000, 10 000, 20 000 and 80 000 are shown
in figure 7. For Rayleigh numbers up to 10 000, both the mean and variance show
considerable differences. However, above Ra = 20 000 and after the initial onset
period, the differences become small as shown in figure 6.

These observations also confirm the conclusions drawn in § 3. For example, if
the Rayleigh number of the target problem is 80 000, then it is justified to compute
the long-term coarse-scale behaviour with an ‘artificially’ reduced Rayleigh number
(e.g. with Ra = 20 000). Thus, coarse grids can be used, which is very promising
for field-scale studies where it is not feasible to honour the true (extremely large)
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FIGURE 6. One-dimensional averages of DNS results with different Ra: time evolution of
the two first moments extracted from DNS data at t̃ ∈ {0.25, 0.75, 1.25}.
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FIGURE 7. One-dimensional averages of DNS results with different Ra: time evolution of
the two first moments extracted from DNS data at t̃ ∈ {0.25, 1.25}.

Rayleigh number. Note, however, that differences occur during the onset period
and that the Ra = 20 000 results are more coarse-grained than those obtained with
Ra = 80 000. The symbols in figure 8 show the evolution of the fine-scale finger
width at z̃= 0.5 for Ra= 20 000 and Ra= 80 000 extracted from DNS data (estimated
as Lx/nC0.5, where nC0.5 is the number of intersections of C(x, z = Lz/2) with the
concentration level 0.5). From (3.21) it follows that l̃fine(z̃ = 0.5) ∼ Ra−1/2. Owing
to self-similarity l̃fine(z̃ = 0.5) ∼ t̃1/2, which is confirmed by the lines in figure 8
representing

l̃fine(z̃= 0.5)= lfine(z̃= 0.5)
H

=KRa−1/2 t̃1/2 (4.1)

with a constant K. Note that (4.1), which is confirmed by empirical data, reflects that
the fingers coarsen by diffusion. Thus, it is not surprising that lfine scales with the
square roots of both D and t.

4.2. Closure of one-dimensional ensemble-averaged equations and verification
Next, closure for the statistically one-dimensional case of (3.3) and (3.4) is proposed
and verified using DNS. As shown in § 3.2, χ̃ is independent of Ra for large Rayleigh
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FIGURE 8. Temporal evolution of the fine-scale finger width extracted from DNS data
(thick lines) at z̃= 0.5 for different Rayleigh numbers. Also shown are the lines l̃fine(z̃=
0.5)=KRa−1/2 t̃1/2 with K = 2.84.

numbers. So, if we assume that the PDF, f (c), is determined by 〈C〉 and 〈C′C′〉,
equations (3.3) and (3.4) admit a self-similar solution, i.e. that 〈C〉 and 〈C′C′〉 are
functions of ξ = z̃/t̃ only. Further, since 〈C〉(ξ) is monotone (see figure 6), the variance
becomes a function of the mean. Note that with χ̃ = 0, one would obtain the relation
〈C′C′〉 = 〈C〉(1− 〈C〉). Therefore, we now make the ansatz

〈C′C′〉 = a〈C〉(1− 〈C〉) (4.2)

with 0< a< 1. After substitution into (3.3), one obtains the hyperbolic equation

∂〈C〉
∂ t̃
+ a

∂(〈C〉 − 〈C〉2)
∂ z̃

= 0 (4.3)

for 〈C〉. The wave speed is

λ= a
d(〈C〉 − 〈C〉2)

d〈C〉 = a(1− 2〈C〉). (4.4)

Comparing the minimal and maximal values λmin =−a and λmax = a for 〈C〉 = 1 and
〈C〉 = 0, respectively, with the DNS results for the case with Ra= 80 000 (figure 6),
one obtains a ≈ 0.32. Figure 9(a) shows 〈C′C′〉(〈C〉) at t̃ = 0.1, 1 and 3.5, which
indicates that after some time, a reaches its terminal value. This can be observed more
clearly in figure 9(b). Finally, figure 10 shows 〈C〉(z̃, t̃) from DNS with Ra= 80 000
and (4.3), and the agreement is quite good.

