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Abstract. We present here some very unusual experimental results on the dynamics
of charged particle in a magnetic field which cannot be comprehended in terms of
the Lorentz dynamics regarded, as per the current conceptual framework, as the ap-
propriate one for the macro-scale description. Astonishingly, these results have been
shown to be manifestations of a novel macro-scale quantum structure, designated
as ‘transition amplitude wave’ (TAW), riding with the guiding centre trajectory,
which is generated in the latter trajectory in consequence of the scattering of the
particle with a fixed scattering centre. One set of observed results is thus identified
as matter wave interference effects on the macro-scale attributable to this entity.
The other enigmatic observation demonstrates the detection of a curl-free magnetic
vector potential on the macro-scale, which is also shown to be a consequence of the
TAW embedded in the Lorentz trajectory. These enigmatic results thus point to
the unravelling of a new concept of a ‘dressed’ Lorentz trajectory—dressed with
the TAW—accountable for these results, as against the ‘bare’ trajectory. These
results and the formalism which enables one to comprehend them have led to the
emergence of a new class of phenomena which display quantum properties on the
macro-scale.

1. Introduction

The dynamics of charged particles in a magnetic field have been studied for over a
century and its properties have been central to the studies in relation to fusion and
space plasmas as well as numerous other applications pertaining to beam optics
with the Lorentz equation as the governing equation. Our studies have, however,
unravelled certain features of the motion on the macro-scale which, paradoxically,
cannot be comprehended in terms of the Lorentz equation to whose domain the
motion ostensibly pertains. We have observed some fascinating features which are
unexpected and unsuspected from the viewpoint of the conventional understanding.
In what follows we first describe the enigmatic experimental results alluded to

above pointing out how unsuspectingly different they are from the ones expected
à la the classical Lorentz equation of motion in the context of the particular
system studied. Next, we describe their characteristics and later present the new
theoretical framework in terms of which these results could be understood. In
fact, it is the theoretical formalism which had predicted the effects which were
subsequently substantiated by these experimental results. It is pointed out that
the theoretical formalism has introduced an entirely new concept, not hitherto
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Figure 1. Schematic representation of the experimental arrangement, with the toroidal
solenoid TS (length �o , radius ro ), the position of the plate P , of the electron gun O and
the position of the grid Q. The various angles θ

(g)
1 , θ

(g)
2 , θ

(o)
1 and θ

(o)
2 are as shown. Bold line

with an arrow from O to P represents the magnetic field. Full lines from O to P and from Q
to P denote the propagation lines of the ‘transition amplitude wave’, while the dash-dotted
broken lines from O to P and O to Q represent the propagation lines of the de Broglie waves
along the magnetic field. The curved line AA represents a typical field line of the curl-free
vector potential produced by the toroidal solenoid TS.

advanced, which has manifested in these enigmatic results. This concept has evolved
over the years through both theoretical [1–6] and experimental [7–9] investigations.
However, it must be pointed out that these results, notwithstanding their heterodox
nature, are not violative of the Lorentz equation. In fact, as shown later, the new
dynamical concepts relating to these effects are external to the purview of the
Lorentz dynamics as we understand it and therefore do not violate it. This may
sound puzzling, but will be clarified later.

2. Description of the experiments

We begin by presenting a sequence of experiments which exhibit the unusual
behaviour alluded to above. The experiments are extremely simple, easily repeatable
and the results obtained are robust. The simplest of these experiments consists
in studying the behaviour of an electron beam of extremely low current (∼nA)
injected along an almost homogeneous magnetic field in a highly evacuated vacuum
glass chamber (∼5 × 10−7 torr) with a very small pitch angle (<5◦). The electron
gun is situated at one end of the glass chamber with a collector plate situated at
the other end about 50 cm away. In addition, a movable grid is situated between
the electron gun and the collector plate.
The high vacuum of the chamber is meant to ensure that a e-neutral collision

mean free path is very much longer than the dimensions of the chamber, while
the low beam current ensures that the electrons behave essentially as individual
particles, ruling out entirely the possibility of collective behaviour This is an ex-
tremely important requirement. The experimental system is schematically shown
in Fig. 1

