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Abstract
Because of the huge volume and inflated membrane structure of stratosphere airship, the defor-
mation of stratosphere airship is very sensitive to the change of environment conditions such 
as wind, temperature and so on. The influence of deformation on manipulation and control 
is very remarkable. So, during the course of building flight dynamic model of the flexible 
airship, the added-mass matrix of deformation is very important part in the state equations of 
dynamic models. For obtaining the accurate added-mass matrix of different flexible airship, 
we proposed an approach that can calculate the added-mass matrix of a flexible airship with 
arbitrary geometry shape by the panel method. Through the comparison of results of compu-
tation and theory for ellipsoid of revolution and the flexible Skyship-500 airship, the proposed 
method can calculate the added-mass matrix for arbitrary geometric shape very accurately.

1.0	 Introduction
With the development of correlative technology, there are some interests in an airship. Particularly, 
stratosphere airships can be used in some fields and were studied in the world nowadays. These 
class vehicles use the buoyancy as the lift, so they can flight with very slow velocity and keep 
station in the sky. 

Because of the very small density of air in the stratosphere (0·0889 kg/m3 at 20km), the volume 
of stratosphere airships is very huge. The main structure is inflated membrane and relatively small 
pressure difference is used thinking of the material characteristics and helium leakage. So, the 
deformation of stratosphere airship is very sensitive to the change of environment conditions such 
as wind, temperature and so on.
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The deformation of stratosphere airship has influence on the structural stability and load distri-
bution. Moreover, the deformation will change the capability of manipulation and control. The 
airship can not be controlled under the conditions of disabled rudder or elevator because of the 
large deformation of the airship. For the purpose of obtaining precision control, the building of a 
flight dynamic model of flexible stratosphere airship is very important. The deformation factor of 
this class of vehicle should be thought during the course of building the dynamic model.

Many researchers(1-7) built the dynamic model of airship under the hypothesis of rigid body 
condition. Yuwen Li(8) built the dynamic model of flexible airship, the structural deformations are 
calculated through the mode superposition method.

Building dynamic model of the flexible airship, the added-mass matrix of deformations is a very 
important part in the state equations. Yuwen Li(9) obtained the equations of element of added-mass 
matrix through the derivation and the analytical solution of an ellipsoid of revolution is applied 
to obtain the approximate results of a flexible airship with same fineness.

For obtaining the accurate added-mass matrix of different airship shape, we proposed an 
approach that can calculate the added-mass matrix of a flexible airship with arbitrary geometry 
shape through the panel method. This method can be used to solve the Laplace equation with 
different boundary conditions. Through the comparison of results of computation and theory for 
ellipsoid of revolution and the flexible Skyship-500 airship, the proposed method was verified. 
This method can calculate the added-mass matrix accurately for arbitrary geometric shape.

This paper is organized as follows: The equations and the calculate method of elements of an 
added mass matrix of flexible body was described in Section 2. The capability of the proposed 
method to calculate the added masses was validated in Section 3. The added-mass matrixes of 
airships with different geometric shapes were analysed in Section 4. In the final section, we draw 
some conclusions about computational method and added mass characteristics of flexible airships.

2.0	�T he Equations and calculation method of 
Added Mass of Flexible Body

2.1	T he added-mass matrix of the flexible body(9)

For obtaining the added-mass matrix of the flexible body, we can derive from the kinetic energy 
of the fluid Tf. The kinetic energy of the fluid is written as

									         . . . (1)

Where, rf is the density of fluid, vf = [uf, vf, wf]
T is the velocity vector of fluid, Volf  is the volume 

of fluid.
For a potential fluid, the velocity vector of the fluid vf can be represented by the gradient of a scalar 

potential function Y, Using Green’s theorem, the kinetic energy of the fluid can be expressed as,

									         . . . (2)

Where, SB is the surface of the flexible body.
Based on the continuity equation for the fluid, the potential function can be written as the 

Laplace Equation (10).
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									         . . . (3)

The boundary condition of Equation (4) is the normal component of the fluid velocity must be 
equal to the normal velocity of the body on every location of the body surface.

									         . . . (4)

Where, vd is the surface velocity of the flexible body. n = [n1, n2, n1]
T is the unit normal vector 

of the boundary surface, with its positive direction defined outside the body .
The velocity distribution along the flexible body(9) is,

							       . . . (5)

Where, v0 = [u0, v0, w0]
T is the linear velocity vector, ω = [p, q, r]T is the angular velocity vector, 

ωx is the antisymmetric cross-product matrix
 

  ,

r = [x, y, z]T is position vector of a body surface point from the body-frame origin on the 
undeformed body, qi is the generalised co-ordinate, Fi is the ith mode shape function, F′i = 
dF/dx,N, is the number of mode shape functions describing the deformation.