Note that the employed closure of the ensemble-averaged equations is not
necessarily valid for the general case. A discussion of less case-specific closures
is presented in appendix C, where the ensemble-averaged Darcy modelling (EADM)
approach is introduced.
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FIGURE 9. In (a), 〈C′C′〉(〈C〉) at times t̃ = 0.1, 1 and 3.5 resulting from the DNS
with Ra = 40 000 (thin lines) are compared with closure (4.2) with given values of a
(thick lines). In (b), a(t̃) resulting from a least-squares fit of closure (4.2) to the DNS
is provided.
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FIGURE 10. Comparison of 〈C〉(z̃, t̃) at times t̃= 0.25, 0.75 and 1.25 resulting from the
DNS Ra= 80 000 (thin lines) and analytically based on (4.3) with a= 0.32 (thick lines).

4.3. CO2 sequestration
Note that the test case discussed above is only partly representative for CO2
sequestration scenarios. There it is typical to find the lighter CO2 phase on top
of the immiscible brine. As CO2 dissolves into the underlying brine, a thin boundary
layer forms at the interface, which eventually becomes unstable since the brine
density increases with CO2 concentration. To investigate the dynamics of the resulting
miscible gravity fingers (Hewitt et al. 2013; Slim et al. 2013), an additional test case
is analysed here.

The same domain as before is employed with no-flow conditions at the top and
bottom and periodic boundary conditions on the sides. This time, however, the initial
interface is located at the top, i.e. at z=Lz (see figure 4), with the concentration at the
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FIGURE 11. Time evolution of gravity fingers for two different Rayleigh numbers.

top boundary equal to one. For the simulations, computational domains of size Lx =
Lz = H with resolutions 1600 × 1600 were applied for all Rayleigh numbers except
for Ra= 80 000, where 3200× 3200 grid cells were used.

The results with Rayleigh numbers 20 000 and 80 000 are shown in figure 11. In
comparison with the case depicted in figure 4, the fingers propagate more slowly,
which is caused by the no-flow boundary condition at the top of the domain. For
the Rayleigh numbers in figure 11, the finger propagation depth appears to be
independent of Ra, which is similar to the previous case. This is further confirmed
by the concentration means and variances depicted in figure 12. As in figure 6, there
is good agreement between the one-dimensional averages for Ra= 20 000, 40 000 and
80 000. By plotting 〈C′C′〉 as a function of 〈C〉 (figure 13), it can be shown that the
closure model (4.2) works reasonably well for the present case, but with an adjusted
coefficient a.

5. Summary and conclusions
We have developed a conceptual and mathematical framework for scale analysis

of unstable miscible convection in porous media, which is important for subsurface
CO2 sequestration in deep saline aquifers. It is widely recognized that the evolution
dynamics of density-driven convection in natural porous media are highly nonlinear,
and that the physical interactions involve wide ranges of length and time scales. For
simple settings (e.g. two-dimensional, homogeneous domains), one can calculate the
long-term behaviours of the unstable CO2-saturated brine plumes using DNS, which
resolve the full range of scales. In practice, however, the target subsurface geological
formation is usually heterogeneous with complex structural geometry and boundary
conditions. Moreover, miscible convection may be just one of many transport
mechanisms that govern the distribution of fluids in the large-scale subsurface
sequestration formation of interest. Thus, it is not feasible to employ DNS to make
long-term predictions of unstable flows in practical settings, and there is a need to
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FIGURE 12. One-dimensional averages of DNS results with different Ra and concentration
interface at the top of the domain: time evolution of the two first moments extracted from
DNS data at t̃ ∈ {2, 6}.
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FIGURE 13. Plot of 〈C′C′〉(〈C〉) at time t̃= 6 resulting from DNS with different Ra
(thin lines) are compared with closure (4.2) with a= 0.1 (thick line).

develop accurate solution methods that are based on coarse-scale descriptions of the
flow physics.

The key component of our scale analysis relates to the conservation equation of
the concentration variance. The so-called transverse flow equilibrium assumption
(see Yortsos 1995) is employed to relate velocity and concentration deviations. This
simplifies the problem by decoupling the flow (pressure and velocity) from the
transport (concentration). While the variance production term is closed, the variance
balance equation has two unclosed terms that require modelling. The first term
contains the third concentration moment, which contributes to the nonlinear flux
(transport). The second is a source term that represents the variance dissipation
rate. To deal with the triple correlation term, we assume for vertical, statistically
one-dimensional gravity fingering that the concentration PDF can be parameterized in
terms of the concentration mean and variance. The dissipation rate is then estimated
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based on our scale analysis. The conceptual framework, which is supported by
analysis and DNS results, is based on the idea that the contribution of small-scale
structures (fingers) to the total production of the concentration variance is quite small,
and that the large-scale features are responsible for the bulk of the concentration
variance production. Even though the dynamics are quite complex, the nonlinear
evolution regime (where linear stability analysis is not valid) gets established after
a relatively short onset period. As a result, the long-term evolution of the unstable
plumes is amenable to representations using length (and time) scales that are much
larger than the small diffusive scales associated with the early onset period. This
does not mean that the small-scale dynamics are not important; instead, the idea is to
account for the impact of nonuniform flow at small scales on the long-term dynamics
using simple, yet accurate, subscale models.

