
Math. Struct. in Comp. Science (2003), vol. 13, pp. 5–13. c© 2003 Cambridge University Press

DOI: 10.1017/S096012950200381X Printed in the United Kingdom

A simple proof of the undecidability

of strong normalization

P A W E �L U R Z Y C Z Y N†

Institute of Informatics, University of Warsaw

Banacha 2, 02-097 Warsaw, Poland

Email: urzy@mimuw.edu.pl

Received 20 November 2000; revised 15 December 2001

The purpose of this note is to give a methodologically simple proof of the undecidability of

strong normalization in the pure lambda calculus. For this we show how to represent an

arbitrary partial recursive function by a term whose application to any Church numeral is

either strongly normalizable or has no normal form. Intersection types are used for the

strong normalization argument.

1. Introduction

It is a well known fact that normalization of pure lambda terms is undecidable. The

standard method of proving this fact is via lambda representability of all (partial) recursive

functions. It is also well known that strong normalization is undecidable too. However,

even people familiar with lambda calculus are often confused about the proper way of

proving this fact. First of all, it does not follow from Rice’s theorem, because strong

normalization is not closed under equality. In addition, the standard way of representing

a recursive function in lambda calculus, the one we find in most textbooks, uses the fixed

point combinator Y. Since expressions involving Y do not strongly normalize, this method

is useless for our purpose.

But there is also another possibility, based on an idea that is apparently due to Kleene.

It is to ‘delay’ the action of the fixpoint combinator in such a way that one can avoid the

loop, which is inherent in Y. This trick was used in Barendregt (1984, Chapter 9), to prove

that all partial recursive functions are representable in the λI calculus. It was necessary,

because for λI terms normalization implies strong normalization, so the standard approach

with the non-normalizable fixed point simply would not work. Also, recursive function

representability in both CL and lambda-calculus is shown without the help of Y in the

book Hindley and Seldin (1986).

Undecidability of strong normalization was first shown as a consequence of the repres-

entability of partial recursive functions in λI. See Leivant (1983) and Barendregt (1984,

Exercise 9.5.17). In Henglein and Mairson (1994) there is a partial argument explicitly

based on the ‘delayed fixpoint’ Y ≡ λf.(λx.f(λy.yxx))(λx.f(λy.yxx)), which is applied to a

Turing Machine simulation.

† Partly supported by KBN Grant 8 T11C 035 14.

https://doi.org/10.1017/S096012950200381X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950200381X

P. Urzyczyn 6

With a similar technique, one can obtain a simple representation of every k-ary partial

recursive function f by a lambda term F , with the following property. For all n1, . . . , nk:

(a) If f(n1, . . . , nk) is defined, then Fn1 . . . nk is strongly normalizable;

(b) If f(n1, . . . , nk) = n, then Fn1 . . . nk =β n;

(c) If f(n1, . . . , nk) is undefined, then Fn1 . . . nk does not have a normal form.

Here, the boldface n is the Church numeral corresponding to n.

The definition of F is no more complicated than the ordinary one, and showing

that F represents f (that is, that conditions (b) and (c) hold) is not very hard (see

Proposition 1). But proving condition (a) above is not immediate. After some ‘simple

proof’ attempts led into complicated syntactic considerations, the author of the present

note discovered that perhaps the simplest way to prove strong normalization is via typing

in a type system satisfying the property of strong normalization. In fact, such a typing has

already been done in the higher-order polymorphic lambda calculus Fω (Urzyczyn 1997).

This construction, aimed at proving the undecidability of typability in Fω , is, however,

extremely complicated. This complication is unnecessary if all we want is condition (a)

above, because we can use a more flexible type system of intersection types and still retain

the strong normalization (Barendregt et al. 1983).

In this note we adopt the approach of Urzyczyn (1997) to work with intersection types.

We use the ω-free variant of the system CDV (Coppo et al. 1981). Although the main

proof follows exactly the same pattern as that of Urzyczyn (1997), the use of intersection

types makes it incomparably simpler and, hopefully, much more understandable.

