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Abstract

We prove that any skew-symmetrizable cluster algebra is unistructural, which is a

conjecture by Assem, Schiffler and Shramchenko. As a corollary, we obtain that a cluster

automorphism of a cluster algebra A(S) is just an automorphism of the ambient field

F which restricts to a permutation of the cluster variables of A(S).

1. Introduction

A cluster algebra A(S) is a subalgebra of an ambient field F generated by certain combinatorially

defined generators (i.e., cluster variables), which are grouped into overlapping clusters. Roughly

speaking, a cluster algebra is a commutative algebra with an extra combinatorial structure.

Assem, Schiffler and Shramchenko made the following conjecture.

Conjecture 1.1 [ASS14, Conjecture 1.2]. The set of cluster variables uniquely determines the

cluster algebra structure, that is, any cluster algebra is unistructural (see Definition 2.8 for

details).

This is a very interesting conjecture in the following sense. We know that a cluster algebra

A(S) is a commutative algebra with an extra combinatorial structure. As an algebra, A(S) is

generated by the set of cluster variables. So the algebraic structure ofA(S) is uniquely determined

by the set of cluster variables. The above conjecture predicts that the combinatorial structure

of A(S) can be also uniquely determined by the set of cluster variables.

Conjecture 1.1 has been affirmed for cluster algebras of Dynkin type or rank 2 in [ASS14] and

for cluster algebras of type Ã in [Baz16]. Recently, Bazier-Matte and Plamondon have affirmed

Conjecture 1.1 for cluster algebras from surfaces without punctures in [BP20]. Note that all

cluster algebras considered above are with trivial coefficients.

In this paper, we will affirm Conjecture 1.1 for any skew-symmetrizable cluster algebras with

general coefficients and the following is our main theorem.

Theorem 1.2. Any skew-symmetrizable cluster algebra is unistructural.

This paper is organized as follows. In § 2 some basic definitions, notation and known results

are introduced. In § 3 the proof of Theorem 1.2 is given.
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Unistructurality of cluster algebras

2. Preliminaries

2.1 Cluster algebras
Recall that (P,⊕, ·) is a semifield if (P, ·) is an abelian multiplicative group endowed with a binary
operation of auxiliary addition ⊕ which is commutative, associative and such that multiplication
distributes over auxiliary addition.

Let Trop(y1, . . . , ym) be a free abelian group generated by {y1, . . . , ym}. We define the

addition ⊕ in Trop(y1, . . . , ym) by
∏
i y
ai
i ⊕

∏
i y
bi
i =

∏
i y

min(ai,bi)
i . Then (Trop(y1, . . . , ym),⊕) is

a semifield, which is called a tropical semifield.
The multiplicative group of any semifield P is torsion-free [FZ02], hence its group ring ZP

is a domain. We take an ambient field F to be the field of rational functions in n independent
variables with coefficients in ZP.

An integer matrix Bn×n = (bij) is called skew-symmetrizable if there is a positive integer
diagonal matrix S such that SB is skew-symmetric, where S is said to be a skew-symmetrizer
of B.

Definition 2.1. (i) A labeled seed in F is a triplet (x,y, B) such that:

– x = (x1, . . . , xn) is an n-tuple such that X = {x1, . . . , xn} is a free generating set of F over
ZP. We call x (respectively, X) the labeled cluster (respectively, (unlabeled) cluster) and
x1, . . . , xn the cluster variables of (x,y, B).

– y = {yx}x∈x is a subset of P. We call yx1 , . . . , yxn the coefficients of (x,y, B).

– B = (bxi,xj ) is an x× x skew-symmetrizable matrix, called an exchange matrix.

(ii) Let (x,y, B) be a labeled seed. The triplet (X,y, B) is called an (unlabeled) seed, where
X is the (unlabeled) cluster of the labeled seed (x,y, B).

Let (x,y, B) be a (labeled or unlabeled) seed in F . One can associate binomials Fx1 , . . . , Fxn
defined by

Fxk =
yxk

1⊕ yxk

∏
bxi,xk>0

x
bxi,xk
i +

1

1⊕ yxk

∏
bxi,xk<0

x
−bxi,xk
i .

We call Fx1 , . . . , Fxn the exchange binomials of (x,y, B).

Definition 2.2. Let (x,y, B) be a (labeled or unlabeled) seed in F , and Fx1 , . . . , Fxn be the
exchange binomials of (x,y, B). Define the mutation of (x,y, B) at xk as a new triple µxk
(x,y, B) = (x′,y′, B′) in F given by:

x′i =

{
xi if xi 6= xk,

Fxk/xk if xi = xk;

y′x′i
=

{
y−1xk if xi = xk,

yxiy
max(bxk,xi ,0)
xk (1⊕ yxk)−bxk,xi otherwise;

b′x′i,x′j
=

{
−bxi,xj if xi = xk or xj = xk,

bxi,xj + sgn(bxi,xk) max(bxi,xkbxk,xj , 0) otherwise.