2.1. Electron energy sweep with the grid close to the collector plate

The experiment is carried out by fixing the magnetic field at a certain appropriate
value and recording the plate as well as grid currents (with both of them grounded)
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as the electron beam energy is swept over a range ∼10 eV–1 keV. One could use
the Lorentz dynamics to predict the possible plate current response as the electron
beam energy is swept. It would appear reasonable to expect that the plate current
response would be monotonic with a monotonic sweep of the electron energy:
rising from a small value and saturating to a plateau—something like as shown
in Fig. 2(a). However, the actually observed plate current response in the above
experiment, as shown in Fig. 2(b), is astonishingly at variance from the expected
monotonic one.
The plate current exhibits an undulatory response which is entirely unexpec-

ted. Significantly, the grid current response anti-correlates entirely with the plate
current response. Clearly, such a behaviour cannot be understood in terms of the
Lorentz equation of motion. It has been argued in detail in [7] that any collective
effects or plasma instability must be ruled out as an origin of this effect. Moreover,
these results have been successfully reproduced by other workers [10] as well, and
they have also been scrutinized for their inexplainability in terms of a model based
on the Lorentz dynamics [10,11].
If we convert the plate current profile of Fig. 2(b) into a plot against E−1/2

in place of the original one against the energy E expressed in volts, we obtain
the profile as given in Fig. 2(c). Interestingly, this profile displays peaks that are
equidistant (in terms of the variable E−1/2). This behaviour points to a regularity
which is an important signature of this effect and will be seen to have a bearing on
its nature. It has also been observed [8] that the ‘frequency’ of these oscillations
(with respect to E−1/2) increases with both the increase of the magnetic field B and
the increase in the gun–plate distance Lp . Both these dependencies would again
seen to be entirely unsuspected. Figure 2(d), which depicts a Fourier plot of the
curve of Fig. 2(c), exhibits a dominant peak corresponding to the periodic peaks
in this figure. There also exist smaller harmonic peaks with twice and thrice the
(fundamental) frequency.
We next present the results of yet another experiment which is small but im-

portant variation of the earlier one. Thereafter, we shall present an outline of the
theoretical formalism relating to it.

2.2. Electron energy sweep with a finite distance between the grid and the plate

The experiment is carried out as before, but now with the grid placed at a finite
distance away from the plate (6 cm). With the gun–plate distance fixed as before,
and the external magnetic field tuned to a certain appropriate value, the electron
energy is swept over the same range as before. Both the plate and grid currents
(both grounded) against the energy E (in Volts) as recorded in the experiment
are shown in Fig. 3(a). When plotted against E−1/2 as before, these are given in
Fig. 3(b). This figure displays two interesting features: (i) There exist equidistant
peaks as before in Fig. 2(c). Besides, there exist also envelopes (with equidistant
nodes and anti-nodes) over these peaks which have the appearance of ‘beats’. That
these are really wave ‘beats’ as in the case of sound or other waves will be seen
below. Here again, the plate and grid currents anti-correlate entirely, and Fig. 3(c),
which depicts the Fourier plot of the curves of Fig. 3(b), exhibits two dominant close
frequency peaks that account for the generation of the beats shown in Fig. 3(b). In
the Fourier plot of Fig. 3(c), a small frequency peak is also seen, which is equal to the
difference between the two dominant frequencies. This peak obviously represents
the beat frequency. It proves that the envelopes exhibited in Fig. 3(b) do indeed
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Figure 2. Plate/grid current variation with the electron energy sweep with, gun–plate
distance Lp = 51 cm and magnetic field B = 69 G. (a) Monotonic response of plate current
with the monotonic sweep of electron energy E as expected according to Lorentz dynamics.
(b) Actually observed plate and grid current responses. (c) Plate current response of
(b) replotted as a function of E−1/2 .(d) Fourier plot of curves of (c), showing a dominant
frequency peak and two non-dominant peaks corresponding to the second and third
harmonics.
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Figure 3. Plate/grid current variation with electron energy sweep, with grid-plate distance
D = (Lp − Lg ) = 6 cm, Lp = 51 cm and magnetic field B = 135G. (a) The plate current as a
function of energy E; (b) plate current of (a) transformed in terms of E−1/2 ; (c) Fourier plot
for the curve of (b).
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depict beats between the two ‘frequencies’ determined by the two distances in the
experiment—the gun–plate distance Lp and the gun–grid distance Lg with the beat
frequency determined by the difference (Lp − Lg ). Thus, the undulating response
of the plate (and grid) current can be attributed to a wave nature of the dynamical
system.
What is noteworthy about the plot of Fig. 3(b) as contrasted with that of Fig. 2(c)

