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A mathematical theory of natural and artificial selection. Part
in. By Mr J. B. S. HALDANE, Trinity College.

[Received 9 July, read 26 July 1926.]

In this part the cases of a single but incompletely dominant
factor, and of several interacting factors are considered. Mating is
supposed to be at random, populations to be very large, and
generations not to overlap. The notation is, so far as possible, that
of Part I (1):

Selection of an incompletely dominant autosomal character.

Let the nth generation be formed from female gametes in the
ratio unA : la, male gametes in the ratio vnA : la. The nth genera-
tion is therefore in the proportions unvnAA : (un + vn)Aa : laa.
Let the ratios after selection has occurred be:

</ unvnAA : (1 - Km)('«n + vn)Aa:(l- km)aa,
$ unvnAA : (1 - Kf) (un + vn) Aa : (1 - kf) aa,

where Km, Kf, km, kf are small.

. . 2«n«n + (1 - Kf) (Un + Vn)
•• Un+1 (l-Kf)(un + vn) + 2-2k/

Hence, since — is clearly small,
un

t a p p r o x i m a t e l y >
Z X + Un

i A un — vn un (Kmun — Km + km) . , .
and Avn=

 w " + v —, approximately.
L 1 + Un

Aun and Avn can be shewn to differ by a small quantity of the
second order.

" ( g » g + fe) (1-0)

where K = \ (Kf + Km); k = \ (4, + km).

Equilibrium can only occur when AM,, = 0, i.e. un tends either

to zero, infinity, or to 1 — -=. Hence for equilibrium to be possible

k
-T? < 1. If K be positive, i.e. heterozygotes are at a disadvantage
XL

compared with pure dominants, then Awn 5 0 according as

"n < 1 — jr- Hence the equilibrium is unstable if it exists. If K
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be negative the equilibrium is stable if it exists. We have thus
three cases to consider. In each

d,Un Un(KUn-K + k) . , .
~p:=:-2-±—^-2 > approximately,

and the proportion of recessives yn = (1 + tt,,)"2.
k

(a) No equilibrium, -—. > 1.

.. „ , k-2K, /Kun-K + k\ . . . .
.•. (k - K) n = log, un + K log, (^—2_ J...(1-1)

making the usual convention that u0 = 1.
Hence the values of un lie between two geometrical series, and

selection is therefore vastly more efficacious on recessives than
when dominance is complete, as in equations 2*4 and 4"3 of Part I.

(6) Stable equilibrium, k > K, 0 > K.
- k, fKun-K+k

k k
We must take u0 g 1 — -^ according as un 5 1 — -jy.
Here again successive values of un lie between two geometrical

series, so that the population proceeds fairly rapidly towards
equilibrium. As Fisher (2) has pointed out, such cases probably
occur in nature in connexion with factors governing size, where
the heterozygote is at an advantage as compared with either type
of homozygote.

(c) Unstable equilibrium, K > 0, K > k.
The population proceeds towards homozygosis in one direction

or the other. This case can hardly occur in nature, as any mutants,
either in an A A or an aa population, would be weeded out while
still few in number.

Selection of an incompletely dominant sex-linked character.

The female sex is throughout supposed to be homogametic ; if
the male is homogametic the argument is the same, mutatis
mutandis. Let the nth generation be formed from ova in the ratio
unA : la, female-producing spermatozoa in the ratio vnA : la.
Let the ratios of the nth generation after selection be:

? unvnAA : (l-K)(un + vn)Aa : (l-k)aa,
f unA:Q.-k')a,

where K, k and k' are small.
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1-k"

approximately, (2*0)
and un = vn, approximately.

2K —2k - k'
Hence un tends to zero, infinity, or —jr-p—^— . Equilibrium

k + k' 1
is possible if 5-==—j7 < =. It is stable if 2K + k' be negative,

unstable if this quantity be positive. In each case
dun un(2Kun + k'un-2K+2k + k>) .
-^ - — 3 7 1 ^ 0 " • approximately'

and the proportion of recessive females is (1 + tin)"3, of recessive
males (1 + un)~K Three cases occur.

