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ABSTRACT
The current research paper describes the lateral-directional parameter estimation from flight
data of a miniature Unmanned Aerial Vehicle (UAV) using Maximum Likelihood (ML), and
Neural-Gauss-Newton (NGN) methods. An unmanned configuration with a cropped delta
planform and thin rectangular cross-section has been designed, fabricated and instrumented.
Exhaustive full-scale wind-tunnel tests were performed on the UAV to extract the form of
aerodynamic model that has to be postulated a priori for parameter estimation. Rigorous flight
tests have been performed to acquire the flight data for several prescribed manoeuvres. Four
sets of compatible flight data have been used to carry out parameter estimation using classical
ML and neural-network-based NGN methods. It is observed that the estimated parameters
are consistent and the lower values of the Cramer-Rao bound for the corresponding estimates
have shown significant confidence in the obtained parameters. Furthermore, to validate the
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aerodynamic model used and to enhance the confidence in the estimated parameters, a proof
of match exercise has been carried out.

Keywords: UAV, aerodynamic characterisation; flight data; maximum likelihood; least
square; Neural-Gauss-Newton

NOMENCLATURE
The following symbols are used in this paper:
ax, ay, az accelerations along x-, y-and z-body axes, m·s−2

b span of the aircraft, m
Cy, Cl , Cn lateral-directional aerodynamic force and moment Coefficients
Cy0 , Cl0 ,Cn0 lateral-directional force and moment coefficients at zero sideslip angle
Cyβ

, Clβ , Cnβ
derivatives of lateral-directional force and moment coefficients with sideslip
angle

g acceleration due to gravity, m·s−2

Ix, Iy, Iz moment of inertia about x, y and z body axis, kg-m2

J cost function
m aircraft mass, kg
p, q, r pitch, roll and yaw rates, rad·s−1

S wing planform area, m2

u, v, w airspeed components along x, y and z axis of aircraft, m·s−1

V airspeed, m·s−1

α angle-of-attack, deg
β angle of slide slip, deg
δa, δe, δr aileron, elevator and rudder deflection angles, deg
φ, θ, ψ angles of roll, pitch and yaw, deg
ρ density, kg·m−3

� vectors of unknown parameters

Subscripts

m measured quantity

Superscript
. derivative with respect to time

1.0 INTRODUCTION
An Unmanned Aerial Vehicle (UAV) is an aircraft without an on-board human pilot and
its flight is either autonomous or remotely controlled by a pilot via a ground station(1). In
recent decades UAVs have begun to play an increasingly important role in defence strategy
around the globe(1). Technology advancements in the fields of communication, control theory,
sensors, electronics and machining have enabled designers and manufacturers to develop
larger unmanned aerial systems as well as the creation of miniature and micro class unmanned
flight vehicles. Military applications of UAVs include reconnaissance, surveillance, combat,
rescue, battle damage assessment and communications relays to name a few. The remarkable
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development of UAVs in the defence sector is due to their operational ease, cost effectiveness,
pilot safety and increased capabilities in the battlefield. Although UAVs have many civilian
applications, the majority of their operations in the civil sector are limited due to difficulties in
obtaining the necessary certification to operate in controlled airspace(1). Since most unmanned
flights are autonomous to a greater extent, the accuracy of the on-board controller plays a
major role in successful accomplishment of the mission. The efficiency of modern controllers
that are used to deploy UAVs for various missions directly depends upon the aerodynamic
behaviour of the flight vehicle. Hence, a prior identification (during its design phase) of
aerodynamic parameters that characterise the performance of the flight vehicle will enhance
the design of the controller(1).

System Identification is the process of determining the best possible mathematical structure
that represents the dynamics of a system(2). It is an answer to the age-old inverse problem
of identifying a mathematical description of a system from measured observations(2). For
a given aerodynamic model structure, parameter estimation, which is a special case of the
identification process, will quantify parameters that occur in the model. Although reasonably
accurate parameters can be obtained through analytical predictions and wind-tunnel testing,
parameter estimation from the flight data enhances confidence in the estimates significantly.
Designing optimal controls and autopilots, expansion of flight envelopes, updating simulators
and verification of overall aircraft performance are some of the applications of parameter
estimation(2).

