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Abstract

Representing objects and their interactions can be quite challenging when an application requires many complicated,
interconnected objects that are restricted in how they can be instantiated. In this paper, we present our approach to
conceptual modelling. We have used this approach with success in a number of applications, the largest of which is the
PROSE family of configurators. PROSE was first deployed in 1990 and has been used to configure over 4 billion
dollars worth of AT&T and Lucent telecommunications equipment. We will discuss our approach to conceptual mod-
elling, which is based on knowledge representation, show how it meets our representation and reasoning needs, and
then discuss the relative merits of the approach.2
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1. INTRODUCTION

Conceptual modelling is an outgrowth of interdisciplinary
work in knowledge engineering, knowledge representation,
programming languages, and data modelling over the past
ten to fifteen years~Brodie et al., 1982; Loucopoulos & Zi-
cari, 1992!. We now have nearly a decade of experience both
developing and deploying configurator applications based
on conceptual models implemented in description logic~see
Wright et al., 1993!. There have been many different tech-
niques and methods associated with configurator develop-
ment. Interestingly enough, we think that the best arguments
in favor of our approach are derived from sound software
engineering practices and practical experience, especially
in the context of small team programming projects.

Configurators usually evolve as small- to medium-scale
projects. As such, they share many of the problems~as well
as some of the advantages! associated with other software
projects of similar scale. But in addition, configurator de-

velopers face special problems, or, at least, encounter cer-
tain problems more often than is typical of most software
developers.

First, because it must represent the physical structure and
sometimes even the logical structure of complex products,
the output of a configurator is structured in very complex
ways. It is usually nontrivial, for example, to verify that any
particular output is correct by inspection, partly because sub-
stantial domain knowledge is required to do so. On many of
our real-world, practical projects, for example, special ex-
perts were recruited by our development team to supply do-
main knowledge for testing, verification, and validation.

Second, configurator developers seldom have control of
their delivery schedules. Rather, the life cycle of the con-
figured product determines when a configurator must be de-
livered. Even after a configurator has been fully deployed,
enhancements are driven by the pace of changes to the prod-
uct, and not by the development team’s sense of what can
delivered when.

In the telecommunications domain, where we are most at
home, product knowledge can change at a surprisingly rapid
pace—we have measured changes as high as 50% per year
in some unusual cases. Moreover, the fastest changing prod-
ucts are nearly always new introductions or top sellers—
both strategically important classes of products. Hence,
configurator maintenance and enhancement is at the same
time both critical and fast-paced.
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Third, configuration has become a source of interesting
real-world problems for researchers interested in optimiza-
tion. The practical motivation to generate provably lowest
cost, highest performance, greatest price0performance ra-
tio, etc., fits very nicely into an optimization framework.
Configurators with the capability of producing output with
such characteristics provide a distinct business advantage.

In our case, however, while still recognizing the impor-
tance of optimization, we have not focused on it much. Sim-
ply delivering consistent and correct configurations with
respect to customer specifications has turned out to be an
advance in the state of the art for large practical applica-
tions. In addition, we have sometimes observed, on a prac-
tical level, that the ability to generateanytechnically feasible
solution can provide a distinct competitive advantage, re-
gardless of whether the solution is optimized in any sense.

Software development is sometimes contrasted with the
building of physical artifacts such as houses or bridges. Such
physical construction projects impose an inherent but in-
complete ordering on their subtask structure—a partial-
order. For example, a house must have a foundation before
walls can be built; walls need to be provided before a roof,
etc. On the other hand, other subtasks can proceed in par-
allel, that is, installation of plumbing and wiring. Part of the
secret of being a good contractor is having a good grasp of
this subtask structure, knowing when to bring in the elec-
tricians, when the painters can start working, who can work
effectively in parallel, etc.

Similarly, software development projects have a subtask
structure. The typical subtask structure for a software project
is more abstract than that associated with housing construc-
tion. In addition, software projects exhibit more variation
in subtask structure from project to project. This is largely
because the range of problems that can be addressedvia soft-
ware is inherently greater. Taking this into account, even
experienced development teams often begin a new project
with considerable uncertainty with respect to the true rela-
tionship among subtasks, and at times may even lack a sound
conception of what the subtasks are. Because of the nature
of software, this is not likely to change.

Maintaining consistency and compatibility among par-
allel subtasks as a software project progresses is a major
challenge, and comes to dominate the decision-making pro-
cesses of many projects. Many development teams elect
not to take on certain tasks rather than risk upsetting the
delicate interactions of cooperating modules. In general,
developers can achieve local consistency by applying sound
development practices such as code reviews, code inspec-
tions, and unit testing. But the most difficult problems to
detect, understand, and solve are problems that cannot be
isolated to specific lines or sections of source code. Pro-
grammers sometimes unknowingly make different assump-
tions about the required behavior of interacting components,
and this always results in unexpected and incorrect behav-
ior. It is also difficult to fully understand the consequences
of making design changes in software systems where there

are many interactions among components. As observed by
Brooks ~1975! so many years ago, programmers spend a
great deal of their time coordinating their activities with
those of other programmers. In many respects, the secret
to programmer productivity is minimizing the burden of
interaction for the front-line programmer.

In our view, such unshared assumptions are a major cause
of failure in software projects, and grow more serious as
projects become larger and involve more programmers. Even
working on their own, programmers may find it difficult to
understand the consequences of changing some piece of soft-
ware they themselves wrote. And when the programmer and
the original designer are different individuals~e.g., during
software maintenance!, uncovering the consequences of a
particular design change is commonly accomplished by trial
and error—a blind, time-consuming, low-level process.