It can be seen that µxk(x,y, B) is also a (labeled or unlabeled) seed and

µx′k(µxk(x,y, B)) = (x,y, B).
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Let Tn be the n-regular tree, and label the edges of Tn by 1, . . . , n such that the n different

edges adjacent to the same vertex of Tn receive different labels.

Definition 2.3. A cluster pattern S is an assignment of a labeled seed (xt,yt, Bt) to every vertex

t of the n-regular tree Tn, such that (xt′ ,yt′ , Bt′) = µxk;t .(xt,yt, Bt) for any edge t k t′, where

xk;t is the kth cluster variable of xt.

Let S be a cluster pattern, and (xt,yt, Bt) be the labeled seed at t ∈ Tn. We always denote

xt = (x1;t, . . . , xn;t), Xt = {x1;t, . . . , xn;t}, yt = {y1;t, . . . , yn;t} and Bt = (btij),

where yi;t (respectively, btij) should be understood as yxi;t;t (respectively, btxi;t,xj;t) and the

mutation µxk;t(xt,yt, Bt) will be denoted by µk(xt,yt, Bt). We will also use (Xt,yt, Bt) to denote

the (unlabeled) seed at t.

– Let S be a cluster pattern. The cluster algebra A(S) associated with S is the ZP-subalgebra

of the field F generated by all cluster variables of S.

– If S is a cluster pattern with coefficients in Trop(y1, . . . , ym), the corresponding cluster

algebra A(S) is said to be a cluster algebra of geometric type.

– If S is a cluster pattern with coefficients in Trop(y1, . . . , yn) and there exists a labeled seed

(xt0 ,yt0 , Bt0) such that yi;t0 = yi for i = 1, . . . , n, then the corresponding cluster algebra

A(S) is called a cluster algebra with principal coefficients at t0.

In [FZ02] Fomin and Zelevinsky proved cluster variables enjoying the Laurent phenomenon

and conjectured that the Laurent phenomenon has positivity. The positivity of the Laurent

phenomenon was proved first by Lee and Schiffler in [LS15] for skew-symmetric cluster algebras,

later by Gross et al. in [GHKK18] for skew-symmetrizable cluster algebras, and recently by

Davison in [Dav18] for skew-symmetric quantum cluster algebras.

Theorem 2.4. Let A(S) be a skew-symmetrizable cluster algebra with a labeled seed (xt0 ,yt0 ,

Bt0).

(i) (Laurent phenomenon [FZ02, Theorem 3.1]) Any cluster variable xi;t of A(S) is a ZP-linear

combination of Laurent monomials in xt0 .

(ii) (Positive Laurent phenomenon [GHKK18]) Any cluster variable xi;t of A(S) is an NP-linear

combination of Laurent monomials in xt0 .

Recall that the exchange graph EG(A(S)) of a cluster algebra A(S) is a graph such that:

– the set of vertices of EG(A(S)) is in bijection with the set of (unlabeled) seeds of A(S);

– two vertices are joined by an edge if and only if the corresponding two seeds are obtained

from each other by a single mutation.

The cluster complex of a cluster algebra A(S) is the simplicial complex whose set of vertices

is the set of cluster variables and whose simplices are the subsets of clusters.

Theorem 2.5 [GSV08, Theorem 5]. Suppose that every seed in a cluster algebra A(S) is

uniquely determined by its cluster. Then two clusters are adjacent in the exchange graph of

A(S) if and only if they have exactly n− 1 common variables.
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Proposition 2.6 [CL18, Proposition 6.1]. Let A(S(1)),A(S(2)) be two skew-symmetrizable
cluster algebras having the same exchange matrix at t0. Denoted by (xt(k),yt(k), Bt(k)) the
labeled seed of A(S(k)) at t ∈ Tn, k = 1, 2. The following statements hold.

(i) xi;t1(1) = xj;t2(1) if and only if xi;t1(2) = xj;t2(2), where t1, t2 ∈ Tn and i, j ∈ {1, 2, . . . , n}.
(ii) If there exists a permutation σ of {1, . . . , n} such that

xi;t1(1) = xσ(i);t2(1)

for i = 1, . . . , n, then yi;t1(1) = yσ(i);t2(1) and bt1ij (1) = bt2σ(i)σ(j)(1) for any i and j.

Corollary 2.7. Let A(S) be a cluster algebra and EG(A(S)) be the exchange graph of A(S).
Then:

(i) every seed of A(S) is uniquely determined by its cluster;

(ii) EG(A(S)) coincides with the dual graph of the cluster complex of A(S);

(iii) EG(A(S)) is uniquely determined by the set of cluster variables of A(S) and the set of
clusters of A(S);

(iv) EG(A(S)) is uniquely determined by the initial exchange matrix of A(S), that is,
EG(A(S)) does not depend on the choice of coefficients of A(S).