One of the first attempts to obtain the static and dynamic parameters from flight data
was made in 1947 by Milliken(3). Using semi-graphical methods, he analysed the frequency
response data in order to obtain the characteristics of the short-period longitudinal motion of
an aircraft. Four years later, Greenberg(4) and Shinbrot(5) introduced parameter estimation
methods based on the application of ordinary and non-linear least squares. Goman and
Khrabrov(6) have developed a state-space representation of the aerodynamic characteristics of
an aircraft at high angle-of-attack; they have also addressed the problem related to unsteady
aerodynamic model identification of a delta wing at high angles of attack. Leishman and
Nguyen(7) modelled the unsteady aerodynamic behaviour of an aerofoil using the state-space
representation. Nelson and Pelletier(8) have used the Non-linear Indicial Response (NIR)
method to represent the aerodynamic functions in the non-linear flight regime of the F-18 and
X-31 aircrafts. Fischenberg and Jategaonkar(9) have presented the quasi steady stall model to
perform stall modelling of a C-160 military transport aircraft and also discussed parameter
estimation of the aerodynamic coefficients of the proposed steady stall model. Peyada and
Ghosh(10) has proposed the Neural-Gauss-Newton (NGN) parameter estimation algorithm
to quantify longitudinal and lateral-directional parameters that occur in the aerodynamic
model from flight data of a HANSA-3 aircraft. Kumar(11) has used the NGN algorithm
to estimate the stall characteristic parameters of the HANSA-3 aircraft using moderately
high angle-of-attack flight data. Researchers extended the neural-network-based optimisation
algorithms in combination with fuzzy logic to identify system parameters of various fixed
wing and rotorcraft flight vehicles(12-15). Researchers have also carried out substantial work in
estimating parameters using methods in the frequency domain(16-22). It is generally observed
from the available literature that major research on parameter estimation, from flight data,
has traditionally been focused towards model identification of manned aircraft, while the
research on aerodynamic modelling of UAVs from flight test is the focus of much of the
current research.

Parameter estimation from flight data of UAVs over various flight regimes was considered as
one of the major challenges. This is because of the limitations in weight and size of the sensors,
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actuators and data acquisition systems that can be used for instrumenting these unmanned
platforms. The present research work is aimed at lateral-directional parameter estimation
from flight data of a small unmanned aerial vehicle using Maximum Likelihood (ML) and
NGN methods. For this purpose, an unmanned wing-alone configuration with cropped delta
planform and rectangular cross section (flat plate) has been designed, fabricated, instrumented
and flight-tested at the flight laboratory of the Indian Institute of Technology Kanpur (IITK),
India. Prior to the flight tests, full-scale wind-tunnel tests have been performed to capture the
lateral-directional static stability and control derivatives of the configuration. The estimated
response of the motion variables, using ML and NGN methods, pertaining to the lateral-
directional dynamics are presented in this paper. The obtained parameters, along with the
respective Cramer-Rao bounds, from four sets of compatible flight data have been tabulated.
Furthermore, to examine the consistency of the estimates from the two methods, a scatter
plot along with the mean and standard deviation are also presented. Finally, a proof of match
exercise has been carried out to validate the estimates as well as the aerodynamic model used
as the basis for estimation.

2.0 MAXIMUM LIKELIHOOD METHOD
For more than three decades, Maximum Likelihood parameter estimators have been
successfully applied to the estimation of aircraft parameters (stability and control derivatives)
using flight data(2,23). The application of the ML method to the flight data of an aircraft
requires the postulation of a correct mathematical formulation of a flight dynamics model
having an accurate description of the aerodynamics of the vehicle. The application of the ML
method to flight data with measurement noise has been accepted as a standard approach for the
estimation of aircraft parameters. However, in the presence of process noise, the application
of an ML estimator might lead to convergence problems and other practical difficulties. The
main advantages of ML methods are that the estimates are asymptotically unbiased, consistent
and efficient. The method also provides a measure of accuracy in terms of the Cramer-Rao
bounds as part of the ML algorithm(2,23). The cost function relies on the difference between
the measured and computed time histories. For no state noise and a known covariance matrix,
Equation (1) presents the cost function to be minimised using the ML method.

J (�) = (1/2)
N∑

i=1

{
[Z (ti ) − Z� (ti )]

T (
GGT )−1

[Z (ti ) − Z� (ti )]
}

… (1)

where N is number of time points, GGT is measurement noise covariance matrix and Z�(ti ) is
the computed response estimate of Z at ti for a given value of the unknown parameter vector,
�. The matrix GGT can be approximated by a diagonal matrix. A detailed description of the
ML method can be found in Refs 2 and 22.

3.0 NEURAL GAUSS NEWTON METHOD
The Neural-Gauss-Newton method is a new approach for parameter estimation of a flight
vehicle using artificial neural networks (ANN). The NGN method uses feed-forward neural
networks (FFNN) to establish a neural model that could be used to predict subsequent
time histories given suitable measured initial conditions(10,11). The neural model in this case
develops point-to-point mapping of the input and output data. Thus, it could be referred to as a
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Figure 1. Neural architecture for lateral-directional flight dynamics model during training Ref. (25).

flight dynamics model in a restricted sense. The Gauss-Newton method is then used to obtain
optimal values of the aerodynamic parameters by minimising a suitable error cost function.
Unlike most of the conventional parameter estimation methods, the NGN method does not
require a prior description of the mathematical model and thus bypasses the requirement of
solving the equations of motion. This feature of the NGN method may also have special
significance in handling noisy flight data.