is that the qualitative difference between the two arises only because of the different
positions of the grid in the two cases. In fact, as shown in [9], a systematic variation
of the grid position away from the plate has resulted in the corresponding plate cur-
rent profiles to be qualitatively different from the preceding ones. This should itself
come as a surprise in an experimental set-up such as this one, because according to
the Lorentz dynamics, a grounded grid intervening the plate and the electron gun is
not supposed to make any essential difference to the charged particle flow from the
gun to the plate, regardless of its position. It is clear that contrary to the common
perception, the grounded grid in this experiment is playing a non-trivial role. The
nature of the role that the grid position plays will become shortly apparent.

3. Towards understanding these phenomena

As indicated above, an understanding of these results entails the use of an entirely
new matter wave concept associated with a magnetized charged particle, which has
evolved through a formalism developed in [2, 3, 5]. We present below a physical
picture of the idea that this formalism expresses in a formal language.
Consider a charged particle in the magnetic field suffering a collision with a

fixed centre. As a consequence, it would, in general, exchange energies between its
parallel and perpendicular degrees of freedom. According to classical mechanics,
the energy exchange has a continuous spectrum; it can vary from one collision to
another in a continuous manner. However, quantum mechanically, the exchange
can occur only in terms of an integral number of discrete quanta of energy of
magnitude �Ω where Ω= eB/mc is the electron gyro-frequency and �Ω is inter-
Landau level spacing. It will be seen that, interestingly, it is this characteristic
that leads to the concept referred to above, and which ultimately accounts for the
observed enigmatic behaviour. In other words, strange as it may appear, the effects
that are observed to be on the macro-scale are really of quantum origin.
Let E be the total particle energy which can be written as E = (�k)2/2m + (N +

1/2)�Ω, where �k is the particle momentum along the field and (N + 1/2)�Ω is the
quantized perpendicular energy of the Landau state of quantum numberN�1. The
scattering of the particle against a fixed centre conserves the total particle energy
in the collision. If (N ′, k′) is the post-scattering quantities, then one has

(�k)2

2m
+ N�Ω =

(�k′)2

2m
+ N ′

�ω. (3.1)

Writing N ′ = N + n, (n�N,N�1) and nκ = k − k′, one has (taking k′ ∼ k)

k − k′ = nκ = nΩ/v, (3.2)

where we have written �(k+k′) � 2�k = 2mv, v being the particle parallel velocity,
then (3.1) and (3.2) may be written in the form

E = E ′ + n�Ω, P = P ′ + n�Ω/v, (3.3)
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where P and P ′ are the parallel momenta P = �k and P ′ = �k′. Equation (3.3) may
be regarded as ‘energy-momentum’ conservation relation for the guiding centre
motion pre- and post-scattering

(E,P ) = (E ′, P ′) + n(ε,�), (3.4)

where ε = �Ω and � = �κ, and (ε,�) may be regarded as an energy-momentum
packet that may be considered to be exchanged in the process of scattering. Note
also that ε = �v (or equivalently Ω = κv) represents a ‘dispersion relation’ which
shows that the packet (ε,�) moves with the particle’s guiding centre. This packet
may thus be regarded as a ‘quasi-particle’ generated in the guiding centre trajectory
as a consequence of transition across Landau levels in the process of scattering. This
would be a unique kind of ‘quasi-particle’ which rides ‘piggyback’ on the guiding
centre motion. Clearly, this is a consequence of the discrete nature of the Landau
levels and hence of quantum origin. One can associate a matter wave with this
‘quasi-particle’ with a wavelength given by λqp = 2π/κ = 2πv/Ω.
The above simple treatment provides a physical interpretation of the formalism