The general structure of our argument consists of three implications. If f is the function

represented by F , then for all arguments n1, . . . , nk , we have:

(1) f(n1, . . . , nk) defined ⇒ Fn1 . . . nk typable;

(2) Fn1 . . . nk typable ⇒ Fn1 . . . nk strongly normalizable;

(3) Fn1 . . . nk strongly normalizable ⇒ f(n1, . . . , nk) defined.

Thus, we essentially prove the undecidability of two problems at the same time: strong

normalization and typability in intersection types.

This is not so surprising, because typability in intersection types is in fact equivalent

to strong normalization. See Pottinger (1980) for the first proof ever, and Amadio and

Curien (1998) for the first correct proof published (though it was preceded by an un-

published one by Betti Venneri).

2. How to represent partial recursive functions

We work with the ordinary Church numerals, defined by

n ≡ λfx.fn(x).

Our representation of the successor function is standard:

succ ≡ λnfx.f(nfx),

as are the obvious representations of zero, projections, and composition (of total func-

tions). The representation of a function defined by primitive recursion is standard as well,

https://doi.org/10.1017/S096012950200381X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950200381X

Undecidability of strong normalization 7

but we must describe it in detail in order to be able to define the typing in Section 3. For

this, we need pairing and projections defined routinely as:

〈M,N〉 ≡ λx.xMN;

πi ≡ λx1x2.xi, for i = 1, 2.

Suppose that f : ωm+1 → ω is defined by the equations:

f(0, n1, . . . , nm) = g(n1, . . . , nm);

f(n + 1, n1, . . . , nm) = h(f(n, n1, . . . , nm), n, n1, . . . , nm),

and let G and H represent g and h, respectively. Define auxiliary terms

Step ≡ λp.〈succ(pπ1), H(pπ2)(pπ1)x1 . . . xm〉;
Init ≡ 〈0, Gx1 . . . xm〉.

Then the representation of f is taken as

F ≡ λxx1 . . . xm.x Step Initπ2.

Of course, this definition encodes an iterative algorithm to compute f(n1, . . . , nm), for any

numbers n1, . . . , nm. One generates a sequence of pairs of numbers

(0, a0), (1, a1), . . . , (n, an),

where we have a0 = g(n1, . . . , nm), each ai+1 is h(ai, i, n1, . . . , nm), and, finally, an =

f(n, n1, . . . , nm).

Finally, to represent minimization, first define:

• true ≡ λxλy.x;

• false ≡ λxλy.y;

• zero ≡ λx.x(λy.false)true;

• if M then N else P ≡ MNP .

Now suppose that

f(n1, . . . , nm) = �(µn[g(n, n1, . . . , nm) = 0]),

where g and � are total functions represented by G and L, respectively. (The ordinary

minimum is the special case where � is the identity.) We define an auxiliary term

W ≡ λy.if zero(Gyx1 . . . xm) then λw.Ly else λw.w(succ y)w,

which is meant to represent a single step of the iteration. The function f is then represented

by the term

F ≡ λx1 . . . xm.W0W.

To see that it works, assume that µn[g(n, n1, . . . , nm) = 0] = n, and �(n) = r. Then observe

that we have the following reduction sequence:

Fn1 . . . nm →→β W0W →→β W1W →→β · · · →→β WnW →→β Ln →→β r, (1)

where W is the result of substituting n1, . . . , nm for x1, . . . , xm in W .

https://doi.org/10.1017/S096012950200381X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950200381X

P. Urzyczyn 8

On the other hand, if the minimum is undefined (this is the only way in which

f(n1, . . . , nm) can be undefined), we have an infinite reduction sequence

Fn1 . . . nm →→β W0W →→β W1W →→β · · · →→β WnW →→β · · ·

which is quasi leftmost in the sense of Barendregt (1984, Chapter 13). Since quasi leftmost

reductions are normalizing, the normal form does not exist.

Proposition 1. All partial recursive functions are representable with the help of the above

definitions. Composition, primitive recursion and minimum need only be applied to total

recursive functions.

Proof. By Kleene’s normal form theorem (see Rogers (1967, Section 1.10), for example),

every partial recursive function f can be written as

f(n1, . . . , nm) = �(µy[g(n1, . . . , nm, y) = 0]),

where g is total recursive (in fact primitive recursive) and � is the first inverse of a pairing

function.

