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We consider the Lp norms of sums of characteristic functions of affine subspaces of a
vector space V over a finite field under certain restrictions on p, dim V and the
dimensions of the subspaces involved. We investigate the conditions under which
these norms are increased when the affine subspaces are replaced by their parallel
translates passing through 0. Applications to extremal configurations for Kakeya
maximal-type inequalities are given and open questions are raised.

1. Introduction

Let V be a finite-dimensional vector space over a finite field F. If U is an affine
subspace of V , we denote by U∗ the translate (rearrangement) of U which contains
the origin, i.e. the linear subspace of V that is parallel to U . The cardinality of U
is denoted by |U |.

It is trivial that (U1 ∩U2)∗ ⊆ U∗
1 ∩U∗

2 and hence that, for all positive integers m,
|U1 ∩ · · · ∩ Um| � |U∗

1 ∩ · · · ∩ U∗
m|. This leads immediately (upon multiplying out)

to the following.

Proposition 1.1. Let V be a finite-dimensional vector space over a finite field and
let {Vα : α ∈ A} be a collection of affine subspaces of V . Suppose that p ∈ N. Then,
for any collection of non-negative coefficients {xα},

∑
v∈V

( ∑
α

xαχVα
(v)

)p

�
∑
v∈V

( ∑
α

xαχV ∗
α
(v)

)p

.

In this paper we extend this inequality to certain non-integral values of p.

Proposition 1.2. Let V be a finite-dimensional vector space over a finite field and
let {Vα : α ∈ A} be a collection of affine subspaces of V . Suppose that p � dim V .
Then, for any collection of non-negative coefficients {xα},

∑
v∈V

( ∑
α

xαχVα(v)
)p

�
∑
v∈V

( ∑
α

xαχV ∗
α
(v)

)p

. (1.1)
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Such inequalities and certain analogues in Euclidean space are of interest in the
theory of Besicovitch–Kakeya-type maximal operators. For example, if dimV = 2
and the Vα are lines, one in each direction of V , then the inequality of proposition 1.2
gives extremizers for the dual form of the Kakeya maximal operator on the spaces
�p(V ), p � 2. From this the sharp constant for the Kakeya maximal operator itself
on �q(V ), q � 2, may be obtained by direct calculation. For details see the discussion
after proposition 2.5.

When dimV = 1 or 2, the condition p � dim V in proposition 1.2 cannot be
relaxed: see proposition 2.4.

2. Proofs and discussion

For the purposes of the proof of proposition 1.2 we shall in fact show something
slightly stronger.

Proposition 2.1. Let V be an n-dimensional affine subspace of an m-dimensional
vector space W over a finite field F. Let {Vα : α ∈ A} be a collection of affine
subspaces of V . Suppose that p � n. Then, for any collection of non-negative coef-
ficients {xα},

∑
v∈V

( ∑
α

xαχVα
(v)

)p

�
∑

v∈V ∗

( ∑
α

xαχV ∗
α
(v)

)p

.

Proof. We proceed by induction on n. When n = 1 the Vα correspond to points of
V or V itself, and we may assume that they are distinct. So the inequality becomes

∑
v∈V

(xv + xV )p �
( ∑

v∈V

xv + xV

)p

+ xp
V (|F| − 1).

Both sides are homogeneous of degree p in the variables xv (with v ∈ V ) and xV ,
so we may assume that xV = 1. We also note that when all the xv are zero there is
equality. So it suffices to show that, for each v ∈ V ,

∂

∂xv

∑
v∈V

(xv + 1)p � ∂

∂xv

( ∑
v∈V

xv + 1
)p

,

or that, for each v ∈ V ,

(xv + 1)p−1 �
( ∑

u∈V

xu + 1
)p−1

,

which is manifestly true if p � 1.
Assume that we have proved the result whenever V is an affine subspace (of

some ambient space) of dimension less than n. Let V now be an n-dimensional
affine subspace of W , let Vα (α ∈ A) be affine subspaces of V (which we may
assume are distinct) and let us consider

Ψp(x) =
∑

v∈V ∗

( ∑
α

xαχV ∗
α
(v)

)p

−
∑
v∈V

( ∑
α

xαχVα(v)
)p

,
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where x = (xα)α∈A. By homogeneity we may assume that the index αV , corre-
sponding to the whole space V , satisfies xαV

= 1. We also note that, when all the
other xα are zero, Ψp(x) = 0. So it suffices to show that for each α corresponding
to a proper affine subspace of V we have

∂

∂xα
Ψp(x) � 0.