Object-oriented techniques such as encapsulation and in-
heritance may help in such cases. In practice, however, re-
factoring of class designs is very common, often motivated
by the programmer’s growing understanding of a problem
domain. Even for experienced developers, it can be quite
difficult to foresee all the consequences of a particular de-
sign decision and even the best class designers are some-
times unable to predict how their classes will be used.

Making changes of any magnitude in a complex system
is very intimidating since it is so very difficult to under-
stand how all the components interact. Hence, over time
many development teams adopt a conservative policy of
agreeing to only the minimal changes necessary.

These are problems to which configurators are particu-
larly susceptible. Not only is the output from a product con-
figurator complex, but they also have particularly strict
requirements with respect to consistency and correctness—
because sellers of goods desire to produce accurate quotes
that they can stand behind both in terms of functionality
and price. In this context, a software defect that causes a
configurator to misrepresent the cost or functionality of a
multimillion dollar configuration is more critical than even
optimization.

From this perspective, description logics have some very
attractive features. We elected to design and implement our
conceptual model for configuration in a description logic
called theclassic knowledge representation system~Bor-
gida et al., 1989; Brachman et al., 1991; Weixelbaum, 1991!.
We will defend our choice of a knowledge representation-
based approach in more detail after providing an introduc-
tion to description logics as exemplified byclassic and after
introducing our configuration tasks, as exemplified byprose
~Product Offerings Expertise! ~Wright et al., 1993; McGuin-
ness & Wright, 1998!. We also note that others have con-
sidered description logics for configuration applications~e.g.,
Owsnicke-Klewe, 1988; Rychtyckyj, 1996!. We, however,
have the longest application deployment history and the larg-
est family of configurators. What will become evident is
that the main reasons for our choice ofclassic are derived
from our needs to have a tool with the following abilities:
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1. Model an object-oriented domain.

2. Handle incrementally evolving specifications.

3. Support an extensible schema.

4. Provide active completion of knowledge.

5. Provide reasoning even when knowledge is incom-
plete.

6. Detect and maintain consistency.

7. Support retraction and truth maintenance.

8. Provide access to a declarative encoding of knowl-
edge for maintenance and help desk support.

Our reasoning about this set of features is as follows. First,
because maintenance and enhancement are such critical ac-
tivities for configuration projects, features that support in-
cremental development are essential~i.e., 2, 3, and 5!.
Second, declarative encoding of knowledge~8! in a natu-
ral way ~1! is also critical. A somewhat unusual, but quite
important, example of this is help-desk support. A help desk
for configurators fields many challenges, from the sales
team, from customers, even from members of the design
and engineering community. It is quite legitimate for mem-
bers of the user community to challenge why a certain kind
of circuit pack is required, to understand the methods for
calculating cable lengths, etc. The ability to reference a
representation meaningful to end-users can resolve many
such challenges. Next, retraction and truth maintenance~7!
is a very valuable tool, both for developers and end-users.
For example, this directly supports a very critical human
activity—hypothetical reasoning, commonly termed “what-
if.” Essentially, retraction allows end-users to modify their
input and observe the consequences of those modifications
without having to recalculate an entire configuration. This
allows customers to gain a thorough understanding of their
options by directly exploring the problem space. Finally,
and most importantly, the ability to provide active com-
pletion of knowledge in the form of deductive closure and
to detect inconsistencies provides a distinct and critical
advantage~2, 4, 6, and 7!. As discussed, this directly sup-
ports individual programmers in understanding the conse-
quences of changes and modifications to a complex body
of code, and helps teams of cooperating programmers un-
cover inconsistent assumptions early on.

It is really this last feature that distinguishes description
logics from other approaches such as production rules~Mc-
Dermott, 1981!, object-oriented methodology~Booch, 1996!,
and0or hybrid rule-based0object-oriented systems~Giarran-
tano & Riley, 1994!. Description logics maintain a state of
global consistency over a state of knowledge. It is not pos-
sible for one part of a configuration to become inconsistent
with another.

Inconsistencies happen all too easily with production rule
systems, especially when the application requires more than
one programmer. Data is globally accessible and nothing
prevents one rule overwriting the result of another rule. In

addition, partly because there is no logical theory underly-
ing a production system language, retraction cannot be prop-
erly supported. Hence, even if inconsistencies were detected,
there is no way to role back the state of the system to the
most recent consistent state.

In our view, this is the chief reason why production sys-
tem applications are limited in scale, a position that is at
least partly derived from our experience with deploying pro-
duction system applications in telecommunications~Ve-
sonder et al., 1983; Wright et al., 1988; Ackroff et al., 1990!.

Modern object-oriented techniques, such as UML~Booch,
1996!, attempt to achieve scale by careful design methodol-
ogies and information-hiding—by restricting and control-
ling the ways in which objects can interact with each other.
Configuration problems, however, typically involve con-
straints that cross object boundaries.When the data about one
object changes, then other objects~sometimes many other ob-
jects! may change and thus they must be checked for consis-
tency. Under the what-if scenario, it may even be necessary
to role back the current state of an object to some previous
state. In other words, there is a tension between providing a
data base that can be subjected to global consistency check-
ing and existing object-oriented design methodologies.

Good object-oriented modelling systems provide check-
ing of pre- and post-conditions during model development.
Description logics, however, go a step further in that they
perform an explicit calculation of the logical implications
of pre- and post-conditions in object designs.

We believe complicated deductive tasks, such as config-
uration and provisioning, have a common set of needs. The
list provided above is a starting point derived from practi-
cal experience with configurator development. We suggest
that a solution meeting these needs can be leveraged. Our
platform has handled the test of time well, producing 17
deployed configurators. Some have been deployed contin-
uously since 1990~although enhanced over time! and oth-
ers have projected lifetimes that span into the next century.