An important conclusion of the scale analysis is that the governing equations can
be solved using length and time scales that are coarse compared with the scales
dictating the instability behaviours during the relatively short onset period. In fact,
for sufficiently high Rayleigh numbers, the statistical behaviours can be described
accurately, if Ra is reduced to a level that allows for simulation on a grid, which
would be too coarse for the actual Rayleigh number. This is the main justification
for the LMS approach introduced in this paper. LMS is based on resolving the
low-wavenumber dynamics only, whereas the effect of the unresolved scales on the
large ones is captured by a modified effective Rayleigh number. Further justification
for LMS is provided by DNS computations, which were used to analyse the rates of
production and dissipation of the ensemble concentration variance. Overall, we find
that the nonlinear CO2 flux is nearly constant with time and is also independent of
Ra. These findings are consistent with previous investigations. The DNS data clearly
indicate that the dissipation rate is dominated by the low-wavenumber modes and
does not vary with Ra (beyond a certain lower value). Scale analysis shows that the
variance production associated with the unstable modes is proportional to κ−3, so
that the relative contribution to the concentration variance from the large-wavenumber
end of the spectrum is small; this analysis is supported by the DNS results. While a
simple setting is used to demonstrate the methodology, we believe that the concepts
presented here are applicable to the wider class of unstable flows in natural porous
media.

We plan to investigate the applicability of LMS to miscible convection in large-scale
heterogeneous formations. Other areas where LMS may be useful include modelling
unstable miscible flow with reactions. Extending LMS to immiscible flows in the
presence of strong capillarity and buoyancy effects, which are quite relevant to the
(up-dip) migration of subsurface CO2 plumes, is a longer-term target. Further, the
proposed closures for EADM (see appendix C) will be investigated.
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Appendix A
The first and second similarity hypotheses for miscible gravity fingering presented

in § 3.3 are inspired by the first and second similarity hypotheses for turbulent flows
by Kolmogorov (1941, 1962).
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Kolmogorov’s first similarity hypothesis. In turbulent flows at sufficiently high
Reynolds number, there exists a wavenumber κcoarse, beyond which the statistics of
the velocity modes depend only on the turbulence dissipation rate and the kinematic
velocity.

Kolmogorov’s second similarity hypothesis. In turbulent flows at sufficiently high
Reynolds number, there exists a wavenumber range between κcoarse and κfine, for which
the statistics of the velocity modes depend only on the turbulence dissipation rate.

From these hypotheses, one can conclude that:

(i) most of the turbulent kinetic energy is stored in the low-wavenumber modes;
(ii) turbulent kinetic energy production occurs at low wavenumbers;

(iii) most of the energy dissipation takes place at the largest wavenumbers;
(iv) the turbulent kinetic energy is transferred from lower to larger wavenumber

modes until the largest wavenumbers are reached; and
(v) that the mean flow and the statistics of the low-wavenumber modes are essentially

independent of the Reynolds number.

Note that similar conclusions were reached here for unstable gravity fingering
in miscible porous media flow if one replaces ‘turbulent kinetic energy’ with
‘scalar variance’, ‘energy dissipation’ with ‘scalar variance dissipation’ and ‘Reynolds
number’ with ‘Rayleigh number’.

Appendix B

The LMS approach discussed in § 4.1 is quite similar to LES for turbulent flows
(Pope 2000, chapter 13), where only the large energy-containing eddies (note that
here energy refers to turbulent kinetic energy, which is proportional to the velocity
variance) are resolved (represented by the spatially filtered velocity field). The effect
of the small unresolved eddies on the larger ones is accounted for by a residual scale
model, many of which are based on a simple eddy viscosity ansatz. The widely used
Smagorinsky model (see Smagorinsky 1963), for example, treats the collective effects
of the unresolved residual scales on the resolved ones by replacing the kinematic
viscosity ν with

νe = ν + (cs∆)
2|Ŝ|, (B 1)

where cs is the Smagorinsky constant, ∆ the filter width, and |Ŝ| the magnitude of
the filtered rate-of-strain tensor