[3,5] which embeds this concept in a more formal language. The matter wavelength
λqp given above has been identified to belong to the matter wave designated as
‘transition amplitude wave’ (TAW). This concept has, in fact, been developed form-
ally in [5] with the above expression of the wavelength, λqp = 2πv/Ω, having
been explicitly derived in [5]. It is now claimed that the observed results actually
represent matter wave interference effects (in one dimension) on the macro-scale
which are attributable to the ‘transition amplitude wave’. What would appear
rather astonishing to the reader is that the above matter wavelength has an �-
independent expression and that (as a consequence) it falls on the macro-scale.
For typical laboratory parameters, electron energy E � 1 keV, and magnetic field
B = 100 G, λqp ∼ 5 cm, a large wave length for a matter wave indeed! (A detailed
discussion of the macro-scale nature of this wave with the above wavelength is
given in [6].) Furthermore, as demonstrated below, it has indeed manifested in the
experiments as represented in Figs 2 and 3. The �-independence of the wavelength
is a unique characteristic of this matter wave which is an entirely new concept, and
distinct from the de Broglie wave. That this matter wave should yet be within the
framework of quantum mechanics may sound somewhat puzzling. The formalism
of [3, 5] indeed demonstrates the manner in which this concept flows from the
quantum formalism in response to some specific questions. This is what makes this
concept so fascinating.

3.1. The experimental results as macro-scale matter wave interference effects

We now briefly present an algorithm for the explanation of the results depicted in
Figs 2 and 3 as one-dimensional interference effects with the macro-scale matter
wavelength λqp = 2πv/Ω (wavenumber κ = Ω/v). We refer to Fig. 1 to describe
the algorithm. Recall that the TAW is generated in consequence of a scattering
suffered by the particle against a centre as it transits from the gun to the plate. We
identify different points where scattering can occur and the TAWs generated. (i)
One is the grid Q at x = xg against whose wires the particle can be scattered either
by image charges or by direct grazing encounters. (ii) Second, the anode region of
the gun O at x = xo which has a ‘perpendicular’ component of the accelerating
electric field. This ‘perpendicular’ field will also kick particles across Landau levels.
The propagation lines of the TAW are shown by solid lines emanating from the
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respective sources. On the other hand, before the scattering they propagate as de
Broglie waves shown by broken lines in the figure.
The wave amplitudes of the TAW reaching the plate P at xp from these sources

are given by

Ψ(0,1,2) = A(0,1,2) exp
[
iκ(xp − x(p,0,g))

]
, (3.5)

where this equation represents the two TAW amplitudes reaching the plate with
different suffixes (1, 2), corresponding respectively to TAWs emanating from the
gun at O at the position xo and the grid Q at the position xg with amplitudes being
A1 and A2 . In addition, a third amplitude A0 is also included which corresponds
to the unscattered de Broglie wave, which is represented in (3.6) by a propagation
of the TAW from xp to xp . This last one essentially corresponds to the unscattered
de Broglie wave amplitude (which can be looked at as a TAW travelling from xp to
xp , which must be included in the total TAW amplitudes reaching the plate). The
total wave (TAW) amplitude reaching the plate is given by

Ψ(xp) = eiκxp
[
A0e

−iκxp + A1e
−ixo + A2e

−ixg
]
. (3.6)