In the rest of this paper, we will introduce our problem,
supply an introduction to description logics using a simple
configuration example, discuss the PROSE conceptual
model, and describe the strengths and weaknesses of our
approach. In particular, we want to emphasize the impor-
tance of model explanation in supporting the application dur-
ing different phases of the software life cycle.

2. DESCRIPTION LOGICS AND CLASSIC

Description logics form a subfield of knowledge represen-
tation and are based on a formal logic. The field was mo-
tivated by the seminal work of Brachman, culminating in
the KL-ONE knowledge representation system~Brachman
& Schmolze, 1985!. The field arose from the desire to give
a precise meaning to the nodes and arcs in the widely used
notation of semantic networks~Sowa, 1991!. Semantic net-
works provide a compelling modelling basis since they al-
low knowledge engineers to create nodes for objects, to
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provide structure in those objects by naming roles~possi-
bly with associated restrictions!, and to relate objects to
each other by graphically connecting nodes with role-
labeled arcs. The problems, as many pointed out, for ex-
ample,~Woods, 1975; Brachman, 1979, 1983! had to do
with the many unclear interpretations of just what was
meant and implied by such a graphical notation. Descrip-
tion logics, earlier called terminological logics, structured
inheritance networks, and KL-ONE-like systems, pro-
vided a formal syntax and semantics for this sort of net-
work and thus formed the logical foundation on which
deduction could be based. The description logic commu-
nity coordinated to generate a common system specifi-
cation for description logics called the knowledge
representation system specification~KRSS! ~Patil et al.,
1992!. This specification contains a description of the es-
sential components of description logics. We present the
syntax and semantics of a subset of this language for use
in this paper in Table 1.

classic is a representative description logic with imple-
mentations inlisp, C, and C11. It is also one of the DL
systems~MacGregor, 1991! most similar to the description
logic KRSS, thus it is a reasonable representative choice.
One ofclassic’s design goals was to balance the tradeoff
between expressivity and complexity while keeping in mind
its primary goal of being manageable and efficient for real
applications. In a sense, our application work provides an
empirical test of theclassic design goals.

2.1. A Simple conceptual model inclassic

Discussing a simple model is probably the best way to in-
troduce some terminology. Since there is as yet no widely
accepted notation for discussing conceptual models, we will
use some terms specific to our implementation language,
classic. We will focus on a model for a simple, but ficti-
tious, piece of equipment—an assembly for electronics gear
with four slots for circuit packs. The model for this equip-

ment is shown in Figure 1. The general idea is that incom-
ing signals are received by the interface unit, shuttled to
the switch packs where they are “switched”, and sent back
through the interface unit. An optional performance mon-
itor is allowed to replace one of the switch packs. The de-
sign is not realistic but the ideas of interface, switching,
power, and performance monitoring is pervasive in tele-
communications equipment design. On the right are a few
classic expressions that implement a model of the simple
assembly. The top primitive concept,SimpleAssembly ,
has four roles—one for each type of circuit pack in the
simple assembly—power , switch , interface , and
perf-monitor . The expression also places some num-
ber restrictions on the roles that correspond to the number
of circuit packs of each type that can be assigned to an
assembly.

The second concept,AssemblyWithSwitch , in Fig-
ure 1 is a specialization ofSimpleAssembly . It is aSim-
pleAssembly with an additional constraint—at least one
switch pack.AssemblyWithSwitch inherits all of the
information from its parent conceptSimpleAssembly .
AssemblyWithSwitch could also inherit information
from other conceptsvia multiple inheritance if necessary.

All of the concept definitions in a description logic-
based model form a generalization hierarchy. Any concept
B, whether stated or derived by inference, that is strictly
more specific than another concept A is said to be a subcon-
cept of A. In other words, B is a subconcept of A if and only
if it is impossible to be an instance of B with being an in-
stance of A—that is, in every possible interpretation, an in-
stance of B must be an instance of A. A is then said to
subsume B.

Consider a concept of aSimpleAssembly with two or
more switches, shown in the followingclassic code frag-
ment.

(define-concept AssemblyWithTwoSwitches

(and

SimpleAssembly

(at-least 2 switch)))

In this case, the concept AssemblyWithSwitch sub-
sumes the concept AssemblyWithTwoSwitches because
in every possible interpretation, an instance of Assembly-
WithTwoSwitches must also be an AssemblyWithSwitch.

A realistically scaled conceptual model can include hun-
dreds of related concept definitions. In description logics,
concept definitions are automatically organized into a gen-
eralization hierarchy; a process sometimes calledclassifi-
cation. The programmer0knowledge engineer is allowed to
specify links in the generalization hierarchy by naming other
concepts in a concept definition. Description logics may de-
duce the additional links in the generalization hierarchy by
analyzing the terms of each concept definition and finding
implicit relationships. If, for example, the programmer tries
to link two concepts with terms that contradict each other,
classic will detect the incoherence and report the problem.

Table 1. Description logic syntax and semantics

Syntax Interpretation

TOP DI

NOTHING B

~and C D! CI ∧ DI

~or C D! CI ∨ DI

~not C! DI \ CI

~all p C! $d [ DI 6 pI ~d! # CI %
~some p C! $d [ DI 6 pI ~d! ∧ CI Þ B %
~at-least n p! $d [ DI 6 6 pI ~d! 6 $ n%
~at-most n p! $d [ DI 6 6 pI ~d! 6 # n%
~exactly n p! $d [ DI 6 6 pI ~d! 65 n%
~fills p b! $d [ DI 6 pI ~d! $ b %
~one-of b1 . . . bm! $ b1 , . . . , bm%
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The third expression on the right of Figure 1 defines an
individual ASSEMBLY-1that is of typeSimpleAssem-
bly . Individuals inherit from their ancestors just as con-
cepts do, but they are required to be terminal nodes~they
cannot have children!. The rules of inheritance apply to in-
dividuals just as they do to concepts, and individuals are
automatically classified just as concepts are. However, cer-
tain operations~further explained below!, such as rule fir-
ing and propagations, are permitted only on individuals.