(a) No equilibrium, 2R + ^ > % •

2k+k'-2K . 2k-4,K, /2Kun+k'un-2K+2k+k'\
re=l0^u+l0g(j•• 3 re=l0(

(2-1),
putting w0 = !• Selection therefore proceeds much as according to
equation 72 of Part I.

(b) Stable equilibrium, 0 > 2K+ k', 2k + k' > 2K.
2K-2k-k' /ti»\ 2k-4>K} (2Eun+k'un-2K+ 2k+k'\

niOS{) + l O g )• • 3 n ^ 0 0

(2-2)
where u0 5 ux according as un 5 vm.

The results of Robertson (3) suggest that milk-yield in cattle
depends on one or more sex-linked factors which act most effectively
when heterozygous, besides autosomal factors. If so human effort
in this case has given K a negative value, while k and k' are
nearly zero. Hence an equilibrium should be reached.

(c) Unstable equilibrium, 2K + k' > 0, 2K > 2k + k1.
The population proceeds in one direction or the other to homo-

zygosis. This case can hardly occur in nature.

Multiple factors.
Many cases exist in nature where several factors are needed to
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ensure the appearance of a character. Thus in wheat Nilsson-
Ehle (4) found that any one of three dominant factors will produce
redness, that is to say a white plant must be a triple recessive.
On the other hand Saunders (5) found that in Matthiola three
dominant factors are needed for slight hoariness, four for complete
hoariness, so that a hoary plant is a multiple dominant. In other
cases the effects of factors are merely additive, and selection will
act on each independently of the others. It will be shown later
that linkage between factors, unless very strong, is unimportant.
We shall therefore at first consider unlinked factors, and shall
confine ourselves to the case of complete dominance.

Selection of a multiple autosoinal recessive character.
Let Alt A2,...Ar,...Am be TO autosomal dominant factors,each

of which produces the same effect, so that the multiple recessive
alone competes with the other genotypes. Let 1 — k of this type
survive for every one of the others. Let yn be the proportion of
multiple recessives in the nth generation, formed from gametes in
the proportion rvnAr : lar, and similarly for the other factor pairs.
Then the Kth generation consists of zygotes in the ratios:

run"ArAr : 2runArar : larar, etc.
m

.: y . = 11(1+ ,«*)-.
r-l

Of the arar zygotes only yn (1 + rwn)
2 are multiple recessives.

Hence
_ rMn (1 + rUn)

r n + 1 l + M - A r y ( l + i i y

n = kyn r
un(1 + r«n)» approximately, if k be small.

Putting x = knwe have approximately:

dx

r«n)

To eliminate the w's from these TO equations put sr = , r " .
^ r l+run

' ~^ r = J yndx +logar.
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.'. sr = ars, where ar is an integration constant independent
of n and given by the initial state of the population.

.-. Vn = n (i -
"=1 . . 1- (3-0).

7 f ds '
kn= x = I -—

J syn
The latter equation is integrable, and the elimination of s

gives the required relation between yn and kn.

whereas if only one factor is concerned,

Now comparing these rates for equal values o£ yn in the two
m m

cases, we note that since y n ~ * = l + M n = I I ( l +rMn) .". un>S,.M».
r=l r=l

Hence selection is slower than in the case of a character deter-
mined by one factor only. When however dominants are very
rare, or when one ar greatly exceeds the rest, i.e. one recessive
factor is far commoner than the others, selection proceeds at about
the same rate in the two cases. It is slowest when all the a/s are
equal.

Selection of a multiple sex-linked recessive character.

If Alt Ait... Ar,... Am are sex-linked (the female being homo-
gametic) the nth generation formed from eggs in the ratios
runA : la, etc., and female-producing spermatozoa in the ratios
rvnA : la, etc., while zn is the proportion of multiple recessive
males, yn of such females, and k is the coefficient of selection.