In the NGN method, the measured suitable sets of flight data are used to train the neural
model. The algorithm uses FFNNs to create a neural model using time histories of the motion
and control variables of the aircraft in flight. Once the neural model is validated, it can be used
to compute the response for any arbitrary control input. However, the trained neural model
does not represent a generic flight dynamics model. This neural model can only be used to
predict time histories of motion variables at the (k +1)th instant given the measured initial
conditions corresponding to the kth instant (where k = 1 to n: n is the total number of discrete
data points). It has been shown that for all practical purposes of parameter estimation, this
approach helps to build flight dynamics models (in a restricted sense) using measured input-
output data(10,24).

Figure 1 presents the schematic of the neural architecture for the lateral-directional flight
dynamics during training. The input vector, U(k), and the output vector, Z(k+1), for the neural
training are formed with the help of measured state variables.

U (k) = [
β (k) φ (k) ψ (k) p (k) r (k) Cy (k) Cl (k) Cn (k)

]T
, … (2)

Z (k + 1) = [
β (k + 1) φ (k + 1) ψ (k + 1) p (k + 1) r (k + 1) ay (k + 1)

]T
, … (3)

where the values of Cy(k), Cl(k) and Cn(k) at the kth instant are obtained by substituting the
relevant values of the flight variables into Equations (4) to (6)(26).

Cy (k) = mayCG (k) /q̄ (k) S , … (4)
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Table 1
Geometric and design parameters of the current configuration(27)

Parameters Value

Wing Span (b) 1.50 m
Planform area (S) 0.787 m2

Aspect Ratio (AR) 2.9259
Root chord (cr) 0.90 m
Tapper ratio (λ) 0.1667
Mean Aerodynamic Chord (MAC) (c̄) 0.61 m
Span wise location of MAC (ymac) 0.29 m
Weight (W) 34.335 N

Cl (k) = [
Ixx ṗ (k) − Ixz (ṙ (k) + p (k) q (k) ) − (

Iyy − Izz
)

q (k) r (k)
]

∗1/ (q̄ (k) bS) , … (5)

Cn (k) = [
Izzṙ (k) − Ixz ( ṗ (k) − q (k) r (k) ) + (

Iyy − Ixx
)

q (k) p (k)
]

∗1/ (q̄ (k) bS) … (6)

Since the neural mapping uses measured motion variables, the performance and
applicability of the proposed method can also be influenced by data quality. Special care
needs to be taken in selecting tuning parameters to avoid over training. Furthermore, careful
selection of the number of iterations and also the number of neurons in the hidden layer
plays an important role during neural modelling when handling flight data with noise(10,24,25).
Once the neural model is ready for prediction of motion variables, it is used to compute the
system output (Y) corresponding to the assumed aerodynamic model (�) and measured initial
conditions. Next, the difference between the measured response Z and the system output Y is
computed to estimate the noise covariance matrix R. Finally, the error cost function J(�) is
minimised with respect to � by applying a Gauss-Newton optimisation algorithm. A detailed
description of NGN method is presented in Refs 10, 23 and 25.

4.0 MODEL SPECIFICATIONS
As discussed earlier, an unmanned configuration with a cropped delta planform
and rectangular (flat plate) cross-section has been designed to perform aerodynamic
characterisation from flight tests. For the rest of the paper, this configuration is referred to as
CDFP. The CDFP configuration has been fabricated, instrumented and flight-tested in-house
at the flight laboratory. Figure 2 presents planform and side views of the CDFP configuration.

The UAV is a wing-alone blended-wing configuration with no horizontal tail and separate
fuselage, a high-aspect-ratio all-moving vertical tail serves the purpose of vertical stabiliser
as well as rudder. The cross-section of the vertical tail is NACA 0012 –which is a
symmetric aerofoil. The geometric characteristics of the configuration are presented in
Table 1. Longitudinal and lateral control is achieved with the help of elevons located at the
trailing edge of the wing, as shown in Fig. 2(a). These elevons act as elevators when deployed
together and as ailerons applied asymmetrically.
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Figure 2. (Colour online) (a) CAD model presenting the planform view of the CDFP(27). (b) CAD model
presenting the side view of the CDFP configuration(27).