Evaluating the probability density |Ψ(xp)|2 for the Ψ(xp) given by (3.6) yields
an expression which is analyzed in [4, 8] for the different cases corresponding to
Figs 2 and 3. Figures 2(b) and (c) correspond to the case that the grid is close to
the plate Q, so that one has D(= Lp − Lg = xp − xg )�Lp(= xp − xo). Under these
conditions, the probability density at the plate |Ψp |2 is given by

|Ψp |2 = C1 + C2 cos κLp + C3 cos 2κLp, (3.7)

where C1 , C2 , C3 are given in terms of the coefficients in (3.6); these are detailed
in [4, 8]. This expression describes a periodic variation of the plate current with
the variation of κ = (m/2)1/2(Ω/E1/2) ∼ E−1/2 . This is precisely what is seen in
the experimental curves of Figs 2(b) and (c). The frequency f of the undulations
represented by (3.7) is given by f = (m/2)1/2ΩLp . Such a dependence has indeed
been verified in the experiments [8, 9]. It has been demonstrated that the inter-
peak separation decreases inversely with both B and L in accordance with the
above expression for the frequency f .
We next consider the case (Lp − Lg ) ≤ εLp (with ε ≤ 0.2). This corresponds to

the case of Figs 3(a) and (b). For this case, we have the expression (as worked out
in [8,11])

|Ψp |2 = c1 + C2 cos κLp + C3 cos 2κLp − C4 sin2 1
2
κ(Lp − Lg ) cos κLp (3.8)

with an expression for C4 as given in [11]. The last term in (3.8) describes an oscil-
lation represented by cos κLp modulated by the ‘beat’ frequency Ω(Lp − Lg ). This
is essentially what is demonstrated in Fig. 3(b) with the observed beat frequency
being described by this term. This confirms that the observed beats are essentially
wave beats that have been described by the above wave algorithm. Furthermore,
the beat frequency, according to the above expression, increases with the increase
of the separation D = Lp − Lg . This has been seen in the experiments reported
in [9].
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4. Observation of curl-free vector potential on the macro-scale

We next describe an even more spectacular effect, namely the observation on
the macro-scale of a curl-free vector potential. This would be considered quite
exceptional because, as mentioned above, in the canonical picture where Lorentz
dynamics is the descriptor of macro-scale processes, a curl-free vector potential
cannot have an observable effect. We shall briefly describe the formalism which
predicts the above effect and later describe the experimental results demonstrating
it. The equation of evolution of the TAW which predicts this effect is given by [3]

iμ

n

∂Ψ(n)
∂t

=
1

2m

(
μ

in

∂

∂x
− e

c
Ax

)2

Ψ(n) + μΩΨ(n), (4.1)

where μ = (1
2 mv2

⊥/Ω = N�) is the gyro-action for the perpendicular motion which
also equals N�, the action associated with the Nth Landau level N � 108 . Ax is
the x component of a curl-free vector potential
Note that (4.1) is, interestingly, of the Schrödinger form (one-dimensional), which

involves the vector potential in the same manner as in the quantic Schrodinger
equation (except for the large action μ = N� in place of �) with n having the
same meaning as in (3.3). Because of the presence of Ax in (4.1), it predicts the
observation of the curl-free vector potential on the macro-scale and, moreover, in
one-dimension. A detailed discussion of its observability is given in a recent paper
[6]. The observability of the vector potential is effected, as in the Aharonov–Bohm
case, through a ‘fringe shift’ of the interference maxima of the TAW, described in
Sec. 3 and depicted in Fig. 2
Now we describe the algorithm based on (4.1) to bring out the manner in which

the above-mentioned observation of the curl-free vector potential can be effected.
We refer to the experimental system in Fig. 1, which is essentially the same as
described in Sec. 3. In addition, we have a toroidally wound solenoid (TS) which
produces the curl-free vector potential in the space around, because such a solenoid
would ideally have the magnetic flux completely trapped inside it. The TAW is
generated as before at the position of the electron gun O at xo , and by the grid Q
at x = xg , as electron beam propagates from these to the plate through the space
now permeated by the vector potential. From (4.1) one has the wave amplitudes
Ψ(n)

(1,2) for propagation from xo and xg given by (with appropriately suffixed indices)