Substituting vd from Equation (5) into Equation (4), we have

							       . . . (6)

Equation (6) represents the boundary conditions of the Laplace equation for a flexible body moving 
through an unbounded potential fluid.

Based on the superposition theory and the boundary condition Equation (6), the total velocity 
potential Y can be written as,

							       . . . (7)

Where, ψr = [yr1, yr2, ... , yr6]
T  is the velocity potentials associated with the rigid-body motion,  

ψq = [yq1, yq2, ... , yq6]
T  is the potential components related to the mode shapes. ψs = [ys1, ys2, 

... , ys6]
T is the potential components associated with the slopes of the mode shape functions.

With the velocity potential in Equation (7), the kinetic energy of the fluid is
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. . . (8)

Where, Mqr = Mrq
T, Msr = Mrs

T, Mrr, Mrq, Mrs, Mqr, Mqq, Mqs, Msr, Msq, Mss are the added-mass 
matrixes of the flexible body. The detail expression equations of these elements of added-mass 
matrixes are,

									         . . . (9)
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The total added-mass matrix MAT can be divided into four parts,

. . . (18)

Where,

T
n
S

u
u

f
S

T
r

T
q

T
s

T
r

T
q

B

  


   
  


1
2

1
2 0

0

  

   
 

d

( )
(

v q q
v q q


 TT

s

S

T
rr

T
rq

T
rs

T
qr

n
S

M M M u

M

B

 )

( )



  

 

 d

1
2

1
2

1
2

1
2

1
2

0v v v q v q

q v



   



q q q q

q v q q q

T
qq

T
qs

T
sr

T
sq

T
ss

M M u

u M u M u M u



  

1
2

1
2

1
2

1
2

0

0 0 0

( )

( 00

1
2

q

v q v q

)

, ,    
T T

AT
T T T

M 

M
n

Srr ij ri
rj

SB

,  

 


d

M
n

Srq ij ri
qj

SB

,  

 


d

M
n

Sqr ij qi
rj

SB

,  

 


d

M
n

Sqq ij qi
qj

SB

,  

 


d

M
n

Srs ij ri
sj

SB

,  

 


d

M
n

Ssr ij si
rj

SB

,  

 


d

M
n

Sqs ij qi
sj

SB

,  

 


d

M
n

Ssq ij si
qj

SB

,  

 


d

M
n

Sss ij si
sj

SB

,  

 


d

M M M M MAT A A A A   1 2 3 4

M
M M
M MA

rr rq N

qr N qq N N N N
1

6 6 6

6 6 6












 

    

( ) ( )

( ) ( ) ( ) ( )

M
M
MA

rs N

qs N N N N
2

6 1 6 1

1 1 6

0
0












  

    

( )
( )

( ) ( ( ))

( ) ( ( )) ( )

q
q

(( )6N

M
M M

A

T
sr

T
sq N

N N N
3

1 6 1

5 6 5 6
0 0














 

   

( ) ( )( ) ( )

(( ) ) (( ) ) (

q q

  N N) ( )6

M
M

A

T
ss N

N N N
3

1 1 1 5

5 1 5 5

0
0 0













  

    

( )( ) ( ( ))

(( ) ) (( ) ( ))

q q

   ( ) ( )6 6N N

3833.indd   522 03/05/2013   11:42:47

https://doi.org/10.1017/S0001924000008162 Published online by Cambridge University Press

https://doi.org/10.1017/S0001924000008162


Zhang et al	 Panel method predictions of added mass for flexible airship	 523  

The potential-flow aerodynamic forces and moments of flexible body can be derived from the 
Lagrange’s equation, 

. . . (19)

. . . (20)

. . . (21)

Where, FA, MA and QA are the aerodynamic force, aerodynamic moments and generalised 
forces on the body from the potential fluid respectively. Through the derivation (9), the 
expression of FA, MA and QA are

. . . (22)

Where, the first term is the linear part related to the linear acceleration, angular acceleration 
and the elastic generalised co-ordinate acceleration. While the second term is the nonlinear part 
related to the state variables and generalised co-ordinates. The detail expression equation of 
nonlinear part can be found in Ref. 9.