There are four relations shown in Figure 1. Aclassic role
represents a binary relationship3 between individuals. For
example,ASSEMBLY-1would be related to other individ-
uals by thepower , switch , interface , and perf-
monitor roles. For example, we might create aPERF-
MONITOR-1individual thatfills the perf-monitor role. It is
also possible, and desirable, inclassic to addvalue restric-
tionsthat define the kinds of individuals that can be related.
In Figure 1, the clause~all power PowerPacks ! is an
example of a value restriction. Value restrictions are also
concept descriptions. If, for example, C1 includes the value
restriction~all power PowerPacks!, then if I1 is an instance
of C1 and if I2 fills the power role in I1, then I2 must be a
PowerPack.

2.2. Dependency maintenance, retraction,
and explanation

Description logics can be thought of as active data bases of
facts—they are capable of computing the deductive closure
of the told information~information supplied by a user or
some other external source!.

The description logic provides the framework for a small
set of well-defined logical inferences. The most important
inference isinheritance. For example,ASSEMBLY-1in Fig-
ure 1 inherits all the properties of theSimpleAssembly
concept. A second important inference ispropagation. Prop-
agation takes placevia value restrictions on roles, as dis-
cussed above. In terms of Figure 1, any individual inserted
into the switch role is forced to become aSwitchPack
because of a propagation along the roleswitch on the in-
dividualASSEMBLY-1. If there is something about that in-
dividual that conflicts with the definition of SwitchPack, a
contradiction results, and an error message is generated.

Facts that are derived from the active part of aclassic
model are usually referred to asderivedinformation, as con-
trasted totold information,which isdirectly suppliedbyauser.

A third important calculation that is part and parcel with
description logic systems is contradiction detection. This can
be as simple as checking consistency of a concept descrip-
tion. For example, the system would not allow the concept
definition

3Some description logics support higher-ordered role relationships as
well. All description logics support at least binary relationships.

Fig. 1. A simple model for an assembly with slots for switching, power, interface, and performance monitoring circuit packs.
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~define-concept Power1
~and

~at-least 1 power!
~at-most 0 power!!!

because it is not possible to haven fillers for power where
n is both greater than or equal to 0 and less than or equal to
1 simultaneously. Description logic reasoners only allow in-
put of coherent descriptions in the conceptual model.

Perhaps the most important role of contradiction detec-
tion for configuration applications is detecting over-
constrained models and rolling back such models to a
consistent state. For example, going back to Figure 1, add-
ing the following information toASSEMBLY-1

(ind-add ASSEMBLY-1 (at-least 2 interface) )

makesASSEMBLY-1inconsistent with its parent concept
SimpleAssembly , which has ~at-most 1 inter-
face !. The description logic reasoner would detect this in-
consistency and revert back to the state prior to the addition
of ~at-least 2 interface! to ASSEMBLY-1. Thus, description
logics only allow consistent individuals in the conceptual
model.

classic maintains a set of dependency records for new
facts that have beenderivedas a result of the active part of
a classic model. These records are used to support auto-
matic knowledge base reversion to consistent states as well
asretractionandexplanation. Users are allowed to retract
any piece of information that the system has been told. Any-
thing derived from information included in such a user re-
quest is also retracted. Derived information is never allowed
to be directly retracted.

Also, any information that has been deduced inclassic can
be explained. Explanation usesclassic’s dependency records,
supplemented by certain additional information computed on
the fly, to describe to a user why and how a new fact was de-
rived. This includes explaining how a contradiction was de-
tected.Foramoredetaileddescriptionofexplaining thesekind
of systems see McGuinness and Borgida, 1995; and McGuin-
ness, 1996.As we shall argue subsequently, the effective use
of both retraction and explanation are critical to the contin-
ued success of the PROSE applications.

2.3. Rules

Description logics used in practice allow encoding of for-
ward chaining rules. Rules are associated with concepts, but
are applied only to individuals. They are considered to be
part of conceptual models by some theorists and not by oth-
ers ~Buchheit et al., 1994a,b!. We think of rules as being
part of our models because they play such an important role
in the PROSE application.

Using classic, we would add a rule namedPower-
Rule to theAssemblyWithSwitch concept as follows:

(add-rule AssemblyWithSwitch Power-Rule

(and (at-least 1 power)

(at-least 1 interface)))

An English language version of thePower-Rule is: “any
simple assembly with a switch pack must also have a power
pack and an interface”. This has an antecedent~“any Sim-
pleAssembly with a switch pack”! and a consequent~“must
have a power pack and an interface”!. The antecedent is noth-
ing more than a classified concept, whereas the consequent
is an expression in theclassic description language. When
an individual is classified under the antecedent, the conse-
quent is asserted on that individual.

Rules are used to model information that should not be
used for recognition but is information that is true by virtue
of the classification. A prototypical example of this relates
to a United States law that people must have social security
numbers. Thus, by virtue of being a US Citizen, someone
should also have a social security number. However, we
would not want an application to demand facts about an in-
dividual’s status with respect to having a social security num-
ber before the application could deduce that the individual
is a person.