Proof. (i) This follows from Proposition 2.6(ii) directly.
(ii) By (i) and Theorem 2.5, we know that the exchange graph EG(A(S)) is just the graph

such that:

(a) the set of vertices of EG(A(S)) is in bijection with the set of clusters of A(S);

(b) two vertices are joined by an edge if and only if the corresponding two clusters differ by a
single cluster variable.

So EG(A(S)) coincides with the dual graph of the cluster complex of A(S).
(iii) By the definition of cluster complex, we know the cluster complex of A(S) is uniquely

determined by the set of cluster variables of A(S) and the set of clusters of A(S). By (ii), we
get that EG(A(S)) is uniquely determined by the set of cluster variables of A(S) and the set of
clusters of A(S).

(iv) By Proposition 2.6(i), we know that the cluster complex of A(S) is uniquely determined
by the initial exchange matrix of A(S). Then the result follows from (ii). 2

Corollary 2.7(i) for cluster algebras of geometry type can be found in [GSV08, Theorem 5],
and Corollary 2.7(iv) for skew-symmetric cluster algebras is a result in [CKLP13, Corollary 5.5].

For a cluster algebra A(S), we denote by X (S) the set of cluster variables of A(S).

Definition 2.8 [ASS14]. A cluster algebraA(S) is unistructural if for any cluster algebraA(S ′),
X (S) = X (S ′) implies that the two cluster algebras have the same set of clusters and EG(A(S)) =
EG(A(S ′)).

2.2 The enough g-pairs property
Let A(S) be a cluster algebra with principal coefficients at t0. One can give a Zn-grading of
Z[x±11;t0

, . . . , x±1n;t0 , y1, . . . , yn] as follows:

deg(xi;t0) = ei, deg(yj) = −bj ,
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where ei is the ith column vector of In, and bj is the jth column vector of Bt0 , i, j = 1, 2, . . . , n.
As shown in [FZ07], every cluster variable xi;t of A(S) is homogeneous with respect to this
Zn-grading. The g-vector g(xi;t) of a cluster variable xi;t is defined to be its degree with respect
to the Zn-grading, and we write g(xi;t) = (gt1i, g

t
2i, . . . , g

t
ni)
> ∈ Zn. Let xt be a labeled cluster of

A(S). The matrix Gt = (g(x1;t), . . . , g(xn;t)) is called the G-matrix of xt.
Denote xa

t :=
∏n
i=1 x

ai
i;t for a ∈ Zn, which is a Laurent monomial in xt. If a ∈ Nn, then xa

t is
called a cluster monomial in xt.

Clearly, any Laurent monomial xa
t is also homogeneous with respect to the Zn-grading. The

degree of xa
t is g(xa

t ) := Gta, which is called the g-vector of xa
t .

Theorem 2.9.

(i) [GHKK18, CL18] Different cluster monomials have different g-vectors.

(ii) [NZ12, CL18] Each G-matrix has determinant ±1.

Let I be a subset of {1, . . . , n}. We say that (k1, . . . , ks) is an I-sequence, if kj ∈ I for
j = 1, . . . , s.

Definition 2.10. Let A(S) be a skew-symmetrizable cluster algebra of rank n with initial seed
at t0, and I = {i1, . . . , ip} be a subset of {1, 2, . . . , n}.

(i) We say that a labeled seed (xt,yt, Bt) of A(S) is connected with the initial labeled seed
(xt0 ,yt0 , Bt0) by an I-sequence, if there exists an I-sequence (k1, . . . , ks) such that

(xt,yt, Bt) = µks · · ·µk2µk1(xt0 ,yt0 , Bt0).

(ii) We say that a labeled cluster xt of A(S) is connected with xt0 by an I-sequence, if there
exists a labeled seed containing the labeled cluster xt such that this labeled seed is connected
with the initial labeled seed (xt0 ,yt0 , Bt0) by an I-sequence.

Clearly, if the labeled cluster xt is connected with xt0 by an I-sequence, then xi;t = xi;t0 for
i /∈ I.

For I = {i1, . . . , ip} ⊆ {1, . . . , n}, we assume that i1 < i2 < · · · < ip. Let

πI : Rn → R|I| = Rp

be the canonical projection given by πI(m) = (mi1 , . . . ,mip)>, for m = (m1, . . . ,mn)> ∈ Rn.

Definition 2.11. Let A(S) be a skew-symmetrizable cluster algebra of rank n with principal
coefficients at t0, and I be a subset of {1, . . . , n}.