Now

1
p

∂

∂xα
Ψp(x) =

∑
v∈V ∗

( ∑
β

xβχV ∗
β
(v)

)p−1

χV ∗
α
(v) −

∑
v∈V

( ∑
β

xβχVβ
(v)

)p−1

χVα
(v)

=
∑

v∈V ∗
α

( ∑
β

xβχV ∗
β ∩V ∗

α
(v)

)p−1

−
∑

v∈Vα

( ∑
β

xβχVβ∩Vα
(v)

)p−1

�
∑

v∈V ∗
α

( ∑
β

xβχ(Vβ∩Vα)∗(v)
)p−1

−
∑

v∈Vα

( ∑
β

xβχVβ∩Vα
(v)

)p−1

.

Since the dimension of Vα is at most n − 1, the inductive hypothesis applies when
p − 1 � n − 1. Thus, for p � n we have

∂

∂xα
Ψp(x) � 0,

and hence Ψp(x) � 0, completing the inductive step.

Remark 2.2. As the reader may readily verify, the proof can be adapted to show
that for p � n the difference of the right-hand side and the left-hand side of (1.1)
is not only non-negative but also a non-decreasing function of p.

As an immediate application we have the following.

Proposition 2.3. Let V be a vector space over a finite field and let {Vα : α ∈ A}
be a collection of affine subspaces of V , each of which has dimension at most n.
Suppose that p � n + 1. Then, for any collection of non-negative coefficients {xα},

∑
v∈V

( ∑
α

xαχVα(v)
)p

�
∑
v∈V

( ∑
α

xαχV ∗
α
(v)

)p

.

Proof. We have

∑
v∈V

( ∑
α

xαχVα(v)
)p

=
∑
α

xα

∑
v∈V

χVα(v)
( ∑

β

xβχVβ
(v)

)p−1

=
∑
α

xα

∑
v∈Vα

( ∑
β

xβχVβ∩Vα(v)
)p−1

�
∑
α

xα

∑
v∈V ∗

α

( ∑
β

xβχ(Vβ∩Vα)∗(v)
)p−1
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�
∑
α

xα

∑
v∈V ∗

α

( ∑
β

xβχV ∗
β ∩V ∗

α
(v)

)p−1

=
∑
v∈V

( ∑
α

xαχV ∗
α
(v)

)p

by proposition 2.1 applied to each Vα; this is valid when p − 1 � n.

There exists the following converse to proposition 2.3 when n = 0 or 1.

Proposition 2.4. Let n = 0 or 1. Let V be a vector space over a finite field and
let {Vα : α ∈ A} be the collection of n-dimensional affine subspaces of V . If (1.1)
holds, then either p = 1 or p � n + 1.

Proof. First suppose that n = 0. Zero-dimensional affine subspaces of V are just
points, so (1.1) becomes simply

∑
v∈V

xp
v �

( ∑
v∈V

xv

)p

;

this can only hold for p � 1.
Now suppose that n = 1 and p > 1. According to [4], when char(F) �= 2, there

exists a configuration of |F|+1 lines in F
2, one in each direction (i.e. a Besicovitch–

Kakeya set in the finite field setting), whose union E has cardinality 1
2 (|F|2 + |F|).

It is readily verified that each point of E belongs to exactly two of the lines. Place
this configuration on a two-dimensional plane contained in V and let the Vα be the
corresponding lines. Then

∑
v

( ∑
α

χVα(v)
)p

= 2p−1(|F|2 + |F|),

while, on the other hand,

∑
v

( ∑
α

χV ∗
α
(v)

)p

= (|F| + 1)p + |F|2 − 1.

These expressions are equal for p = 1 and p = 2, and the latter is larger than
the former if p � 2. However, if 1 < p < 2, the former is asymptotically 2p−1|F|2
for large |F|, while the latter is (the smaller) |F|2. Hence, (1.1) cannot hold for
1 < p < 2.

The next case of interest is when {Vα : α ∈ A} is the collection of all two-
dimensional affine hyperplanes in F

3. We already know that (1.1) holds for p = 1,
p = 2 and p � 3 in this setting. Taking the Cartesian product of the planar
configuration E as above with F shows that it cannot hold when 1 < p < 2. We
do not, however, know whether (1.1) holds for 2 < p < 3 in this case. One may
suspect that a possible counter-example to (1.1) might consist of a collection of
hyperplanes, exactly one ‘perpendicular’ to each direction in F

3. Nevertheless, if
such a set is to be a counter-example, it must be so for somewhat more subtle
reasons than emerged in the proof of proposition 2.4; the following result shows
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that the left- and right-hand sides of (1.1) are asymptotically equal when |F| is
large.

Proposition 2.5. Let {Vα : α ∈ A} be any collection of two-dimensional affine
hyperplanes in F

3 with exactly one ‘perpendicular’ to each direction in F
3. Then for

2 < p < 3 we have
∣∣∣∣
(∑

v(
∑

α χVα(v))p∑
v(

∑
α χV ∗

α
(v))p

)1/p

− 1
∣∣∣∣ � Cp|F|1−3/p.