For a rigid-body completely submerged in an unbounded potential fluid, the added-masses MAT 
can be reduced to a 6×6 matrix Mrr. The  element of 6×6 added-mass matrix of rigid-body can 
be obtained through solving the Laplace equation  using the panel method. For a flexible-body 
with its deformation described by the superposition of  N mode shape functions, the added-mass 
matrixes representing the fluid kinetic energy should be a (6+N)×(6+N) matrix. For the flexible-
body, the element of added-mass matrix can be obtained using the same approach, but the boundary 
conditions of Laplace equation are different.

For obtaining the elements of added-mass matrixes Mrr = Mrq, Mrs, Mqr, Mqq, Mqs, Msr, Msq, 
Mss, we need to obtain the velocity potentials ψr, ψq and ψs firstly.

The velocity potentials associated with the rigid-body motion ψr are functions of position only 
and satisfy the Laplace equation

. . . (23)

The components related to translation and rotation satisfy the boundary conditions respectively,
 

;                                      ;                                         . . . (24)

;                           ;                              ;                         . . . (25)
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. . . (26)

. . . (27)

ψs represents the potential components associated with the slopes of the shape functions. ψsi  is 
also independent of time and satisfies the Laplace equation with the corresponding boundary 
condition as,

. . . (28)

. . . (29)

When the velocity potentials ψr , ψq and ψs were obtained, we can use the Equations (8-17) to 
get the added-mass matrixes Mrr, Mrq, Mrs, Mqr, Mqq, Mqs, Msr, Msq, Mss and the total added-
mass matrix MAT.

2.2	T he calculation method of elements of added-mass matrix

The elements of added mass matrixes satisfy the Laplace equation and corresponding boundary 
condition. The Laplace equation can be solved using the analytical method for the simple 
geometric shape like an ellipsoid of revolution. While the geometric shape is arbitrary, the 
Laplace equation must be solved with numerical method. 

In this paper, we use the panel method(11) (Fig. 1) to obtain the results of Laplace equation under 
the conditions of different boundary conditions. The panel method can quickly get the velocity 
potential distribution on the surface of the body through dividing the surface into some small 
panel meshes and distributing the singularity on every panel element. Through this approach, the 
Laplace equation can be change into the linear equations, the singularity strength and the velocity 
potential can be gotten through the velocity boundary condition on the surface of the body. 

During the course of calculating the added-mass matrix, the Mri,r, Mri,q and Mri,s can be obtained 
together, because they need the same velocity potential yri. Mqs and Mqq can be obtained together, 
because the same yqi is needed. Mss can be got through the calculation of ysi and          .

3.0	T he Validation of the Calculation method

3.1	T he added mass of an ellipsoid of revolution

For verifying the capability of the calculation method, we calculated the added masses of an ellipsoid 
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Skyship-500 flexible airship. Through the comparison of calculated and theory results (Table 1), 
the calculation method can obtain the added mass very accurately.

The calculated conditions for ellipsoid of revolution:

l Model length: 2 metre; Density of air: 1·225kg/m3;
l The airship surface along the x direction is divided into N1 = 50 parts. 
l The circumference is divided into M1 = 40 parts.

3.2	T he added mass of an approximate ellipsoid of Skyship-500

In Ref. 9, Yuwen Li has obtained the added mass matrix of Skyship-500 flexible airship using 
the ellipsoid analysis method. For verifying the capability of the proposed method in solving the 
added masses of the flexible body, we calculated the added masses of an approximate ellipsoid 
of Skyship-500 and compared with the analysis results (Fig. 2).

The calculation conditions: Model length: 50·0 m; Density of air: 1·158kg/m3. The two normal 
mode shapes of the Skyship-500 airship were shown in Fig. 3.

The results of added mass matrix of the approximate ellipsoid of revolution of Skyship-500 
airship using the analytical method in Ref. 9 are,

 					     ; 
 

The results of added mass matrix of the approximate ellipsoid of revolution Skyship-500 by the 
calculated method in this paper are,

Figure. 1 The panel meshes. Figure 2. The approximate ellipsoid of revolution of 
Skyship-500.

(Long half-axes is 25·0m, Short half-axes is 7·09m, 
Length of airship is 50m).
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From the comparison of results of added-mass matrix calculated by the panel method and theory 
method, we can see that the panel method can calculate the added-mass matrix for flexible airship 
very accurately.