(i) For two labeled clusters xt,xt′ of A(S), the pair (xt,xt′) is called a g-pair along I, if it
satisfies the following conditions:

– xt′ is connected with xt0 by an I-sequence;

– for any cluster monomial xv
t in xt, there exists a cluster monomial xv′

t′ in xt′ with v′i = 0
for i /∈ I such that

πI(g(xv
t )) = πI(g(xv′

t′ )),

where g(xv
t ) and g(xv′

t′ ) are g-vectors of the cluster monomials xv
t and xv′

t′ , respectively.

(ii) A(S) is said to have the enough g-pairs property if for any subset I of {1, . . . , n} and any
labeled cluster xt of A(S), there exists a labeled cluster xt′ such that (xt,xt′) is a g-pair along I.
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Note that πI(g(xv
t )) = πI(g(xv′

t′ )) just means that the two g-vectors g(xv
t ) and g(xv′

t′ ) coincide
at the components indexed by I.

Example 2.12. Let A(S) be the principal coefficients cluster algebra at the seed ((x1, x2),
(y1, y2), B), where B =

(
0 1
−1 0

)
. By calculation, we know that A(S) has five different cluster

variables appearing in the following labeled clusters:

(x1, x2)
µ2−→ (x1, x3)

µ1−→ (x4, x3)
µ2−→ (x4, x5)

µ1−→ (x2, x5)
µ2−→ (x2, x1),

where x3 = (y2x1 + 1)/x2, x4 = (y1y2x1 + y1 + x2)/x1x2, x5 = (y1 + x2)/x1. The following are
the G-matrices of the corresponding labeled clusters:

G(x1,x2) =

(
1 0
0 1

)
, G(x1,x3) =

(
1 0
0 −1

)
, G(x4,x3) =

(
−1 0
0 −1

)
,

G(x4,x5) =

(
−1 −1
0 1

)
, G(x2,x5) =

(
0 −1
1 1

)
, G(x2,x1) =

(
0 1
1 0

)
.

We can check that the pair of labeled clusters ((x4, x5), (x1, x2)) is a g-pair along an I = {2}-
sequence.

Firstly, (x1, x2) is connected with the initial labeled cluster (x1, x2) by an I = {2}-sequence.
Secondly, for any cluster monomial xa4x

b
5 (a, b > 0) in (x4, x5), its g-vector is the vector

g(xa4x
b
5) = (−a− b, b)>.

We can choose the cluster monomial x01x
b
2 = xb2 in (x1, x2), and we know that its g-vector is

g(xb2) = (0, b)>.

It is easy to see that the two g-vectors g(xa4x
b
5) and g(xb2) coincide at the components indexed

by I = {2}, that is, πI(g(xa4x
b
5)) = πI(g(xb2)).

Theorem 2.13 [CL18]. Any skew-symmetrizable cluster algebraA(S) with principal coefficients
at t0 has the enough g-pairs property.

2.3 Compatibility degree on the set of cluster variables
Let A(S) be a skew-symmetrizable cluster algebra, and (xt0 ,yt0 , Bt0) be a labeled seed of A(S).
By the Laurent phenomenon, any cluster variable x of A(S) has the form x =

∑
v∈V cvx

v
t0 , where

V is a finite subset of Zn, 0 6= cv ∈ ZP. Let −di be the minimal exponent of xi;t0 appearing in
the expansion x =

∑
v∈V cvx

v
t0 , where i = 1, . . . , n. Then x has the form

x =
f(x1;t0 , . . . , xn;t0)

xd11;t0 · · ·x
dn
n;t0

,

where f ∈ ZP[x1;t0 , . . . , xn;t0 ] with xj;t0 - f for j = 1, . . . , n. The vector

dt0(x) := (d1, . . . , dn)>

is called the denominator vector (or d-vector for short) of the cluster variable x with respect
to xt0 .

Let A(S) be a skew-symmetrizable cluster algebra, and X (S) be the set of cluster variables
of A(S). In [CL18], we proved that there exists a well-defined function

d : X (S)×X (S) → Z>−1,

which is called the compatibility degree of A(S). For any two cluster variables xi;t and xj;t0 , the
value of d(xj;t0 , xi;t) is defined by the following steps:
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– choose an (unlabeled) cluster Xt0 containing the cluster variable xj;t0 ;

– compute the d-vector of xi;t with respect to Xt0 , say, dt0(xi;t) = (d1, . . . , dn)>;

– d(xj;t0 , xi;t) := dj , which is called the compatibility degree of xi;t with respect to xj;t0 .