Also, rules can be used to model circularities. In an effort
to maintain faster computation, the language has been re-
stricted so that every concept must be defined before it is
used. However, if the knowledge engineer truly has a cir-
cular domain, it can be modeled using rules. The rules do
not impact the computational power since they are not used
for classification of concepts, they are only fired once rec-
ognition is performed.

It is possible to perform a data-driven computation using
classic rules. Each time an individual is modified, it is im-
mediately reclassified, and therefore additional parent con-
cepts may be discovered. If any of these new parents have
rules, they are applied to that individual. This causes the
individual to be reclassified once again, possibly causing
additional deductions of parents and associated rule firings.
This process repeats itself until there are no new rules to be
applied following reclassification. The underlying descrip-
tion logic plays an important role in disciplining the appli-
cation of rules. It is not possible, for example, for one rule
to contradict a previous rule applied to an individual.

Rules can be used to both enforce and check constraints
on an object. Thepower-rule forces anySimpleAs-
sembly with a switch pack to have both power and inter-
face fillers. This is active constraint generation.

In this section, we will discuss the power and value of
description logics from a practical standpoint. From a con-
figuration applications standpoint, the most important in-
ferences are inheritance, propagation, user-defined rule
firings, and contradiction detection.

Figure 1 provides a simple example of how inheritance and
specialization combine to provide new information.TheAs-
semblyWithSwitch concept inherits the number restric-
tion from SimpleAssembly ~at-most 4 switch ! and
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combines it with the restriction~at-least 1 switch !.
The resulting number restriction is that number of fillers of
the role switch must be between 1 and 4.

Second, description logics also support propagation along
roles. For example, in our example~Figure 1! whenever the
interface is filled on an instance ofSimpleAssembly , in-
formation is propagated onto the filler. In other words, the
interface filler becomes an instance ofInterfacePacks .

We can also see an example of rule application in the ex-
ample above.ASSEMBLY-1would first be recognized to
be aSimpleAssembly with a switch. Thus, the Power-
Rule would fire, forcingASSEMBLY-1to have at least one
filler for both thepower and theinterface role.

Then, suppose a second individual were created

(define-individual ASSEMBLY-2

(and

SimpleAssembly

(at-most 0 power)))

(ind-add ASSEMBLY-2 (at-least 2 switch))

When ASSEMBLY-2 is created, it is in a consistent state.
However, the additional information that it has at least two
fillers for its switch role, added in the second statement
above, allows the description logic to recognize that it is an
instance of the antecedent of the Power-Rule. In turn, this
causes the power-rule to fire—resulting in an inconsistency
because ASSEMBLY-2 was known to have no power fill-
ers, yet the power rule requires at least one power filler. The
description logic would detect the inconsistency and revert
back to a consistent state prior to the addition of~at-
least 2 switch !.

The examples we have shown are fairly obvious. How-
ever, in real applications there are typically hundreds and
hundreds of assertions, and detection of contradictions is
an extremely valuable feature.

2.4. Discussion

When appropriately used, conceptual modelling helps man-
age the complexity inherent in software applications by pro-
viding a sensible, well-organized domain model. In addition,
the use of explicit models has the effect of enabling new
kinds of functionality not possible with other approaches.

2.4.1. Increasing the design space

All of the product knowledge contained in a PROSE model
can be interactively accessed, publicly examined, verified,
explained, and manipulated as data. This, in a sense, opens
up the design space by making possible new kinds of func-
tionality. We will illustrate this with a single example—the
possibility of combining individual configurators into higher-
level networksolutionsconfigurators.

There is a family of fiber optic transmission products avail-
able in the market today that can be combined into some-
thing called a two-fiber ring network. Such networks are

likely to play a key role in the forthcoming information su-
perhighway. A large two-fiber ring network could have more
than 50 nodes with constraints that extend throughout the
network. Typically, an engineer lays out the network at a
high level, then uses a product configurator to configure each
node separately. Many of the inputs needed to configure each
individual node really reflect characteristics of the network
as a whole, or they may be derived from constraints placed
on the node by adjacent nodes.

Our modelling techniques can be extended to include the
rules of composition for such multinode configurations.
Equally important, the models for individual nodes and net-
works could be combined such that there would be no need
for a separate configuration step for individual nodes. In-
formation needed to configure individual nodes would be
derived from the higher-level network model, allowing the
engineer to concentrate on network design as opposed to
making sure the individual node configurations were con-
sistent and valid.

This approach provides a nice, modular way for a knowl-
edge engineer to extend only one portion of the knowledge
base, essentially ignoring other portions of the domain, and
yet getting the benefits of consistency checking across the
entire domain.

2.4.2. Dealing with complexity and change

No matter what implementation technique is selected, con-
figurator applications rely on having some way to encode
and represent knowledge about products. For example, when
a compiled, procedural language and traditional program-
ming techniques are used, product knowledge is frequently
represented as a decision tree using nested case statements.
It is hard to appreciate the inappropriateness of such meth-
ods without experiencing them first hand. For example, prior
to the deployment of our platform, there were many at-
tempts to develop configurators—many of which were de-
ployed successfully but at a certain cost. One of these
configurators contained a nested case statement in C that
spanned more than 80 pages of source code. It was unmain-
tainable and quite problematic. One of the authors elimi-
nated this maintenance problem by rewriting the code in
classic. Encoding the case inclassic moved much of the
inference burden to the system and away from the human
maintained code, thereby decreasing code lines and increas-
ing reliability and maintainability.

Clearly, there is an upper limit on the problem complexity
that can be addressed with traditional programming tech-
niques.As a practical matter, developers often sidestep the is-
sue by asking end-users to solve selected parts of a problem—
usually the most difficult parts. Although this is a practical
solution of sorts, it requires sophisticated product knowl-
edge on the part of the users, and it greatly constrains the pop-
ulation that can effectively use the application.