5.0 WIND-TUNNEL TESTING
Prior to flight-testing, exhaustive full-scale wind-tunnel tests were performed on the CDFP
configuration at the National Wind-tunnel Testing Facility (NWTF), in IITK. The NWTF is a
low-speed closed-circuit wind tunnel with a test section of cross-section 3.0 m × 2.25 m. The
tunnel is able to produce flow with a velocity ranging from 5 to 80 m/sec with a turbulence
intensity of less than 0.1%(28). The pressure inside the tunnel is measured by means of Pitot-
Static probes, which are fixed to the walls of the test section. Using these instruments the
stagnation pressure and, hence, air velocity is measured to an accuracy of 0.05%(28). The
test section is equipped with a β-mechanism, which is a simple cantilever structure that rests
in between the two coaxial turn tables of the test section. A pre-calibrated six-component
load balance is used to measure the forces and moments acting on the flight vehicle during
wind-tunnel testing. To mount the balance on the β-mechanism and, in turn, the model on the
load balance, two adapters are used. The rear-end adapter is an interface between the load
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Figure 3. (Colour online) Model mounted inside the test section of the NWTF(27). (a) Schematic of model
mounting. (b) CDFP model mounted on β-mechanism.

balance and the β-mechanism, which holds the balance and β-mechanism. Whereas the front-
end adapter holds the model and also houses the load balance. The aerodynamic forces and
moments that are experienced by the model will be transferred to the load balance by means
of this adapter. Figure 3 presents a schematic and a photograph of the model mounted on the
β-mechanism.

The lateral-directional aerodynamic database of the CDFP configuration is generated by
varying the angle of sideslip from –15° to +15° with the help of the β-mechanisms sweep
mode, at an angular rate of 0.1° per second. At least 3 data points are collected between two
consecutive angles and this is repeated throughout the tests. The data obtained during lateral-
directional wind-tunnel tests of the CDFP configuration are presented in Fig. 4.

Referring to Fig. 4 it is can be seen that the variation of side-force coefficient (CY ), rolling
and yawing moment coefficients (Cl , Cn) are linear with angle of sideslip (β) in the range
−5 deg to 5 deg. It is also observed that the values of CY0 ,Cl0 and Cn0 are close to zero when
β = 0 deg. This can be attributed to the fact that the only contributor to the lateral-directional
stability of the CDFP configuration is a symmetric all moving vertical tail. Similar tests were
also performed to determine the aileron and rudder effectiveness. The measured static lateral-
directional stability and control derivatives have been tabulated along with the results from
parameter estimation using flight data (see Table 2).

6.0 GENERATION OF FLIGHT DATA
Flight data generation is the process of recording the commanded inputs to the system as
well as the corresponding response of the flight vehicle(2). Data gathering is one of the crucial
aspects of flight vehicle system identification, because the basic rule that applies to any system
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Table 2
Data compatibility check for the CDFP configuration lateral-directional flight

data

Parameters �ax �ay �az �p �q �r Kβ �β

Units m·s−2 m·s−2 m·s−2 rad·s−1 rad·s−1 rad·s−1 - rad

UFP_LD1 –0.0120 –0.0030 –0.0220 0.0003 –0.0004 0.0008 0.9962 0.0043
(0.0004) (0.0014) (0.0012) (0.0001) (0.0004) (0.0003) (0.0035) (0.0002)

UFP_LD2 0.0145 –0.0560 –0.0500 0.0020 –0.0005 0.0002 1.1001 –0.0021
(0.0008) (0.0028) (0.0015) (0.0001) (0.0005) (0.0001) (0.0068) (0.0004)

UFP_LD3 0.0045 0.0290 –0.033 –0.001 0.0001 0.0019 0.9542 0.0046
(0.0003) (0.0009) (0.0009) (0.0002) (0.0001) (0.0006) (0.0044) (0.0001)

UFP_LD4 0.0111 –0.0600 –0.0260 –0.0010 0.0007 0.0001 0.9153 0.0015
(0.0004) (0.0015) (0.0009) (0.0001) (0.0007) (0.0008) (0.0044) (0.0002)

() Cramer-Rao Bound.

Figure 4. Variation of Cy , Cl and Cn with β for the CDFP configuration(27).

for parameter estimation from experimental data is “If it is not in the data, it cannot be
modelled”(2). The above rule is true irrespective of the type of flight vehicle, whether it is
manned or unmanned. It is generally observed that the scope of the parameter estimation
technique is limited by the quality of the generated flight data. Furthermore, the accuracy
and reliability of the estimated parameters, using either the conventional or neural-based
methods, depends heavily on the amount of information available in the particular set of flight
data. Hence, proper instrumentation, precise calibration and appropriate control input design
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Figure 5. (Colour online) Photograph showing the instrumented CDFP configuration(27).

plays a vital role in the generation of reliable flight data for parameter estimation purposes.
Rigorous flight tests have been performed with the instrumented CDFP configuration in the
flight laboratory, IITK. A flight database for aerodynamic characterisation studies of this
unmanned planform has been generated by performing various predetermined manoeuvre.
The instrumented CDFP prototype is shown in Fig. 5.