Remark 2.14 [CL18, Theorem 6.3]. The compatibility degree has the following properties.
(1) The value d(xj;t0 , xi;t) does not depend on the choice of Xt0 , thus the compatibility degree

function is well defined.
(2) d(xj;t0 , xi;t) = −1 if and only if d(xi;t, xj;t0) = −1, and if and only if xj;t0 = xi;t.
(3) d(xj;t0 , xi;t) = 0 if and only if d(xi;t, xj;t0) = 0, and if and only if xj;t0 6= xi;t and there

exists a cluster Xt′ containing both xj;t0 and xi;t.
(4) By (2), (3) and d(xj;t0 , xi;t) > −1, we know that d(xj;t0 , xi;t) 6 0 if and only if d(xi;t,

xj;t0) 6 0, and if and only if there exists a cluster Xt′ containing both xj;t0 and xi;t.
(5) By (4), we know that d(xj;t0 , xi;t) > 0 if and only if d(xi;t, xj;t0) > 0, if and only if there

exists no cluster Xt′ containing both xj;t0 and xi;t.

We say that xi;t and xj;t0 are d-compatible if d(xj;t0 , xi;t) 6 0, that is, if there exists a cluster
Xt′ containing both xj;t0 and xi;t. A subset M of X (S) is a d-compatible set if any two cluster
variables in this set are d-compatible.

There is another type of compatible sets, which we call c-compatible sets. A subset M of
X (S) is a c-compatible set if there exists a cluster Xt′ such that M ⊆ Xt′ . Roughly speaking,
c-compatibility is just compatibility with respect to clusters.

Theorem 2.15 [CL18, Theorem 7.4]. Let A(S) be a skew-symmetrizable cluster algebra, and
X (S) be the set of cluster variables of A(S). Then:

(i) a subset M of X (S) is a d-compatible set if and only if it is a c-compatible set, that is, M
is a subset of some cluster of A(S);

(ii) a subset M of X (S) is a maximal d-compatible set if and only it is a maximal c-compatible
set, that is, M is a cluster of A(S).

3. Proof of Theorem 1.2

Lemma 3.1. Let A(Spr) be a skew-symmetrizable cluster algebra with principal coefficients at t0,
and xi;t be any cluster variable. Let xt′ be a labeled cluster such that (xt,xt′) is a g-pair along an
I = {1, 2, . . . , k−1, k+1, . . . , n}-sequence (xt′ exists thanks to Theorem 2.13), and dt

′
(xi;t) = (d1,

. . . , dn)> be the d-vector of xi;t with respect to xt′ . Finally, let r = (r1, . . . , rn)> ∈ Zn be the
vector such that Gt′r = g(xi;t) (r exists thanks to Theorem 2.9(ii)), and F = λxr

t′ be the Laurent
monomial with exponent vector r appearing in the Laurent expansion of xi;t with respect to the
labeled cluster xt′ . Then the following statements hold.

(i) λ = 1.

(ii) xk;t′ = xk;t0 and rj > 0 for any j different from k.

(iii) (a) If rk > 0, then xi;t = xk;t′ = xk;t0 ;

(b) if rk = 0, then xi;t is in xt′ and is different from xk;t′ = xk;t0 ;

(c) if xi;t is not in xt′ , then rk < 0.

(iv) dk =


−1 if rk > 0,

0 if rk = 0,

a positive integer if rk < 0.
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Proof. This lemma is essentially due to [CL18, Lemma 5.2], but with different presentation. For

the convenience of the reader, we give the proof.

Without loss of generality, we can assume that k = n.

(i) This is a direct result of [CL18, Theorem 3.1], which says that the Laurent expansion of

xi;t with respect to xt′ has the form

xi;t = xr
t′

(
1 +

∑
06=v∈Nn, u∈Zn

cvy
vxu

t′

)
,

where cv > 0 and r satisfies g(xi;t) = Gt′r.

(ii) Denote g(xi;t) = (g1, . . . , gn)>. Since (xt,x
′
t) is a g-pair along I = {1, . . . , n−1}, we know

that for the cluster variable xi;t (as a cluster monomial in xt), there exists a cluster monomial

xv′
t′ in xt′ with v′j = 0 for j /∈ I, that is, v′n = 0 such that

πI(g(xi;t)) = πI(g(xv′
t′ )) = πI(Gt′v

′).

Because (xt,x
′
t) is a g-pair along I = {1, . . . , n− 1}, we know that xt′ is connected with xt0

by an I = {1, . . . , n − 1}-sequence, and thus xn;t′ = xn;t0 . So the G-matrix of xt′ has the form

Gt′ =
(
G(t′) 0
∗ 1

)
. Thus πI(g(xi;t)) = πI(g(xv′

t′ )) = πI(Gt′v
′) just means that

(g1, . . . , gn−1)
> = G(t′)(v′1, . . . , v

′
n−1)

>.

By g(xi;t) = (g1, . . . , gn−1, gn)> = Gt′r, we get that

(g1, . . . , gn−1)
> = G(t′)(r1, . . . , rn−1)

>.

It is known from Theorem 2.9(ii) that det(G(t′)) = det(Gt′) = ±1, so we can get

(r1, . . . , rn−1)
> = (v′1, . . . , v

′
n−1)

> ∈ Nn−1.

That is, rj > 0 for any j different from n.