Proof. Let H(v) =
∑

α χVα
(v) and H∗(v) =

∑
α χV ∗

α
(v). Then H∗(0) = |F|2+|F|+1

and, for v �= 0, H∗(v) = |F|+1. With ‖ · ‖p denoting the usual lp norm with respect
to normalized counting measure on V and E the corresponding normalized integral,
we have

EH = EH∗ := H̄ = |F|(1 + |F|−1 + |F|−2) ∼ |F|

by direct calculation of EH∗. By direct calculation of EH∗2 and the assumption
that there is exactly one hyperplane in each direction we have

EH2 = EH∗2 ∼ |F|2 ∼ H̄2.

Crucially, direct calculation of E(H∗ − H̄)2 gives the improved estimate

E(H − H̄)2 = EH2 − H̄2 = EH∗2 − H̄2 = E(H∗ − H̄)2 � C|F| ∼ CH̄ � H̄2.

Here, C is independent of |F|, and the improvement over the trivial estimate is
manifested in the last inequality. Finally, direct calculation of EH∗p for 2 < p � 3
gives

EH3 � EH∗3 ∼ |F|3 ∼ H̄3

and (for 2 < p < 3)
EH∗p ∼ |F|p ∼ H̄p.

So, by Hölder’s inequality,

E(H − H̄)p � (E(H − H̄)2)3−p(E(H − H̄)3)p−2 � CH̄3−pH̄3(p−2) = CH̄2p−3

(where C now depends only upon p), and, in particular,

E(H∗ − H̄)p � CH̄2p−3

too.
Hence,

‖H − H∗‖p � ‖H − H̄‖p + ‖H̄ − H∗‖p � CH̄(2p−3)/p ∼ CH̄|F|1−3/p.

Therefore,
|‖H‖p − ‖H∗‖p| � CH̄|F|1−3/p

and so ∣∣∣∣1 − ‖H‖p

‖H∗‖p

∣∣∣∣ � C
H̄

‖H∗‖p
|F|1−3/p ∼ C|F|1−3/p,

as required.
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We now return to the connection with the Kakeya maximal operator, which
relates to the case that {Vα : α ∈ A} is an arbitrary collection of one-dimensional
affine subspaces of the d-dimensional space V , one in each of the (|F|d −1)/(|F|−1)
distinct directions in V . The dual form of the Kakeya maximal theorem of Ellenberg
et al . [3] is the inequality

∑
v∈V

( ∑
α

xαχVα
(v)

)d/(d−1)

� C|F|
∑
α

xd/(d−1)
α , (2.1)

where the constant C depends only on d. Since

∑
v∈V

( ∑
α

xαχV ∗
α
(v)

)p

=
( ∑

α

xα

)p

+ (|F| − 1)
∑
α

xp
α

�
{(

|F|d − 1
|F| − 1

)p/p′

+ |F| − 1
} ∑

α

xp
α

with equality when all the xα are equal, the best possible constant C in (2.1) is at
least

|F|−1
{(

|F|d − 1
|F| − 1

)1/(d−1)

+ |F| − 1
}

=
(

1 − |F|−d

1 − |F|−1

)1/(d−1)

+ 1 − |F|−1,

which is exactly 2 when d = 2 and is 2 − o(1) for d � 3. Were it to be true that
the rearrangement inequality (1.1) held for one-dimensional affine subspaces and
p = d/(d − 1), it would follow that C would be given by the previously displayed
value. (One may indeed conjecture that this is true: ‘small’ two-dimensional Kakeya
sets do not provide counter-examples to it. If it were true, it would also follow that
Kakeya sets in F

d must have cardinality at least

|F|d
{

1 +
(1 − |F|−1)d/(d−1)

(1 − |F|−d)1/(d−1)

}−(d−1)

=
1

2d−1 |F|d(1 + o(1));

this would improve the lower bound 2−d|F|d established in [2].)
When d = 2 this analysis does hold. Considering the case p > 2 and arbitrary

d � 2 in a similar manner, it shows that

∑
v∈V

( ∑
α

xαχVα
(v)

)p

�
∑
v∈V

( ∑
α

xαχV ∗
α
(v)

)p

=
( ∑

α

xα

)p

+ (|F| − 1)
∑
α

xp
α

�
{(

|F|d − 1
|F| − 1

)p/p′

+ |F| − 1
} ∑

α

xp
α

with equality in the third line when all the xα are equal. Thus, lines passing through
the origin with equal weights (a ‘bush’) give an extremal configuration for the d-
dimensional dual Kakeya inequality when p � 2.
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Remark 2.6. The thesis [5] contains the case n = 1 of proposition 2.3 and its
application to extremals for the dual formulation of the finite field Kakeya maximal
function inequality. The motivation for that, and the present work, comes from [1],
where it was shown that ‘multi-bushes’ are quasi-extremals in (all but the endpoint
case of) a suitable model version (the ‘Gaussian’ version) of the corresponding
multilinear Kakeya maximal problem in Euclidean space.
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