3. How to type function representations

In what follows, intersection types, defined by the grammar

〈type〉 := 〈type variable〉 | (〈type〉 → 〈type〉) | (〈type〉 ∩ 〈type〉)

are taken as associative, commutative and idempotent, and without any constant types or

subsumption rules. That is, we deal with the ω-free variant of the system CDV (Coppo

et al. 1981), denoted by �∧ in Cardonne and Coppo (1990), see Figure 1.

Notationally, intersection has priority over arrow, and the latter associates, as usual, to

the right. A straight type of a Church numeral n is any type of the form

(τ0 → τ1) ∩ (τ1 → τ2) ∩ · · · ∩ (τn−1 → τn) → τ0 → τn,

whenever n > 0, and any type of the form (τ0 → τ1) → τ0 → τ0, for n = 0. A fundamental

type of n is an arbitrary intersection of straight types for n.

If τ is a fundamental type of n, then clearly � n : τ. In fact, a straight type of n in which

all the τi’s are distinct type variables, is the principal type of n.

(VAR) E � x : σ if (x : σ) is in E

(E→)
E � M : τ → σ, E � N : τ

E � (MN) : σ
(I→)

E(x : τ) � M : σ

E � (λx.M) : τ → σ

(E∩)
E � M : σ ∩ τ

E � M : σ
(I∩)

E � M : τ, E � M : σ

E � M : τ ∩ σ

Fig. 1. Type assignment rules.

https://doi.org/10.1017/S096012950200381X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950200381X

Undecidability of strong normalization 9

But note that not every type of n must be fundamental. For instance, the following is

a non-fundamental type of 2:

(α → β) ∩ (δ → γ) ∩ (β ∩ γ → ε) → α ∩ δ → ε

Note also that the type int = (α → α) → α → α is a straight type of all n.

The following definition is quite different from ordinary definitions of a function

representable in a typed system. The difference is that we do not require a single integer

type, but we allow different typings for different arguments. This is called ‘non-uniform’

representability. Daniel Leivant was the first to show that all recursive functions are

non-uniformly representable in intersection types (Leivant 1983). In fact, we use a slightly

stronger notion than Leivant’s.

A partial function f : ωm → ω is properly representable in intersection types by a closed

term F , if the following hold:

(1) F represents f (that is, satisfies (b) and (c) in Section 1).

(2) If f(n1, . . . , nm) = n and τ is a straight type of n, there are fundamental types

σ1, . . . , σm of n1, . . . , nm, respectively, such that � F : σ1 → · · · → σm → τ.

Unfortunately, in part (2) of the above definition we cannot require that σ1, . . . , σm be

straight types. But it can be strenghtened as follows.

Lemma 2. Let f : ωm → ω be properly representable, and assume f(n1, . . . , nm) = n. If τ is

a fundamental type of n, there are fundamental types σ1, . . . , σm of n1, . . . , nm, respectively,

such that � F : σ1 → · · · → σm → τ.

Proof. The proof is easy and omitted.

Lemma 3. The base functions: zero, successor and projections are properly representable.

Proof. This is completely obvious for zero and projections. For the successor, observe

that

� succ : ((τ0 → τ1) ∩ (τ1 → τ2) ∩ · · · ∩ (τn−1 → τn) → τ0 → τn) →
(τ0 → τ1) ∩ (τ1 → τ2) ∩ · · · ∩ (τn−1 → τn) ∩ (τn → τn+1) → τ0 → τn+1,

for all n > 0. In addition, we have

� succ : ((τ0 → τ1) → τ0 → τ0) → (τ0 → τ1) → τ0 → τ1.

Lemma 4. A composition of total, properly representable functions is properly repre-

sentable.

Proof. The proof is easy and omitted.

Lemma 5. Let f : ωm+1 → ω be defined by primitive recursion from properly represent-

able total functions g : ωm → ω and h : ωm+2 → ω as follows:

f(0, n1, . . . , nm) = g(n1, . . . , nm);

f(n + 1, n1, . . . , nm) = h(f(n, n1, . . . , nm), n, n1, . . . , nm).