(iii) We begin with parts (a) and (b). If rn > 0, then r ∈ Nn, and xr
t′ is a cluster monomial

in xt′ having the same g-vector with the cluster variable xi;t. By Theorem 2.9(i), we get that

xi;t = xr
t′ . Then by [CL18, Lemma 5.1], xi;t is a cluster variable in xt′ . More precisely, if rn > 0,

then xi;t = xn;t′ = xn;t0 . If rn = 0, then xi;t = xj;t′ for some j 6= n.

Part (c) follows from (a) and (b).

(iv) This follows from (iii) and the definition of the components of d-vectors. 2

The above lemma is about cluster algebras with principal coefficients, and we can turn it into

a lemma about cluster algebras with general coefficients with the help of separation formulas in

[FZ07] by Fomin and Zelevinsky.

Lemma 3.2 [FZ07, Theorem 3.7]. Let A(S) be a skew-symmetrizable cluster algebra with initial

labeled seed (xt0 ,yt0 , Bt0), and A(Spr) be a cluster algebra with principal coefficients at (xpr
t0
,

ypr
t0
, Bpr

t0
) such that xpr

t0
= xt0 and Bpr

t0
= Bt0 . Let xi;t be a cluster variable of A(S) and

xpri;t = xpri;t(x1;t0 , . . . , xn;t0 ; y1, . . . , yn)
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be the corresponding cluster variable of A(Spr). Then the Laurent expansion of xi;t with respect

to the initial cluster xt0 can be obtained from the Laurent expansion of xpri;t with respect to

xpr
t0

= xt0 by the formula

xi;t =
xpri;t|F (x1;t0 , . . . , xn;t0 ; y1;t0 , . . . , yn;t0)

F |P(y1;t0 , . . . , yn;t0)
,

where F (y1, . . . , yn) = xpri;t|x1;t0=···=xn;t0=1.

Let A(S) be a skew-symmetrizable cluster algebra, and (xt0 ,yt0 , Bt0) be a labeled seed

of A(S). By the Laurent phenomenon, any cluster variable xi;t of A(S) has the form xi;t =∑
v∈V cvx

v
t0 , where V is a finite subset of Zn and 0 6= cv ∈ ZP. We call V the support set of xi;t

with respect to xt0 and denote it by V t0(xi;t) := V .

Corollary 3.3. Let A(S) be a skew-symmetrizable cluster algebra, and (xt0 ,yt0 , Bt0) be a

labeled seed of A(S). For any cluster variable xi;t, the support set V t0(xi;t) only depends on the

exchange matrix at t0, and does not depend on the choice of coefficients of the cluster algebra.

Proof. Let A(Spr) be a cluster algebra with principal coefficients at (xpr
t0
,ypr

t0
, Bpr

t0
) such that

xpr
t0

= xt0 and Bpr
t0

= Bt0 , and xpri;t be cluster variable of A(Spr) corresponding to xi;t. Denote

by V t0(xpri;t) the support set of xpri;t with respect to xpr
t0

= xt0 . By Lemma 3.2, we know that

V t0(xpri;t) = V t0(xi;t). By the arbitrariness of the choice of coefficients of A(S), we know the

support set V t0(xi;t) only depends on the exchange matrix at t0. 2

Proposition 3.4. Let A(S) be a skew-symmetrizable cluster algebra with an initial labeled seed

(xt0 ,yt0 , Bt0), and A(Spr) be a cluster algebra with principal coefficients at (xpr
t0
,ypr

t0
, Bpr

t0
) such

that xpr
t0

= xt0 and Bpr
t0

= Bt0 . For any cluster variable xi;t of A(S), let

xpri;t = xpri;t(x1;t0 , . . . , xn;t0 ; y1, . . . , yn)

be the corresponding cluster variable of A(Spr). Let xpr
t′ be the labeled cluster such that (xpr

t ,x
pr
t′ )

is a g-pair along an I = {1, 2, . . . , k−1, k+1, . . . , n}-sequence (xpr
t′ exists thanks to Theorem 2.13),

and xt′ be the corresponding labeled cluster of A(S). Let dt
′
(xi;t) = (d1, . . . , dn)> be the d-vector

of xi;t with respect to xt′ . Finally, let r = (r1, . . . , rn)> ∈ Zn be the vector such that Gt′r = g(xpri;t)

(r exists thanks to Theorem 2.9(ii)), and F = λxr
t′ be the Laurent monomial with exponent vector

r appearing in the Laurent expansion of xi;t with respect to the labeled cluster xt′ . Then the

following statements hold.

(i) λ 6= 0.

(ii) xk;t′ = xk;t0 and rj > 0 for any j different from k.

(iii) (a) If rk > 0, then xi;t = xk;t′ = xk;t0 ;

(b) if rk = 0, then xi;t is in xt′ and is different from xk;t′ = xk;t0 ;

(c) if xi;t is not in xt′ , then rk < 0.