Ψ(n)
(1,2) = A

(n)
(1,2) exp

[
ni

μ

∫ xp

(xo ,xg )
dx′

(
mv +

e

c
Ax

)]
. (4.2)

where one has used the form Ψn) ∼ exp[niEt/μ] for the stationary state and intro-
duced v = [2(E−μΩ)/m]1/2 as the parallel velocity. The total probability amplitude
reaching the plate is given by Ψ = Ψ1 + Ψ2 , and the probability density |Ψ(xp)|2 is
evaluated (specializing to n = 1). This is then integrated over a distribution in μ,
g(μ) = (β/

√
π) exp[−β2(μ − μ̄)2 ], arising from a spread in pitch angle injection.

The resulting expression for the probability density is given by

〈
|Ψ(xp)|2

〉
= A1

2 + A2
2 + 2A1A2F (X) cos

[
1
μ̄

∫ xg

xo

dx′
(
mv̄ +

e

c
Ax

)]
(4.3)
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with F (X) given by F (X) = exp[− (X/2βμ̄)2 ] and X given by

X ≡
∫ xg

xO

(Ω/v) dx′ − 2πk. (4.4)

The implication of (4.3) along with (4.4) is that (a) the amplitude F (X) of the
cosine factor in (4.3) is maximum for X = 0, and (b) the cosine factor itself yields
a number of maxima for∫ xg

xo

(
mv̄ +

e

c
Ax

)
dx′ = 2π�μ̄, � = 1, 2, 3, . . . . (4.5)

It can be shown that
∫ xg

xo
Axdx′ = GΦ, where Φ is the total flux trapped in the

toroid, and G is a geometrical factor G < 1. We note that the condition X = 0,
which is essentially the same condition (κL(p, g) = 2πk, k = 1, 2, 3, . . . , ) defining
the interference maxima of Fig. 2, locates the interference maximum andmaximizes
the amplitude of the cosine term in (4.3). In the experiment, such a maximum can
be obtained by tuning the magnetic field with the electron beam of a certain energy
E on, and a given gun–grid distance Lg = (xg − xo). The condition (4.5), on the
other hand, would be satisfied by varying the vector potential field in space. This
will lead to the periodic variation of the probability current at the collector plate
as represented by

〈
|Ψp |2

〉
of (4.3). This thus provides the manner of detection of

the vector potential as the flux in the toroid producing the latter is varied by
varying the current feeding it. Because the curl-free vector potential cannot affect
the particle velocity v̄ in (4.5), it is sufficient to write (4.5) in terms of the differences
Δ

∫ xg

xo
Axdx′ = GΔΦ and Δ�. One thus has the condition

ΔΦ =
c

e
2πμ̄(Δ�),Δ� = 1, 2, 3, . . . (4.6)

for the maxima of the cosine function.
As Φ varies, the interference maximum defined by X = 0 → ΩLg = 2πv (first

interference maximum, for k = 1) returns forΔ� = 1, 2, 3, . . . . The condition ΩLg =
2πv can be incorporated in (4.6) by dividing the latter by the former, yielding

ΔI =
c

2e

mvoLp

ΓG

(
Bp

Bo

)
sin δ tan δ(Δ�), . . . ,Δ� = 1, 2, 3, . . . , (4.7)

where we have written μ̄ = E sin2 δ/Ω, δ being the pitch angle of injection, and
ΔΦ = Γ(ΔI), I being the current feeding the toroidal solenoid with Γ containing
information about the permeability of the solenoid core and its dimensions.
Relation (4.7) predicts the observability of the effect of curl-free vector potential

through the observation of a sequence of maxima for Δ� = 1, 2, 3, as the current in
the solenoid is swept. It predicts the dependence of the inter-peak interval Δ(1)I
(for Δ� = 1) on the velocity vo ∼ E1/2 . Besides this, there is also a dependence on
the geometrical factor G. The experiment has been carried out as outlined above.
Figure 4 gives the variation of the plate current as the solenoidal current I is varied
for the various energies E = 600, 800, 1000, 1100, 1200 eV.
If the vector potential were not to affect the dynamics of the charged particles,