Then f is properly representable.

https://doi.org/10.1017/S096012950200381X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950200381X

P. Urzyczyn 10

Proof. As noted in Section 2, the process of computing f(n1, . . . , nm) according to the

recursive definition of f can be represented by the sequence

(0, a0), (1, a1), . . . , (n, an),

where a0 = g(n1, . . . , nm), ai+1 = h(ai, i, n1, . . . , nm), for i= 0, . . . , n − 1, and an = f(n,

n1, . . . , nm). Let a fundamental type τ of an be given. For i= n, . . . , 0, we define by induction

backwards a sequence of tuples of types (τi, ζi, σ
1
i . . . , σ

m
i), so that τi, ζi and σ

j
i are

fundamental types of ai, i, and nj , respectively. We begin with τn = τ and ζn = σj
n = int.

Assume that (τi+1, ζi+1, σ
1
i+1 . . . , σ

m
i+1) is already defined. As h is properly representable by

a term H , we may choose (τi, ζi, σ
1
i . . . , σ

m
i) so that ζi = ζ ′

i ∩ ζ ′′
i , and the following holds:

� H : τi → ζ ′
i → σ1

i → · · · → σm
i → τi+1,

� succ : ζ ′′
i → ζi+1.

Now g is properly representable by some G, and there are σ1
−1, . . . , σ

m
−1, fundamental types

of n1, . . . , nm, such that

� G : σ1
−1 → · · · → σm

−1 → τ0.

For j = 1, . . . , m, let σj = σ
j
−1 ∩ σ

j
0 ∩ · · · ∩ σj

n.

It remains to define the type for the first argument of f. Let us use the following

abbreviation:

A × B = ((A → B → A) → A) ∩ ((A → B → B) → B).

It should be readily seen that Γ � 〈M,N〉 : A × B holds whenever Γ � M : A and

Γ � N : B. Let ζ be the following type

((ζ0 × τ0) → (ζ1 × τ1)) ∩ · · · ∩ ((ζn−1 × τn−1) → (ζn × τn)) → (ζ0 × τ0) → (ζn × τn).

We leave it to the reader to verify that

� F : ζ → σ1 → · · · → σm → τ.

Lemma 6. Let A and B be arbitrary types, and let

ρ0(A,B) = ((A → B → A) → (A → B → B)) → (A → B → A) → A → B → A;

ρ1(A,B) = ((A → B → A) → (A → B → B)) → (A → B → A) → A → B → B;

ρn(A,B) = ((A → B → A) → (A → B → B)) ∩ ((A → B → B) → (A → B → B)) →
(A → B → A) → A → B → B, when n > 1.

Clearly, ρn(A,B) for each n is a straight type of n. In addition, � zero : ρ0(A,B) → A →
B → A and, also, � zero : ρn(A,B) → A → B → B, for n � 1. Note that A → B → A
and A → B → B are types of true and false, respectively.

Proof. The proof is easy and omitted.

Lemma 7. Let f : ωm → ω be defined from total, properly representable functions

g : ωm+1 → ω and � : ω → ω as follows:

f(n1, . . . , nm) = �(µn[g(n, n1, . . . , nm) = 0]).

Then f is properly representable.

https://doi.org/10.1017/S096012950200381X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950200381X

Undecidability of strong normalization 11

Proof. Assume that g is properly representable by a term G, and let F be as in

Section 2. Observe that the reduction (1) of Section 2 uses 2n + 2 copies of the term W .

We (informally) denote different copies by Wk and W
∗
k , where k = 0, . . . , n+ 1, so that we

can write our reduction sequence as follows:

Fn1 . . . nm →→β W 00W
∗
1 →→β W 11W

∗
2 →→β · · · →→β WnnW

∗
n+1 →→β Ln →→β r.

It is convenient to think that each Wk and W
∗
k is obtained by an appropriate substitution

from its own private copy of W , which is informally denoted by Wk and W ∗
k , respectively.

We will write F as λx1 . . . xm.W00W
∗
1 . During our reduction we obtain many copies of W ∗

1 ,

and this copying process can be represented by the following scheme:

W ∗
1 ⇒ W ∗

2 ⇒ W ∗
3 ⇒ · · · ⇒ W ∗

n ⇒ W ∗
n+1

⇓ ⇓ ⇓ ⇓
W1 W2 W3 · · · Wn

Let ν be a fixed straight type of r. We will construct fundamental types σ1, . . . , σm of

n1, . . . , nm so that � F : σ1 → · · · → σm → ν will hold. First choose a fundamental type τ

of n, satisfying L : τ → ν.