During flight tests, the data was obtained by means of a dedicated on-board data acquisition
system capable of on-board logging as well as remote telemetry. Apart from the motion
variables, the data acquisition system is capable of logging absolute pressure, thrust, control
surface deflections, flow angles (angle-of-attack and sideslip angle) and velocity of the
flight vehicle. The data acquisition system is embedded with two quad-core Advanced RISC
Machines (ARM) processors capable of performing onboard logging at 20 Hz and telemetry
at 11-12 Hz. A dedicated Graphical User Interface (GUI) has been developed using Lab-
View to perform data logging as well as online display at the ground station. The flight
test model is equipped with the above-mentioned data acquisition system consisting of a
9 degree of freedom (DOF) inertial measurement unit (IMU) capable of sensing linear
accelerations (ax, ay, az), angular rates (p, q, r) and spatial orientation (φ, θ,ϕ) of the
flight vehicle, absolute and differential pressure sensors, global positioning system (GPS)
sensor, vane-type flow-angle sensors (α, β) and potentiometers to measure control surface
deflections (δe, δa, δr)(29-31). The flight velocity was obtained with the help of a differential
pressure sensor attached to mini Pitot and static tubes which were fabricated in-house. A prior
calibration of this pressure sensor was performed to convert the measured voltage signal to
the corresponding velocity. The angle-of-attack and sideslip angles (α, β) were obtained from
in-house manufactured vane-type flow-angle sensors, mounted at the tip chord of the CDFP
configuration. The acquisition system can simultaneously record five analog inputs, five digital
inputs and six PWM signals. Figure 6 shows the data acquisition system that has been used
during the flight tests.

During flight testing, the remote pilot of the CDFP model initially trimmed the aircraft at a
comfortable altitude (usually 50 m to 70 m) via the ground station. From this trim condition,
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Figure 6. (Colour online) Photograph showing the data acquisition system used during flight tests(29).

pre-determined control inputs were applied in an attempt to excite the various modes of flight.
These flight tests were performed during days with moderately calm weather conditions.
Furthermore, it is assumed that there is no significant effect of wind on the acquired flight
data. Four sets of flight data pertaining to lateral-directional flight have been used to carry
out parameter estimation using both the ML and NGN methods. The obtained flight data
will be identified as UFP_LD1, UFP_LD2, UFP_LD3 and UFP_LD4, which abbreviates as
UFP for Unmanned Flat Plate configuration and LD for lateral-directional flight data with a
numeric figure at the end referring to the corresponding data set. The acquired flight data is
susceptible to corruption by systematic errors like scale factors, zero shift biases and time
shifts. These errors may introduce data incompatibility; for example, the measured incidence
angles not being in agreement with those reconstructed from the accelerometer and rate
gyro measurements. In order to perform aerodynamic characterisation of a flight vehicle, a
large number of variables are usually measured and recorded during flight tests. Thus, it is
imperative that a data compatibility check is carried out before using the data for aerodynamic
modelling and parameter estimation. In other words, a data compatibility check, which is also
called flight path reconstruction (FPR), is an integral part of aircraft parameter estimation(2,32).
The main aim of a data compatibility check is to ensure that the measurements, used for
subsequent aerodynamic model identification, are consistent and, as far as possible, error
free. The following set of unknown parameters was considered adequate for reconstructing
the lateral-directional dynamics of the CDFP configuration for data compatibility checks. The
vector � represents the set of unknown lateral-directional biases and scale factors that must
be estimated.

� = [
�ax �ay �az �p �q �r Kβ �β

]T
… (13)
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The Maximum Likelihood method was used to estimate the compatibility factors from
the four sets of lateral-directional flight data (UFP_LD1 to UFP_LD4) for the CDFP
configuration. The estimated compatibility factors obtained during the data compatibility
check using the ML method are given in Table 2. It can be observed from Table 2 that the
biases are almost negligible and the scale factors (Kβ) appeared to be close to the expected
value (around unity). The lower values of Cramer-Rao bound, for these systematic errors,
shows significant confidence in the estimated compatibility parameters. The scale factors
close to unity, negligible biases and very low values of Cramer-Rao bounds establishes a
high confidence level in the acquired flight data for the CDFP configuration.

The measured and computed response of motion variables obtained during the data
compatibility check are presented in Figs. 7(a)-(d) for UFP_LD1 to UFP_LD4, respectively.

6.1 Aerodynamic model: Lateral -directional case

The following simplified state equations represent the lateral-directional dynamics which were
used during parameter estimation using the ML method.