The requirement for frequent change and updating is also
part of the equation. As mentioned earlier, it is not uncom-
mon for 40 to 50% of the product knowledge underlying a
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configurator to change over the course of a single year. To
make things worse, the most successful products change the
most and they have the longest effective lifetimes. Hence,
the natural tendency of even the best programs to lose their
organization over time is accelerated. In most cases, the map-
ping between the application domain and the underlying soft-
ware model is complex to start with, and it grows more
complex and arbitrary over time.

In contrast, conceptual models are much closer to the way
people think about and understand products. In our experi-
ence, this substantially increases the range of problems that
developers are willing to take on and, just as importantly,
it helps them maintain a sensible organization for their
application software. For example, there is no need for a de-
veloper to maintain complex control structure. Further, in-
spections of the models are more likely to be meaningful to
product experts who do not have programming experience.
Today, in fact, nonprogrammers maintain most of the PROSE
models.

In a real sense, the modular declarative representation fa-
cilitates the development of new product configurators. A
typical new configurator will often share much of the high-
level structure of other configurators while adding a new
subconcept product in the knowledge base. Our experience
with knowledge acquisition on the PROSE project shows
that constructing a simple question and answer interface to
support maintenance by nonprogrammers is quite feasible.
Typically, maintenance of a configurator involves adding
new subconcepts with appropriate role restrictions. The in-
terfaces for incremental knowledge acquisition tasks may
always be somewhat domain-specific, but there is still gen-
eral work in description logics needed before such tasks can
be supported to our satisfaction. For example, when a new
subconcept is added, the knowledge should determine what
questions users must answer and help them understand the
constraints on and consequences of those answers. Gil and
colleagues~Gil & Melz, 1996! provide a very nice knowl-
edge acquisition environment for description logic-based
planning applications. We have also provided a domain-
specific configuration knowledge acquisition tool.

2.4.3. Debugging environments

Most experienced developers are familiar with an envi-
ronment in which every detail of an application program is
under programmer control—from allocating memory to
pointer manipulation. The active nature of description log-
ics is a strength from a consistency checking perspective
but may be a challenge from a debugging perspective. A
description logic will automatically deduce all logical con-
sequences of input and thus it may appear to a knowledge
engineer that deductions are being made that were not spec-
ified. Helping developers understand events within these
models is critical to successfully moving this technology
from the world of research into real applications.

We want developers to be able to concentrate on the ap-
plication domain rather than the underlying technology. We

think that explanation and visualization are two promising
techniques that will help make the advantages of concep-
tual modelling available to a wider range of people.

It is both a strength and a weakness of configurators built
on description logics that a large number of inferences are
performed automatically by the system. Any one of these
inferences may be the key to understanding why something
did ~or did not! happen.

The main challenge to an explanation facility is to ex-
plain just the right inference in a language that the user un-
derstands. This is complicated by the fact that users are
frequently unable to articulate a precise question. Some de-
scription logics provide forms of explanation, but to date,
classic’s explanation facility is by far the most extensive.
classic provides an underlying logical foundation on which
any deduction can be explained, including error deductions.

We have provided a system that provides explanations
when the user is able to formulate a precise question, that is
capable of suggesting meaningful questions when a user is
stuck, and can prune answers to include only the most im-
portant parts of a deduction. We also have worked with help
desk personnel to determine the most important inferences
in configuration applications and then produced an imple-
mentation of explanation that explained only those infer-
ences. This experience suggests to us that there may be a
tradeoff between completeness and understandability on the
part of users. Attempting to explain a complete set of infer-
ences may overwhelm the typical user. On the other hand,
explaining too few inferences will not provide enough in-
formation for effective debugging. In one of our implemen-
tations, we were able to explain more than 80% of the
naturally occurring questions posed by knowledge engi-
neers explaining only four major inferences. A flexible, user-
tunable system is best of course, but it is important as well
to limit output and provide well-chosen defaults governing
those limitations.

The existing explanation module~Resnick et al., 1993;
McGuinness, 1996! in classic is aimed at knowledge engi-
neers, but it provides mechanisms for allowing knowledge en-
gineers to specify the presentation form of explanations. In
some cases, we have provided natural language templates for
the final applications, and we have experimented with graph-
ical representations.

Because they are based on binary relationships between
individuals, conceptual models lend themselves to visual-
ization. The graph shown in Figure 1 has a very close cor-
respondence to the underlying constructs of the model, so
close that it would be possible to provide a direct manipu-
lation interface in which users inserted switch pack individ-
uals into slots or roles on an assembly individual using drag
and drop. A graph showing individuals and their relations
conveys a great deal of information about the state of a con-
figuration in a very efficient way.

Of course, there are many challenges to good visualiza-
tion solutions. Taxonomies might be highly interconnected,
there may be many types of objects and connections be-
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tween objects, and the system may be active and have to be
updated. We are currently exploring visualization tech-
niques that can help a user understand what is happening
inside an active data base. We are not alone in our efforts at
visualization. Some efforts are underway to represent ge-
neric frame systems~Karp et al., 1995! and some descrip-
tion logics provide a general graphical interface such as the
loom interface~Swartout et al., 1996! and Welty’s work on
classic ~Welty, 1996!. Others provide graphical interfaces
aimed at particular application domains~Rector et al., 1997!.
Others have provided graphical presentations of descrip-
tion logic-based data mining applications~Brachman et al.,
1993! and we have provided graphical presentations of some
configuration applications~McGuinness et al., 1995!.

3. ANALYSIS OF DESCRIPTION LOGICS
FOR CONFIGURATION

We began with a list of needs for our configuration task and
now we will summarize how our description logic-based
solution meets these needs.