Our main task is to define an appropriate type for W . This type will be an intersection

of all types that need to be assigned to all the copies of W along the reduction process.

We describe types for these copies by induction, beginning with W ∗
n+1 and ending with W ∗

1

and W0.

We begin with W ∗
n+1, the copy of W that is never applied to an argument. Let

[w] = α∩ (int → α → int), where α is a fresh type variable. We define A = B = [w] → int.

Suppose that g(n + 1, n1, . . . , nm) = p. Because g is properly defined by G, there are

fundamental types ζ ′
n+1 and σn+1

1 , . . . , σn+1
m , of n + 1 and n1, . . . , nm, respectively, such that

G : ζ ′
n+1 → σn+1

1 → · · · → σn+1
m → ρp(A,B). (See Lemma 6.) Since A = B anyway, this

implies that x1 : σn+1
1 , . . . , xm : σn+1

m , y : ζn+1 � zero(Gyx1 . . . xm) : A → A → A. Now choose

ζ ′′
n+1 so that L : ζ ′′

n+1 → int, which guarantees that y : ζ ′′
n+1 � λw.Ly : [w] → int. We also

have y : int � λw.w(succ y)w : [w] → int. Let us write [n+ 1] for ζ ′
n+1 ∩ ζ ′′

n+1 ∩ int. It follows

that (recall that A = [w] → int):

{
xj : σn+1

j

}
j�m

, y : [n + 1] � if zero(Gyx1 . . . xm) then λw.Ly else λw.w(succ y)w : A.

Let [W ∗
n+1] stand for the type [n+1] → [w] → int. We have obtained the following typing:

x1 : σn+1
1 , . . . , xm : σn+1

m � W : [W ∗
n+1].

The next step is to define a type [Wn] for Wn. Take a fresh variable β, and define

A = [W ∗
n+1] → ν;

B = ([n + 1] → β → ν) ∩ β → ν.

Take a fundamental type ζ ′ of n, such that � succ : ζ ′ → [n + 1]. Then we have

y : τ � λw.Ly : A and y : ζ ′ � λw.w(succ y)w : B.

https://doi.org/10.1017/S096012950200381X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950200381X

P. Urzyczyn 12

We know that g(n, n1, . . . , nm) = 0. Take fundamental types ζ and ξn1 , . . . , ξ
n
m of n and

n1, . . . , nm, respectively, so that

y : ζ, x1 : ξn1 , . . . , xm : ξnm � Gyx1 . . . xm : ρ0(A,B),

and define [n] as ζ ∩ ζ ′ ∩ τ. Then we obtain

y:[n], {xj:ξnj }j�m � if zero(Gyx1 . . . xm) then λw.Ly else λw.w(succ y)w : A.

Thus, we can define [Wn] as [n] → [W ∗
n+1] → ν, and we have the typing

x1 : ξn1 , . . . , xm : ξnm � W : [Wn].

Now we define [W ∗
n] to be [Wn] ∩ [W ∗

n+1]. If we take σn
j as ξnj ∩ σn+1

j , for j = 1, . . . m, we

conclude with

x1 : σn
1 , . . . , xm : σn

m � W : [W ∗
n].

We proceed to the induction step for k = n − 1, n − 2, . . . , 1, 0. We define types [Wk] and

[W ∗
k] so that the following holds:

(a) [Wk] = [k] → [W ∗
k+1] → ν, where [k] is a fundamental type of k;

(b) [W ∗
k] = [Wk] ∩ [W ∗

k+1];

(c) x1 : σk
1 , . . . , xm : σk

m � W : [W ∗
k], for some fundamental types σk

1 , . . . , σ
k
m of n1, . . . , nm.

Choose fundamental types ζ ′ and ζ ′′ of k, satisfying L : ζ ′ → int and succ : ζ ′′ → [k+1].

Then take A = [W ∗
k+1] → int and B = [W ∗

k+1] → ν. By the induction hypothesis, we have

[W ∗
k+1] = [Wk+1] ∩ [W ∗

k+2] = ([k + 1] → [W ∗
k+2] → ν) ∩ [W ∗

k+2]. Thus we have

y : ζ ′ � λw.Ly : A and y : ζ ′′ � λw.w(succ y)w : B.