(iv) dk =


−1 if rk > 0,

0 if rk = 0,

a positive integer if rk < 0.
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Proof. (i) By Lemma 3.1(i), we know that r is in the support set V t′(xpri;t). By Corollary 3.3,

V t′(xi;t) = V t′(xpri;t). So λ 6= 0.

(ii) By Lemma 3.1(i), we know that xprk;t′ = xprk;t0 and rj > 0 for any j different from k. By
Lemma 3.2, we can get xk;t′ = xk;t0 .

(iii) Parts (a) and (b) follow from Lemma 3.1(iii) (a), (b) and Lemma 3.2.
Part (c) follows from (iii) (a) and (b).
(iv) This follows from (iii) and the definition of the components of d-vectors. 2

Proof of Theorem 1.2. Let A(S) and A(S ′) be two skew-symmetrizable cluster algebras having
the same set of cluster variables, that is, X (S) = X (S ′). We need to show that A(S) and A(S ′)
have the same set of clusters and EG(A(S)) = EG(A(S ′)).

We first show that x, z ∈ X (S) = X (S ′) are d-compatible in A(S) if and only if they are
d-compatible in A(S ′).

Denote by xt = (x1;t, . . . , xn;t) the labeled cluster of A(S) at the vertex t ∈ Tn and by
zu = (z1;u, . . . , zm;u) the labeled cluster of A(S ′) at the vertex u ∈ Tm. We know that m = n,
because they are both the transcendence degree of F over QP.

Let x, z ∈ X (S) = X (S ′) be two cluster variables which are d-compatible in A(S ′). Assume
by contradiction that x and z are not d-compatible in A(S), that is, there exists no cluster of
A(S) containing both x and z. For the cluster variables z and x, by viewing (z, x) as (xi;t, xk;t0)
in Proposition 3.4 and applying Proposition 3.4(iii)(c) for A(S), we can find a cluster xt′ of A(S)
containing x (say, x = x1;t′) such that there exists a nonzero Laurent monomial F appearing in
the Laurent expansion of z with respect to xt′ such that the exponent of xj;t′ in F is nonnegative
for any j 6= 1 and the exponent of x= x1;t′ in F is negative (because there exists no cluster ofA(S)
containing both x and z). We can assume that F = cx−v11;t′

∏n
i=2 x

vi
i;t′ with v1 > 0, v2, . . . , vn > 0

and 0 6= c ∈ NP. Thus the Laurent expansion of z with respect to xt′ can be written as

z = F + F̃ (x1;t′ , . . . , xn;t′) = cx−v11;t′

n∏
i=2

xvii;t′ + F̃ (x1;t′ , . . . , xn;t′),

where F̃ is a Laurent polynomial with positive coefficients.
Since x = x1;t′ and z are d-compatible in A(S ′), there exists a cluster zu of A(S ′) such that

zu contains both x = x1;t′ and z. Without loss of generality, we can assume that x = x1;t′ = z1;u
and z = z2;u. Consider the Laurent expansion of xi;t′ with respect to zu,

xi;t′ =
gi(z1;u, . . . , zm;u)

zd1i1;u · · · z
dmi
m;u

,

where gi is a polynomial in z1;u, . . . , zm;u with positive coefficients and zl;u - gi for any l. By
Remark 2.14, and xi;t′ 6= x1;t′ = x= z1;u for any i= 2, . . . , n, we know that d1i > 0 for i= 2, . . . , n.
So for each i = 2, . . . , n, there exists a Laurent monomial Gi appearing in the expansion of xi;t′
with respect to zu such that the exponent of z1;u = x is nonpositive in Gi, otherwise all the
exponents of z1;u = x appearing in the Laurent expansion of xi;t′ are positive, and this will lead
to d1i < 0, which contradicts d1i > 0. So xi;t′ has the form

xi;t′ = Gi + G̃i(z1;u, . . . , zm;u) = ciz
−a1i
1;u

m∏
l=2

zalil;u + G̃i(z1;u, . . . , zm;u),

where G̃i is a Laurent polynomial with positive coefficients, and a1i > 0, 0 6= ci ∈ NP for some
semifield P.
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Substituting x1;t′ = x = z1;u and xi;t′ = ciz
−a1i
1;u

∏m
l=2 z

ali
l;u + G̃i(z1;u, . . . , zm;u) for i > 2 into

z = cx−v11;t′

n∏
i=2

xvii;t′ + F̃ (x1;t′ , . . . , xn;t′),

we obtain the expansion of z = z2;u with respect to zu, which has the form

z2;u = z = cz−v11;u

n∏
i=2

(
ciz
−a1i
1;u

m∏
l=2

zalil;u

)vi
+R(z1;u, . . . , zm;u)