β̇ = −r + g
V

sin φ − ρV Sw

2m
CY , … (14)

ṗ = ρV 2bS
(IZZCl + IX ZCn)

2
(
IX X IZZ − I2

X Z

) , … (15)

ṙ = ρV 2bS
(IX X Cn + IX ZCl )

2
(
IX X IZZ − I2

X Z

) , … (16)

φ̇ = p … (17)

The side-force, rolling moment and yawing moment coefficients (CY, Cl and Cn

respectively) which appear in Equations (14)-(17) are modelled as follows:

CY = CY0 + CYβ
β + CYp

(
pb
2u

)
+ CYr

(
rb
2u

)
+ CYδr

δr, … (18)

Cl = Cl0 + Clββ + Clp

(
pb
2u

)
+ Clr

(
rb
2u

)
+ Clδa

δa + Clδr
δr, … (19)

Cn = Cn0 + Cnβ
β + Cnp

(
pb
2u

)
+ Cnr

(
rb
2u

)
+ Cnδr

δr … (20)

The aim is to estimate the following unknown parameter vector, �LD, presented in Equation
(21), using the conventional ML method and neural based NGN method from the lateral-
directional flight data corresponding to various aileron and/or rudder control inputs. The
parameters CYδa

and Cnδa
, usually have negligible values so were not estimated and hence

not included in the aerodynamic model.

�LD = [
CY0 CYβ

CYp CYr CYδr
Cl0 Clβ Clp Clr Clδa

Clδr
Cn0 Cnβ

Cnp Cnr Cnδr

]T
… (21)
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Figure 7 (a-b). Data compatibility checks: UFP_LD1, UFP_LD2.

7.0 PARAMETER ESTIMATION
The ML and NGN methods have been used to estimate the parameters over four sets
of compatible flight data pertaining to the lateral-directional dynamics of the CDFP
configuration. The estimated aerodynamic parameters with the corresponding Cramer-Rao
bounds and wind-tunnel-estimated derivatives are presented in Tables 3 and 4.
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Figure 7 (c-d). Data compatibility checks: UFP_LD3, UFP_LD4.

It is evident from Tables 3 and 4 that most of the ML and NGN estimates of the aerodynamic
parameters for the CDFP configuration are reasonably accurate and closer to the wind-tunnel
estimates. The low values of the Cramer-Rao bound enhances confidence in the estimated
parameters. The pictorial representation of the estimates using ML, NGN and wind-tunnel
methods is presented in Fig. 8. Further, the mean and standard deviation of the estimates
using ML and NGN methods is presented in Table 5 along with the wind-tunnel results.
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Table 3
Lateral-directional parameter estimation using ML and NGN: UFP_LD1,

UFP_LD2

UFP_LD1 UFP_LD2

Parameters

Wind-
Tunnel
Values ML NGN ML NGN

CY0 0 0.0002 0.0001 0.0008 0.0001
(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

CYβ
–0.1204 –0.1178 –0.1239 –0.1231 –0.1327

(5.00E-04) (2.58E-05) (1.10E-03) (1.90E-05)

CYp - –0.0633 –0.0526 –0.0476 –0.0449
(7.00E-04) (4.64E-04) (1.40E-03) (7.28E-04)

CYr - 0.1431 0.1376 0.077 0.1391
(2.50E-03) (1.37E-03) (5.90E-03) (6.16E-03)

CYδr
0.4586 0.2043 0.3952 0.4938 0.4590

(1.08E-02) (3.44E-03) (1.14E-02) (2.54E-02)

Cl0 0 0.0003 0.0001 0.0002 0.0001
(0.00E+00) (1.14E-06) (0.00E+00) (7.41E-06)

Clβ –0.0901 –0.0882 –0.0974 –0.0978 –0.0852
(5.00E-04) (1.11E-03) (5.00E-04) (3.79E-03)

Clp - –0.4967 –0.5180 –0.4882 –0.4235
(2.00E-03) (1.46E-02) (7.00E-04) (1.05E-02)

Clr - 0.124 0.1127 0.0779 0.1128
(2.10E-03) (8.52E-04) (2.50E-03) (1.14E-02)

Clδa
–0.0963 –0.0936 –0.1159 –0.0938 –0.0914

(4.00E-04) (6.27E-04) (2.00E-04) (2.78E-03)

Clδr
0.0195 –0.2319 –0.2130 0.0376 0.0189

(8.10E-03) (5.23E-04) (5.10E-03) (1.03E-03)

Cn0 0 0.0001 0.0001 0.0001 0.0001
(0.00E+00) (6.40E-07) (0.00E+00) (6.33E-06)

Cnβ
0.0186 0.0206 0.0198 0.0339 0.0332

(2.00E-04) (7.71E-05) (7.00E-04) (9.71E-04)

Cnp - 0.0214 0.0201 0.0273 0.0237
(1.00E-04) (2.06E-04) (9.00E-04) (1.00E-03)

Cnr - –0.0347 –0.0244 –0.0443 –0.0244
(4.00E-04) (1.47E-04) (2.70E-03) (2.09E-03)

Cnδr
-0.0093 0.0343 0.0189 –0.075 –0.0886

(2.00E-03) (1.36E-04) (3.00E-03) (5.75E-04)

() Cramer-Rao Bound.
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Table 4
Lateral-directional parameter estimation using ML and NGN: UFP_LD3,