Table 1 
The results of calculated and theory for different fineness ellipsoid of revolution

Fineness		  mrr11	 mrr22	 mrr33	 mrr55	 mrr66

	 Calculation	 2·608958	 2·640051	 2·64005	 /	/
1.0	 Theory	 2·565634	 2·565634	 2·565634	 0·0	 0·0
	 Error (%)	 1·688627	 2·900531	 2·900492	 /	/
	 Calculation	 0·2737721	 0·9315569	 0·9315571	 7·926865E-02	 7·926864E-02
2.0	 Theory	 0·2694	 0·9034	 0·9034	 0·0768	 0·0768
	 Error (%)	 1·622903	 3·11677	 3·116792	 3·214387	 3·214378
	 Calculation	 7·06128E-02	 0·4728061	 0·4728061	 6·081234E-02	 6·081232E-02
3.0	 Theory	 0·0695	 0·4583	 0·4583	 0·0590	 0·0590
	 Error (%)	 1·601151	 3·165197	 3·165197	 3·071761	 3·071724
	 Calculation	 2·654407E-02	 0·2843911	 0·2843910	 4·267957E-02	 4·267956E-02
4.0	 Theory	 0·0262	 0·2757	 0·2757	 0·0414	 0·0414
	 Error (%)	 1·313244	 3·152376	 3·152339	 3·090742	 3·090722
	 Calculation	 1·230887E-02	 0·1892188	 0·1892187	 3·076247E-02	 3·076248E-02
5.0	 Theory	 0·0121	 0·1835	 0·1835	 0·0299	 0·0299
	 Error (%)	 1·726182	 3·116512	 3·116458	 2·884525	 2·884555
	 Calculation	 6·529992E-03	 0·1347236	 0·1347236	 2·298685E-02	 2·298686E-02
6.0	 Theory	 0·0064	 0·1307	 0·1307	 0·0223	 0·0223
	 Error (%)	 2·031131	 3·0785	 3·0785	 3·080067	 3·080103
	 Calculation	 1·076165E-03	5·062717E-02	 5·06272E-02	 9·400066E-03	 9·400068E-03
10.0	Theory	 0·0011	 0·0493	 0·0493	 0·0092	 0·0092
	 Error (%)	 -2·16683	 2·692024	 2·692047	 2·17463	 2·174651
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4.0	�T he Difference of added-mass with geometric 
������shape

In this section, for analysis the difference of added-mass with geometric shape and explaining the 
ability of the proposed method, we calculated all added-mass matrixes of the real Skyship-500 
airship and its own approximate ellipsoid of revolution (Fig. 4) with two same normal mode 
shapes by the  proposed method. 

The difference in geometry shape of Skyship-500 airship and approximate ellipsoid of revolution 
shown in Fig. 4 is located at the head and tail of the airship hull. The radius of generatrix of head 
of Skyship-500 airship is bigger than the approximate ellipsoid of revolution, while the radius 
of generatrix of airship tail is less than the approximate ellipsoid of revolution. Using the theory 
method based on the ellipsoid of revolution, the influence of change of geometry with same 
fineness on the added-mass matrix cannot be obtained. Because of using the real geometry shape, 
this influence of change of geometry with same fineness can be obtained by panel method. We 
used the Skyship-500 shape and its approximate ellipsoid of revolution to analysis the difference 
of added-mass matrix with the change of geometry shape with same fineness. 

(a) First mode shape (b) Second mode shape

Figure 3. The two normal mode shapes of Skyship-500 airship.

Figure 4. The Skyship-500 (green) and its approximate ellipsoid of revolution (red).
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Through calculation of the added-mass matrix of Skyship-500 shape and its own approximate 
ellipsoid of revolution, the results of some elements of the added-mass matrix were shown in the 
following table, other elements of  the added-mass matrix are very small and they can be seen as 
zero in the dynamic model of flexible airship.

From the results shown in Table 2, we can see that the difference in the shape of the airship hull 
will change some elements of added-mass matrix. For the elements of the added-mass matrix of 
rigid body, the geometric shape mainly affects the Mrr22, Mrr33, Mrr55, Mrr66. The other elements 
of the added-mass matrix of flexible body such as Mrq, Mrs, Mqq and Mqs are very sensitive to the 
hull shape. Although the hull shape has some effect on the elements of Mss, the differences have 
little effect on the dynamic characteristics of airship due to the very small value of  .

From the comparison of the results of real Skyship-500 airship shape and its own approximate 
ellipsoid of revolution, we can see that the panel method can obtain the effect of the change of 
geometry shape on the added-mass matrixes.