= c
n∏
i=2

ciz
−(v1+v2a12+···+vna1n)
1;u

m∏
l=2

zv2al2+···+vnalnl;u +R(z1;u, . . . , zm;u),

where R can be written as R = r1(z1;u, . . . , zm;u)/r2(z1;u, . . . , zm;u) with r1, r2 ∈ NP[z1;u, . . . ,
zm;u]. Thus we get that

z2;u − c
n∏
i=2

ciz
−(v1+v2a12+···+vna1n)
1;u

m∏
l=2

zv2al2+···+vnalnl;u =
r1(z1;u, . . . , zm;u)

r2(z1;u, . . . , zm;u)
. (1)

Note that there is a Q-algebra homomorphism ϕ : QP(z1;u, . . . , zm;u) → Q(z1;u, . . . , zm;u) given
by

ϕ(a) =

{
1 if a ∈ P,
zp;u if a = zp;u for some p = 1, . . . ,m.

So the equality (1) in QP(z1;u, . . . , zm;u) induces an equality in Q(z1;u, . . . , zm;u) by the action of
the homomorphism ϕ. The new equality is

z2;u − ϕ
(
c

n∏
i=2

ci

)
z
−(v1+v2a12+···+vna1n)
1;u

m∏
l=2

zv2al2+···+vnalnl;u =
ϕ(r1)(z1;u, . . . , zm;u)

ϕ(r2)(z1;u, . . . , zm;u)
, (2)

where ϕ(r1), ϕ(r2) ∈ N[z1;u, . . . , zm;u] and ϕ(c
∏n
i=2 ci) > 1.

Since v1 > 0 and vi, a1i > 0, we get that v1 + v2a12 + · · ·+ vna1n > 0. Take z1;u = 1/2 = 2−1

and z2;u = z3;u = · · · = zm;u = 1, the left-hand side of equality (2) is

1− ϕ
(
c

n∏
i=2

ci

)
2(v1+v2a12+···+vna1n) 6 1− 2(v1+v2a12+···+vna1n) < 0,

but the right-hand side of equality (2) is nonnegative in this case, by ϕ(r1), ϕ(r2) ∈ N[z1;u, . . . ,
zm;u]. This is a contradiction. So if x and z are d-compatible in A(S ′), they must be d-compatible
in A(S).

Similarly, we can show that if x and z are d-compatible in A(S), they must be d-compatible
in A(S ′).

Thus x, z ∈ X (S) = X (S ′) are d-compatible in A(S) if and only if they are d-compatible in
A(S ′). So a subset M ⊆ X (S) = X (S ′) is a maximal d-compatible set in A(S) if and only if it is
a maximal d-compatible set in A(S ′). That is, a subset M ⊆ X (S) = X (S ′) is a cluster in A(S)
if and only if it is a cluster in A(S ′), by Theorem 2.15. Hence, A(S) and A(S ′) have the same
set of clusters.

Hence, A(S) and A(S ′) have the same set of cluster variables and have the same set of
clusters. By Corollary 2.7(iii), we know that EG(A(S)) = EG(A(S ′)). This completes the proof.

2
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Let A(S) be a cluster algebra with coefficients in ZP. A cluster automorphism of A(S) is
a ZP-automorphism of the algebra A(S) mapping a cluster to a cluster and commuting with
mutations.

Corollary 3.5. Let A(S) be a skew-symmetrizable cluster algebra. Then f : A(S) → A(S) is a
cluster automorphism if and only if f is an automorphism of the ambient field F which restricts
to a permutation of the set of cluster variables.

Proof. It is known that this result is true for unistructural cluster algebras by [ASS14, Theorem
1.4]. Then it follows from Theorem 1.2. 2

We know that the definition of compatibility degree function on the set of cluster variables
mainly depends on the cluster structure of a cluster algebra. By Theorem 1.2, the cluster structure
of a cluster algebra is uniquely determined by the set of cluster variables, so the compatibility
degree function is an intrinsic function on the set of cluster variables. It would be interesting
to give a geometric or categorial explanation for compatibility degree functions in general. Note
that for cluster algebras of finite type or from surfaces, the compatibility degree functions have
nice explanations and one can refer to [FZ03a, FZ03b, CP15, Zhu07, FST08].
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Jussieu-Paris Rive Gauche, IMJ-PRG, Batiment Sophie Germain, 75205 Paris Cedex 13,
France

Fang Li fangli@zju.edu.cn

Department of Mathematics, Zhejiang University (Yuquan Campus), Hangzhou,
Zhejiang 310027, PR China

958

https://doi.org/10.1112/S0010437X20007113 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007113

	1 Introduction
	2 Preliminaries
	2.1 Cluster algebras
	2.2 The enough g-pairs property
	2.3 Compatibility degree on the set of cluster variables

	3 Proof of Theorem 1.2
	Acknowledgements
	References