Ŝij = 1
2

(
∂Ûj

∂xi
+ ∂Ûi

∂xj

)
. (B 2)

Note that the latter is proportional to gradients of the filtered velocity Û, and
that (B 1) is similar to closure (3.24). With (B 1), the modelled filtered momentum
equation attains the same form as the unfiltered Navier–Stokes equation, except
that the viscosity is replaced by νe, i.e. the effective viscosity is ‘adequately’
increased compared with ν in order to account for residual scale effects. At least for
high-Reynolds-number free-shear flows, all of this is well motivated by Kolmogov’s
two similarity hypotheses (see Kolmogorov 1941, 1962) and by the turbulent kinetic
energy spectrum.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

22
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.229


Scale analysis of miscible density-driven convection in porous media 539

Appendix C
Here, closures of the ensemble-averaged equations

∂

∂xi

−〈ui〉︷ ︸︸ ︷(
k
µφ

(
∂〈p〉
∂xi
− ρ(〈C〉)g ∂z

∂xi

))
= 0 (C 1)

∂〈C〉
∂t
+ ∂〈ui〉〈C〉

∂xi
+ ∂

∂xi

(
kg1ρ
µφ

∂z
∂xi
〈C′C′〉

)
= ∂

∂xi

(
D
∂〈C〉
∂xi

)
(C 2)

are considered, together with the variance equation

∂〈C′C′〉
∂t

+ ∂〈ui〉〈C′C′〉
∂xi

+ ∂αi〈C′C′C′〉
∂xi

=D
∂2〈C′C′〉
∂xi∂xi

− χ +P (C 3)

and αi=µ−1φ−1kg1ρ(∂z/∂xi). Hereafter, we refer to this approach as EADM. While
P appears in closed form, modelling is required for χ and the third concentration
moment. One possibility to model the triple correlation is to employ a gradient
diffusion assumption, i.e.

−αi〈C′C′C′〉 ≈
(

cEAD ∂z
∂xi

α2
j

χ

)
︸ ︷︷ ︸

DEAD
ij

∂〈C′C′〉
∂xj

, (C 4)

where cEAD is a model constant. For χ , on the other hand, a general closure approach
is more difficult to obtain. One possibility is to solve an extra transport equation for
χ , e.g. of the form

∂χ

∂t
+ ∂〈ui〉χ

∂xi
= ∂

∂xi

(
DEAD

ij

σ EAD

∂χ

∂xj

)
+ cEAD

χ1

Pχ

〈C′C′〉 − cEAD
χ2

χ 2

〈C′C′〉 , (C 5)

where σ EAD, cEAD
χ1

and cEAD
χ2

are further model constants; but this approach has not
been investigated so far and is not pursued further in this paper. Instead, in § 4.2
an algebraic closure for the concentration variance is proposed for the special case
described in § 3.1. Note, however, that (C 5) resembles the modelled turbulence
dissipation rate transport equation often used for Reynolds-averaged Navier–Stokes
(RANS) modelling of turbulent flows (Pope 2000, equation (10.53)), and that the
gradient diffusion ansatz (C 4) is motivated by equation (11.147) in Pope (2000).
The similarity between EADM and RANS modelling is discussed in the following
paragraph.

In RANS modelling of turbulent flows, the velocity covariance tensor (Reynolds
stress tensor) has to be modelled, like the scalar variance for EADM. Different
closure strategies have been proposed; here only one is mentioned, i.e. the Reynolds
stress modelling approach, which is based on solving six additional equations for
each Reynolds stress. To achieve closure, a turbulent transport term (involving
velocity triple correlations and covariance of pressure and velocity) and the turbulence
dissipation rate have to be modelled. The former is typically described by a gradient
diffusion ansatz, i.e. it is set proportional to the Reynolds stress gradients. The
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corresponding tensorial diffusion coefficient, according to dimensional and scale
analysis, is a function of the Reynolds stress tensor and the turbulence dissipation
rate, for which another modelled transport equation is solved. Note the similarity
between such RANS models for turbulent flows and the proposed EADM approach
for miscible gravity fingering. Like the Reynolds stresses in the Reynolds stress
closure described above, the scalar flux in (C 2) can be closed by solving the scalar
variance equation (C 3). Further, in a manner similar to the turbulent transport term
in the Reynolds stress transport equations, the gradient diffusion ansatz (C 4) may be
adapted to close the triple correlation term in EADM. Then, one can obtain χ by
solving the scalar dissipation rate transport equation (C 5).
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