UFP_LD4

UFP_LD1 UFP_LD2

Parameters

Wind-
Tunnel
Values ML NGN ML NGN

CY0 0 –0.0011 0.0001 0.0005 0.0001
(0.00E+00) (–1.00E-08) (0.00E+00) (2.00E-08)

CYβ
–0.1204 –0.1075 –0.1354 –0.1125 –0.0970

(6.00E-04) (3.34E-04) (7.00E-04) (4.59E-04)

CYp - –0.0447 -0.0285 -0.0559 -0.0495
(7.00E-04) (2.42E-03) (6.00E-04) (1.35E-02)

CYr - 0.0925 0.1178 0.1284 0.1472
(3.20E-03) (1.56E-02) (2.80E-03) (1.89E-02)

CYδr
0.4586 0.5496 0.3854 0.422 0.5037

(4.60E-03) (9.00E-03) (5.70E-03) (1.24E-02)

Cl0 0 –0.0007 0.0001 0 0.0001
(0.00E+00) (8.35E-06) (0.00E+00) (3.59E-06)

Clβ –0.0901 –0.0888 –0.0978 –0.0829 –0.0885
(7.00E-04) (4.86E-03) (4.00E-04) (1.63E-02)

Clp - –0.5074 –0.4536 –0.4881 –0.4695
(1.10E-03) (7.84E-03) (1.40E-03) (1.48E-02)

Clr - 0.0866 0.1221 0.0755 0.1060
(2.80E-03) (1.64E-02) (1.90E-03) (1.11E-02)

Clδa
–0.0963 –0.0982 –0.0956 –0.0934 –0.1165

(2.00E-04) (3.50E-03) (3.00E-04) (1.32E-02)

Clδr
0.0195 0.1085 0.0557 0.0086 0.0178

(4.40E-03) (2.91E-04) (4.10E-03) (3.70E-03)

Cn0 0 0.0006 0.0001 0 0.0001
(0.00E+00) (1.47E-06) (0.00E+00) (2.18E-05)

Cnβ
0.0186 0.0289 0.0269 0.0217 0.0177

(4.00E-04) (3.04E-04) (1.00E-04) (2.05E-03)

Cnp - 0.0286 0.0193 0.0208 0.0180
(3.00E-04) (6.40E-04) (1.00E-04) (1.04E-04)

Cnr - –0.0743 –0.0362 –0.0355 –0.0298
(1.60E-03) (1.96E-03) (5.00E-04) (2.74E-03)

Cnδr
-0.0093 –0.0579 –0.0401 –0.0321 –0.0100

(2.60E-03) (4.92E-04) (1.50E-03) (4.82E-04)

() Cramer-Rao Bound.
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Figure 8. Scatter plots of parameter estimates using ML and NGN methods.

Referring to Fig. 8, it can be seen that the estimated aerodynamic parameters such as
CY0 , Cl0 and Cn0 are consistent and in close agreement with the wind-tunnel estimates for
all the sets of lateral-directional flight data. It is noted that there is a small, but noticeable,
scatter in the estimated stability derivatives, e.g., CYβ

, Clβ and Cnβ
. However, the mean of

these derivatives, from both ML and NGN methods, are very close to the wind-tunnel values
with a minimal standard deviation. Similar scatter is also observed in the estimated damping
(Clp and Cnr ) and the cross derivatives (Clr and Cnp ). In order to estimate these derivatives,
the control input of the manoeuvre should excite the corresponding dynamics, which is ideally
performed by executing either a multistep (3-2-1-1) or a doublet control input. However,
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Table 5
Mean of lateral-directional estimates using ML and NGN methods

Parameters

Wind-
Tunnel
Values ML NGN

CY0 0 0.0001 0.0001
(8.37E-04)∗ (1.75E-05)∗

CYβ
–0.1204 –0.1152 –0.1222

(6.73E-03)∗ (1.75E-02)∗

CYp - –0.0529 –0.0439
(8.42E-03)∗ (1.07E-02)∗

CYr - 0.1103 0.1354
(3.07E-02)∗ (1.25E-02)∗

CYδr
0.4586 0.4174 0.4358

(1.51E-01)∗ (5.58E-02)∗

Cl0 0 –0.0001 0.0001
(4.51E-04)∗ (8.30E-06)∗

Clβ –0.0901 –0.0894 –0.0922
(6.18E-03)∗ (6.37E-03)∗

Clp - –0.4951 –0.4661
(9.14E-03)∗ (3.95E-02)∗

Clr - 0.0910 0.1134
(2.25E-02)∗ (6.63E-03)∗

Clδa
–0.0963 –0.0948 –0.1049

(2.31E-03)∗ (1.32E-02)∗

Clδr
0.0195 –0.0193 –0.0302

(1.48E-01)∗ (1.23E-01)∗

Cn0 0 0.0002 0.0001
(2.87E-04)∗ (1.15E-05)∗

Cnβ
0.0186 0.0263 0.0244

(6.28E-03)∗ (7.05E-03)∗

Cnp - 0.0245 0.0203
(4.00E-03)∗ (2.44E-03)∗

Cnr - –0.0472 –0.0287
(1.86E-02)∗ (5.59E-03)∗

Cnδr
–0.0093 –0.0327 –0.0299

(4.80E-02)∗ (4.59E-02)∗

()∗ Standard deviation.
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Figure 9 (a-b). Parameter estimation using ML and NGN: UFP_LD1, UFP_LD2.