3.1. Object-oriented modelling

Description logics have been designed to support represent-
ing and reasoning with objects, portions of objects, con-
straints on portions of objects, relationships between objects,
etc. Their frame structured nature along with their support
for inferences relating objects to each other makes them a
natural choice when this need arises. They can represent ob-
jects just as many of the other object-oriented competitors,
yet they provide inferences that many competitive systems
do not provide. We have shown how a simple object-centered
problem depicted with the aide of Figure 1 can be repre-
sented in a description logic.

Additionally, the ability to represent more advanced se-
mantic notions such as disjoint classes, hierarchies of roles
~such as relative being a more general binary relationship
than uncle!, inverse roles~such as husband and wife!, num-
ber restrictions, etc., make description logics particularly
well suited to model more complicated object relationships.

3.2. Incrementally evolving specifications

One of the design goals for description logics was to be able
to add specifications at any point. They deduce all conse-
quences of the information they have at any given time but
do not assume that information that is not known yet must
be false. Thus, if some particular assembly is only given a
restriction on apower role but not on aswitch role, the
system will just make deductions based on current knowl-
edge and provide a partial description of the assembly with-
out making negative conclusions about missing switch
information. This gives consumers the ability to provide par-
tial specifications and then inspect the logical implications
of input. It also allows consumers to generate a partial con-

figuration description and use that as a query against a knowl-
edge base of past completed specifications and retrieve all
completed systems matching the partial description. Fi-
nally, it allows maintainers of the knowledge base to input
information as it becomes available.

3.3. Extensible Schemas

New concepts may be added at any time. If a new class is
added, the other objects in the knowledge base will be re-
classified with respect to the new definition. Thus, when
we addedAssemblyWithTwoSwitches , the system de-
termined that it was subsumed byAssemblyWithSwitch .
Also, the instances ofAssemblyWithSwitch such as the
individual ASSEMBLY-1 would be reexamined to see if they
might be instances of the new concept. This incremental ad-
dition capability is particularly important when new prod-
ucts are added to a configurator family. Data-base-oriented
solutions do not have this property.

3.4. Active completion of knowledge

Since description logics deduce all logical consequences of
given information, they are naturally suited to applications
where one might put in a small number of restrictions and
then ask “what are the consequences of my restrictions?”
For example, we may not know much other than that the
assembly will require at least one power filler and one in-
terface filler, but if one knows price ranges on those com-
ponents, then one knows a minimum price of the system so
far. More typically, one choice for one filler of a slot in one
part of the configuration may have many implications about
other choices in the configuration. Thus, a description logic-
based system can easily be used to see how any particular
choice~or set of choices! impacts the possibilities for other
portions of a configuration. Other technologies may do this
too, such as constraint-based approaches, but they may not
have a declarative specification available for the~possibly
incremental! explanation of the deductions.

Another thing that can be useful with inference comple-
tion is a deduction of the most specific statement of informa-
tion that can be logically proven at any moment in time. For
example, ifweknowthatall instancesofSwitchPacks have
a price betweenX andY, and we know a system has exactly
Nswitches , all ofwhichareSwitchPacks , thenweknow
the system has a switch cost betweenN*XandN*Y.As the sys-
tem evolves, this price bound can be maintained as it be-
comes more specific and as other information evolves. Also
restrictions on roles become more specific as the session pro-
gresses. Initially, we may know that a role needs to be filled
with an instance of aSwitchPack . This description can be
used to query the data base for possible fillers. Later, addi-
tional restrictions may have caused this role to be known to
be filled with an instance of aHighCapacitySwitch-
Pack .The more restrictive query can then be submitted to the
data base to retrieve a smaller set of possible fillers.
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3.5. Reasoning in the presence of incomplete
information

Description logic computation is considered to be eager~as
opposed to lazy! and thus consequences are computed for
each new piece of information. Thus, incomplete specifica-
tions do not present a problem for deduction, since the de-
rived information about the final configuration specification
incrementally becomes more detailed.

3.6. Detect and maintain consistency

Since description logics provide a sort of theorem proving
capability by providing logical completion of information,
they detect inconsistencies as soon as they are logically im-
plied by the given information. This can be particularly use-
ful if one type of customer for the configuration system wants
to input a partial or complete parts list for a price quote and
validation. The description logic-based system can detect if
the parts are consistent when put together into a configura-
tion. If there is an inconsistency, the system can identify the
conflicting information.classic, and some other descrip-
tion logics, can provide access to information about the tem-
porary state of the knowledge base when it detected the
inconsistency and before it reverted back to a consistent state.
Access to this temporary state is required in order to debug
conflicting inference chains. Without access to it, it is im-
possible to determine the exact conflicting deductions.

3.7. Retraction and truth maintenance

Since description logics maintain a consistent knowledge
base at all times and since they keep records of what infor-
mation was deduced as a result of other information, they
can easily support applications where information is added,
consequences are deduced, information is later retracted, and
then consequences are simultaneously retracted. They also
will not allow the situation that may cause problems in ex-
pert systems applications where one rule fires producing as-
sertion X and a later rule fires, producing assertion;X.

3.8. Declarative encoding of knowledge

Instead of requiring domain-specific inferences to be re-
corded procedurally, for example in procedures, descrip-
tion logics provide a foundation for representing knowledge
declaratively. As a result, they can provide a more modular
and more readable knowledge base of information for knowl-
edge engineers to maintain. This facilitated the large sav-
ings in the previously mentioned 80-page case statement by
eliminating the code dealing with procedural information.
Also, this declarative specification can then be used to sup-
port explanations of deductions. Explanation of reasoning
was not one of the initial project goals; however, it emerged
as the project grew. To support knowledge maintenance, it
became critical to provide automatic explanation facilities.