then the plate current should exhibit a ‘flat’ response as a function of the toroid
current. The plot (left-hand panel of Fig. 4), on the other hand, shows a strong
undulatory (periodic) response (with an amplitude ∼50%). In the right-hand panel
of Fig. 4 are Fourier plots of the corresponding curves in the left-hand panel. The
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Figure 4.Detector plate current against the current in the toroidal solenoid. (A)–(E) Detector
current in nA against the solenoidal current in amperes (A), for the electron energies E(eV)=
600, 800, 1000, 1100 and 1200. These have been corrected for the saturating core which
leads to dilation in the inter-peak separation in the original plots with increasing solenoidal
current. (a)–(e) The Fourier plots corresponding to (A)–(E).
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Figure 5. Dependence of ΔI on E−1/2 ; α denotes the slope of the straight line
fit in the figure.

dominant Fourier peaks in these plots represent frequencies, the inverse of which
would give the inter-peak separation ΔI as defined by the relation (4.7). Figure 5
exhibits the dependence of ΔI so determined on the electron energy going as

√
E,

which is predicted by the relation (4.7). The degree of correlation is quite high with
R2 = 0.98. The observations described above thus demonstrate the detection of the
curl-free vector in conformity with the prediction of the formalism of [3, 5]. There
is an additional very interesting dependence of the inter-peak separation ΔI on
the plate grid distance D = Lp − Lg , whose consequences have been worked out in
detail in [6]. For brevity, we do not dwell on this issue.

5. Concluding comments

It would appear quite astonishing that the dynamical system of charged particles in
a magnetic field which has been studied so extensively over the years should reveal
such a novel behaviour on the macro-scale which has been missed so far. Clearly,
none of the two class of experiments which obviously pertain to the macro-scale
could be comprehended in terms of the Lorentz dynamics in whose domain they
fall. The more striking of these is the observation on the macro-scale of the effect
of a curl-free vector potential that the Lorentz equation does not even recognize.
Obviously, there is a new physics at play underlying these enigmatic phenomena.
As shown above, the new physics involves, quite astonishingly, the interplay of the
quantum structure of the trajectory in a rather novel fashion, leading to the new
concept—the ‘transition amplitude wave’ (TAW) which characterizes the behaviour
on the macro-scale.
Thus, the results reported here have not only unravelled entirely unexpected new

features of charged particle dynamics in a magnetic field but also led to the for-
mulation of an entirely new quantum concept—the TAW, not hitherto recognized,
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which relates to macro-scale phenomena as against the conventional association of
quantum dynamics with micro-scale phenomena.
Notwithstanding their enigmatic nature and the inadequacy of Lorentz dy-

namics to explain them, these results do not imply a violation of the Lorentz
equation but rather the presence of the macro-scale quantum entity—the TAW
embedded in the Lorentz trajectory, so that both the attributes—the TAW and
the Lorentz dynamics—co-exist. This is a rather unique situation not hitherto
encountered. One may describe this state figuratively as a Lorentz trajectory being
‘dressed’ with the ‘transition amplitude wave’ and attribute the observed effects
to the ‘dressed trajectory’, in particular, its ‘dress’. The ‘dress’ itself is created
through transition across Landau levels. But the Lorentz trajectory itself is little
affected by the ‘dress’. One can use the term ‘bare’ Lorentz trajectory to describe
the trajectory without the dress. The bare trajectory is what is determined by
the Lorentz equation and the existence of ‘dressed’ trajectory does not violate the
latter. One may refer to [6] for a detailed discussion on this point.
A tribute
It is a great pleasure to submit this paper for the special volume of the Journal

in honour of Padma Shukla on the occasion of his sixtieth birthday. I have chosen
to present in this paper some ideas that have been dear to me, which I have
followed over approximately the same number of years as I have known Padma.
My association with Padma since 1975, when I first met him in Lausanne, has been
both extremely delightful and fruitful both personally and professionally. I wish
Padma many more creative, healthy and happy years ahead, as the ones gone by.
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