The velocity potential distribution with different boundary condition as illustrated in Figs 5-7.
From the velocity potential distribution shown in Figs 5-7, we can see that the velocity potentials 
associated with the rigid-body motion Ψr, related to the mode shapes Ψq and associated with the 
slopes of the mode shape functions Ψs satisfy Ψr > Ψq > Ψs. This makes the value of corresponding 
elements of added-mass matrix have the law:

For velocity potential yr2, yr6, yq1, yq2, ys1 and ys2, the distribution is symmetric distribution 
about the x-z plane but the sign will be changed, respectively. Similarly, for velocity potential 

Table 2 

Results of added mass matrix for Skyship-500 airship  
and its approximate ellipsoid of revolution

Element 	 Skyship-	 Ellipsoid	 Difference 	 Element	 Skyship-	 Ellipsoid	 Difference 
of mass	 500 airship	 of	 (%)	 of added	 500 airship	 of	 (%)
matrix 		  revolution		  mass matrix		  revolution
 
Mrr11	 601·0674	 603·0719	 0·33349	 Mqq11, Mqq33	 0·71243	 0·7387	 3·68738
Mrr22	 5,061·977	 5262·213	 3·955688	 Mqq12, Mqq34	 -7·867e-2	 -0·1389	 76·56032
Mrr33	 5,061·976	 5262·213	 3·955708	 Mqq21, Mqq43	 -7·847e-2	 -0·1389	 77·01032
Mrr55	 446,583·1	 465359·5	 4·204458	 Mqq22, Mqq44	 0·81064	 0·9323	 15·00789
Mrr66	 446,583·3	 465359·5	 4·204412	 Mqs11, Mqs33	 3·777e-2	 2·6175e-2	 -30·699
Mrq21, Mrq33	 15·51168	 15·52761	 0·102697	 Mqs12, Mqs34	 0·16056	 0·17313	 7·828849
Mrq22, Mrq34	 7·06528	 17·77954	 4·185457	 Mqs21, Mqs43	 -2·173e-2	 -1·905e-2	 -12·3332
Mrq53, -Mrq61	 170·2216	 113·699	 -33·2053	 Mqs22, Mqs44	 -2·295e-2	 -3·881e-2	 69·10675
Mrq54, Mrq62	 -55·0505	 -33·01368	 -40·0302	 Mss11, Mqs33	 1·9614e-2	 1·9927e-2	 1·595799
Mrq21, Mrq33	 2·076484	 1·12452	 -45·845	 Mss12, Mqs34	 -2·031e-3	 -5·527e-3	 172·132
Mrq22, Mrq34	 3·771714	 4·343076	 15·1486	 Mss21, Mqs43	 -2·027e-3	 -5·527e-3	 172·669
Mrq53, Mrq61	 92·47656	 94·86114	 2·578578	 Mss22, Mqs44	 4·513e-2	 5·5052e-2	 21·98538
Mrq54, Mrq62	 -14·5703	 -32·44128	 122·6535	

M M M M M Mrr rq rs qq qs ss> > > > >
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yr3, yr5, yq3, yq4, yq5 and ys4, the distribution is symmetric distribution about the x-y plane, the 
sign will be changed, too.

From the velocity potential Ψq distribution shown in Fig. 6, we can see that the distribution is 
decided by the mode shape. The curve of the first mode shape along the x axis (Fig. 3) is approximate 
parabola, so the velocity potential distribution of yq1 and yq3 is less at two ends of the ellipsoid 
of revolution and bigger on the middle part. The trend of the second mode shape along the x axis 
(Fig. 3) decided the trend of the velocity potential yq2 and yq4 similarly.

The velocity potential Ψs reflects the change of the slopes of the mode shape functions. From 
the velocity potential distribution of ys1 and ys3 shown in Fig. 7, we can see that the distribution 
trends are consistent with the change of slope of first mode shape along the x axis. The distribution 
trends of ys2 and ys4 shown in Fig. 7 are consistent with the change of slope of second mode shape 
along the x axis, too.

(a) yr1 with (b) yr2 with 
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Figure 5. The velocity potential ψr distribution of ellipsoid of revolution.
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Figure 6. The velocity potential yq distribution of ellipsoid of revolution.

Figure 7. The velocity potential ys distribution of ellipsoid of revolution.
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5.0	C onclusions
The flexibility of stratosphere airship is very important due to the huge volume, length and relatively 
small pressure difference thinking of the structure material characteristics and helium leakage. 
During the course of building the flight dynamic model for such vehicle, the deformation must be 
considered. The added-masses of flexible airship are one part of the dynamic model. 

For obtaining the added masses of the arbitrary flexible airship, in this paper, we proposed an 
approach that can obtain the added mass for flexible airship. The panel method was used to solve 
the Laplace equation with different boundary conditions. Through the comparison of results 
of computation and theory for ellipsoid of revolution and the flexible Skyship-500 airship, the 
proposed method can calculate the added-mass matrix accurately for arbitrary geometry shape 
and consider the variety of geometric shapes.
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