Also, the customer help desk required justifications of
conclusions.

Although it was not one of our initial needs, description
logics can also be used to identify when a configuration is
complete. Weida provides a description of how his descrip-
tion logic-based configuration design identifies when all parts
have been specified completely enough to be sent in as an
order~Weida, 1996!.

Beyond these features, it has been stated that one of the
greatest advantages of using a description logic is the sup-
port for conceptual modelling. These claims are not re-
stricted to configuration domains. Such claims have been
made in process engineering~Baader & Sattler, 1996!, med-
ical applications~Rector et al., 1997!, natural language
~Bagnasco et al., 1996; Kuessner, 1997!, functional model-
ling ~Compatengenlo et al., 1997!, as well as configuration.
The first round of proof is the growing empirical evidence
that families of applications can be built, maintained, and
supported in multiple domains. In the next round of proof,
we expect to see groups reuse knowledge by adding new
layers to preexisting knowledge bases, perhaps originally
built by other individuals and0or groups.

3.9. Limitations of description logics (with respect
to configuration)

There are some things for which description logics, in their
current implementations, have not been designed. We would
like to address the topics and then discuss the impact on
configuration problems.

3.9.1. Probability representation

While proposals have been published on probabilistic ex-
tensions to description logics~e.g., Jaeger, 1994; Koller
et al., 1997!, implemented description logics do not include
a representation and reasoning formalism for probabilities.
This did not impact our representation of the configuration
task.

3.9.2. Preference semantics

Having a method of representing preferences would have
made life easier in many cases. For example, we encoun-
tered statements such as “Boards of type X go into slot 0
first, slot 11 next, and slot 21 last” with an increasing fre-
quency over the years. This is especially true for equipment
that must go through a traffic engineering phase. Traffic en-
gineering is used to balance load across resources.

3.9.3. Completion support

While description logics perform logical completion~i.e.,
they make all implicit information explicit!, they do not sup-
port a formal notion of determining all roles on a particular
object whose at-least restrictions are greater than the num-
ber of fillers for the role and then generating fillers for those
roles. It is one of the strengths of description logics for
incremental tasks that they reason with the open-world

342 D.L. McGuinness and J.R. Wright

https://doi.org/10.1017/S089006049812406X Published online by Cambridge University Press

https://doi.org/10.1017/S089006049812406X


assumption. However that leads to descriptions of configu-
rations where users have not specified enough information
for the configuration system to deduce a complete model of
the component to be configured. Additionally, in most de-
scription logics, domain-independent choice of an order of
roles to fill on objects in a class is not a simple task. Current
configuration implementations force the knowledge engi-
neer to determine an order of role filling to be used. Thus,
the knowledge engineer in the stereo domain might decide
that he or she should fill the receiver role first since it places
more constraints on fillers for other roles, and then fill the
speaker role, followed by the cd-player role. In a deployed
configurator, it took one of our knowledge engineers a week
to determine the proper ordering for role closure. A more
supportive deductive system might attempt to determine a
role order that could be used to close roles.~We are cur-
rently addressing this issue with theoretical work aimed at
determining when knowledge bases may produce an order-
ing of roles that can be used to obtain the same minimal
model of the component to be configured.! In our imple-
mented complete functions, we used domain knowledge to
choose an order for role closure and then wrote functions
that would close roles on any object in given classes.

3.9.4. Optimization

Implemented description logics do not support an opti-
mization component that may be used to choose component
choices that are not provably implied by the specification.
This did not cause any problems for our configurators since
the system implemented a sort of default choice which was
used to complete roles whenever the user did not specify
enough information initially. While an optimization com-
ponent for configuration may be desirable, we conjecture
that implemented configurators may produce better solu-
tions if they interface to special-purpose optimization rou-
tines that are knowledgeable of the domain.

3.9.5. Limited expressive power

Description logicshaveconsciouslychosen to limit thecon-
structors in their languages in order to be able to support com-
plete~or near complete! reasoning in an acceptable time.Thus,
it could be the case that particularly complicated products
might push the representational component to its limits. In our
eight years of modelling experience, we were not adversely
impacted by the representational restrictions of choosing one
of the less expressive description logics. Inclassic, there is
a test function that allows a knowledge engineer to define ad-
ditional functions that will encode information that goes be-
yond the base language. It was by analyzing the use of these
test functions that we determined how the core description
logic should expand over the years. What we found through
this analysis and through interviews with users, was that peo-
ple rarely thought additional expressive power was neces-
sary to complete their tasks.The most common requests of the
basic system usually had to do with additional environmen-
tal support~such as graphical browsers, knowledge acquisi-

tion environments, etc.! and rarely had to do with additional
constructors.

4. CONCLUSION

Although it is not often recognized as such, modelling ac-
tivities of some sort underlie much of what is today called
application programming. However, the mapping between
an application domain and a software implementation is usu-
ally complex, and it loses its structure over time as a system
is updated. In fact, every successful project has a few gurus
around who are indispensable largely because they under-
stand the complex relationship between the application do-
main and the application software. The description logic-
based modelling techniques discussed above are an attempt
to bring the structure and vocabulary of the underlying soft-
ware model closer to the way people think about an appli-
cation domain. The techniques represent a convergence of
work in several disciplines, namely data modelling, pro-
gramming languages~primarily object-oriented technolo-
gy!, and artificial intelligence~knowledge representation and
knowledge engineering!. Perhaps because the physical struc-
ture of hardware products provides such a compelling model,
configurators have provided fruitful ground to exercise these
techniques in a real application.
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