We know that g(k, n1, . . . , nm) = p = 0. We choose fundamental types ζ and ξk1 , . . . , ξ
k
m of k

and n1, . . . , nm, respectively, satisfying

y : ζ, x1:ξk1 , . . . , xm:ξkm � Gyx1 . . . xm : ρp(A,B).

Finally, we take [k] = ζ ∩ ζ ′ ∩ ζ ′′ and σk
j = ξkj ∩ σk+1

j , for j = 1, . . . , m. Now [Wk] and

[W ∗
k] are defined according to conditions (a) and (b), respectively. It is routine to verify

condition (c), and thus our induction step is completed.

Applying conditions (a)–(c) to k = 0, 1 we obtain that the desired fundamental types of

n1, . . . , nm are σ0
1 , . . . , σ

0
m.

Theorem 8. Every partial recursive function is properly representable in intersection types.

Proof. The proof follows from Lemmas 3, 4, 5 and 7.

Corollary 9. Strong normalization of pure lambda terms is undecidable.

https://doi.org/10.1017/S096012950200381X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950200381X

Undecidability of strong normalization 13

Proof. The halting problem is reducible to strong normalization. Indeed, let a partial

recursive function f:ω →ω be (effectively) represented by F . For a given n, ask whether Fn

is strongly normalizable. If it is, then f(n) is defined, otherwise it is not.

Corollary 10. Strong normalization of combinatory terms is undecidable.

Proof. Yohji Akama (Akama 1997) gives a simple translation ()a from lambda calculus

to Combinatory Logic, which preserves strong normalization. That is, a lambda term M is

strongly normalizable if and only if the combinatory term (M)a is strongly normalizable.

The translation is effective, and thus strong normalization of lambda terms reduces to

strong normalization for combinatory terms.

Acknowledgement

I should like to thank Morten Heine Sørensen, who encouraged me to write down this

proof. Also, thanks are due to Silvia Ghilezan and two anonymous referees for their

comments.

References

Akama, Y. (1997) A lambda-to-CL translation for strong normalization. In: de Groote, P. (ed.) Proc.

Typed Lambda Calculi and Applications. Springer-Verlag Lecture Notes in Computer Science 1210

1–10.

Amadio, R. M. and Curien, P.-L. (1998) Domains and Lambda Calculi, Cambridge University

Press.

Barendregt, H. P. (1984) The Lambda Calculus: Its Syntax and Semantics, 2nd edition, North-Holland.

Barendregt, H. P., Coppo, M. and Dezani-Ciancaglini, M. (1983) A filter lambda model and the

completeness of type assignment. Journal of Symbolic Logic 48 (4) 931–940.

Cardone, F. and Coppo, M. (1990) Two extensions of Curry’s type inference system. In:

Oddifreddi, P. (ed.) Logic and Computer Science, Academic Press 19–75.

Coppo, M., Dezani-Ciancaglini, M. and Venneri, B. (1981) Functional character of solvable terms.

Z. Math. Log. Grund. Math. 27 45–58.

Henglein, F. and Mairson, H. G. (1994) The complexity of type inference for higher-order typed

lambda calculi. Journal of Functional Programming 4 (4) 435–477.

Hindley, J. R. and Seldin, J. P. (1986) Introduction to Combinators and λ-calculus, Cambridge

University Press.

Leivant, D. (1983) Polymorphic type inference. Proc. of 10-th ACM Symposium on Principles of

Programming Languages 88–98.

Pottinger, G. (1980) A type assignment for the strongly normalizable λ-terms. In: Seldin, J. P.

and Hindley, J. R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and

Formalism, Academic Press 561–577.

Rogers, H. Jr. (1967) Theory of Recursive Functions and Effective Computability, McGraw Hill.

Urzyczyn, P. (1997) Type reconstruction in Fω . Mathematical Structures in Computer Science 7 329–

358. (Preliminary version in: Proc. TLCA ’93, Springer-Verlag Lecture Notes in Computer Science

664 418–432.)

https://doi.org/10.1017/S096012950200381X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950200381X