with the current unmanned configuration, the pilot found it difficult to execute such inputs
manually. The corresponding limitation has been reflected in the estimates of these dynamic
derivatives. It can be inferred that the estimated lateral control parameter Clδa

is consistent
over all the data sets and that the mean is close to its wind-tunnel estimate. It is also noted
that the estimates of the directional control derivatives such as CYδr

, Clδr
and Cnδr

deviate
from the wind-tunnel values. This may be attributed to the fact that, in most of the
manoeuvre’s, the rudder is held almost constant, which implies that there is no significant
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Figure 9 (c-d). Parameter estimation using ML and NGN: UFP_LD3, UFP_LD4.

dynamics being excited using the directional control input. During flight testing, it was
observed that the current unmanned configuration is highly sensitive to directional control
inputs due to its high-aspect-ratio all-moving vertical tail. This constrained the pilot when
executing the desired manoeuvres using directional control inputs.

The estimated state variables, using ML and NGN methods, from the four sets of flight
data pertaining to lateral-directional dynamics are presented in Fig. 9. Referring to Fig. 9,
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Figure 10 (a-b). Proof-of-Match exercise using ML and NGN: UFP_LD2, UFP_LD4.

it can be seen that most of the estimated motion variables are in good agreement with the
corresponding measured flight data. The notable discrepancies in the estimated state variables,
such as β, r and ay, using ML and NGN methods, were mainly due to the insufficient
excitation of the directional dynamics using rudder deflection. It is also observed that the
bank angle (φ), estimated using the ML method, has a better match with the measured data
compared to NGN. The estimated roll rate (p) using both methods have a reasonably close
match with the corresponding measured data in all four data sets.
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The validation of the aerodynamic model and, in turn, the estimates from the ML and
NGN methods have been carried out by a proof-of-match exercise. During this proof-of-
match exercise, the identified aerodynamic model remains fixed. This exercise was carried out
using two sets of flight data UFP_LD2 and UFP_LD4. In the first case, the estimates obtained
through the ML and NGN methods from UFP_LD4 flight data were used to generate estimated
responses for the aileron and rudder control inputs of the UFP_LG2 flight data, using the
rigid body equations of motion. The simulated/estimated response was then compared with
the flight measured response of UFP_LG2. A similar exercise was also carried out whereby
estimates obtained from flight data UFP_LG1, using the ML and NGN methods, were used
to generate the response corresponding to aileron and rudder inputs used in flight data
UFP_LG4. Figure 10(a) and (b) present the results of the proof-of-match exercise performed
using UFP_LD2 and UFP_LD4, respectively. It can be seen by referring to Fig. 10(a)-(b) that
the estimated response computed using both ML and NGN methods has a better match with
the measured flight data.

8.0 CONCLUSION
The estimation of aerodynamic derivatives for a CDFP configuration has been carried out
using the ML and NGN methods over four sets of lateral-directional compatible flight data. It
is observed that the estimated state variables pertaining to lateral-directional dynamics were
able to match reasonably well with the measured flight data, using both the ML and NGN
methods. It is evident that the parameters estimated using ML and NGN methods are in close
agreement with the wind-tunnel values. Even though the variation in the Reynolds number
during the flight test ranged from 0.5 to 1 million, it is observed that there is no significant
change in the estimated parameters. Further, the confidence in the estimates from the ML
and NGN methods has been established by the lower values of the Cramer-Rao bounds. It
is also confirmed that the estimates from both methods are consistent over the four sets of
data, which is also reflected by the mean values being closer to wind-tunnel estimates with
less standard deviation. Although the NGN method does not involve solving the equations
of motion, it is able to perform favourably compared with the classical ML method. This
may be due to the pattern-following ability of the trained neural network. However, minor
limitations were also observed during the proof-of-match exercise, which may be due to the
restriction in training of the neural network for a particular flight data set. The estimates
could be further improved by implementing the pre-determined inputs using a dedicated on-
board controller, which enriches the flight data with the desired frequencies. Even though
the estimates were consistent, more flight data sets pertaining to various flight regimes would
enhance confidence in the application of conventional and neural-based methods for parameter
estimation of UAVs.
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