_
•• r n + I

v -
rVn+1 i

y ) ( rn)
r=l

zn=U(l+run)-
1.

j — 1

Approximately run = rvn, yn = zn\

.: 3 A run = k rUn (1 + rw«X(2V + zn).
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As above, putting kn = x, r " = ars, we have a, constant, and

1
zn = II (1 - ars)

r = 1 . . V (4-0).

fa — s j ^ * J
This again is soluble in finite terms by the elimination of a.

while in the single factor case

- j -^ = — &n (2^n + 1) «n, where un = zn~
x - 1.

Comparing these rates for equal values of zn, we find
as above un> 2rwn- Hence selection proceeds more slowly with
many factors tljan with one. When, however, dominants are very
rare or one ar much larger than the rest, selection proceeds as
with one factor.

Selection of a multiple autosomal dominant character.
When each of m autosomal dominant factors is needed to

produce a character, we find, using the same notation as above
except that yn is the proportion of dominants,

m

yn=II[l-(l+rMn)-*],
r=\

lrUn_yn(\ + rUn) -,
p = wifch m_ 1 sim]ar ti
dx 2 + run

 H

(
Hence the problem can be reduced to the elimination of s

between:

r = 1 ' (5-0)
kn = x = ^

J 8y
where <f> is defined by the equation t = ^ (t) e*(<>.

Numerical integration would be possible for known values of 0,,

dx ynr
while in the single factor case

<fyn _,
dx =

Now when one ar is very much smaller than the rest these two
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rates are nearly equal for equal values of yn. When all the ar's
are equal,

The ratio of this rate to the rate with a single factor (putting
tm = y») is

(1 + Vl -t)(l-tm)!*
When t is small this tends to the small mtm~l\ when t is nearly

unity, to rn" ' which is also small. The ratio when all the a,'s are
equal is, by Purkiss1 theorem, the minimum value. Hence it would
seem that in general natural selection acts more slowly on a
multiple dominant than a single dominant. The case of a multiple
sex-linked dominant and various more complicated cases present
still greater difficulties to analysis, though of course individual
cases could always be solved numerically.

Linkage.
Consider two autosomal factors A, B, linked with such intensity

that the cross-over value is 1001 in the female, 1001' in the male
sex. Let the nth generation be formed from:—

eggs pnAB : qnAb : rnaB : snab,
spermatozoa pn'AB : qn'Ab : rn'aB : sn'ab,

where pn + qn + rn + sn = pn' + qn' + rn' + sn' = 1.
The nth generation therefore consists of:—

pnpn'ABAB : (pnqn'+pn'qn)ABAb : (pnrn
r +pn'rn)ABaB

: qnqn'AbAb : (pnsn'+ pn'sn) AB.ab : (qnrn'+ qn'rn) Ab. aB
: rnrn'aB. aB : (qnsn' + qn'sn)Abab : (rnsn' + rn'sn) aBab
: snsn'abab.

If no selection occurs they produce gametes in the proportions:
2j»»+i = pn + Pn + I \qnrn' + qn'rn -pnsn' - pn'sn)
2qn+1 = qn + qn'-l (qnrn + qn'rn -pnsn' - pn' sn)
2rn+1 = rn + rn'-l(qnrn' + qn'rn-pnsn' -pn'sn)
2sn+, = sn + sn' +1 (qnrn' + qn'rn - pnsn' - pn'sn),

whilst the values of /?„+/, etc., are given by the same expressions
with I' substituted for I. Hence after one generation

PlL+Jl a n d K±I«;
+ +V

have the., same constant value u, while
pn + rn _ pn' + rn' _
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We may therefore write:
uv

P

+ Xn.

Pn -

rn'-
 v

 Xn'; Sn' =

+ *»')•
. •. 2xn+1 = (1 - 21) (xn + xn'); 2xn+1' = (1 - 2V) {xn + xn').

Hence if x0 + x0' = c,

(6-0).

Hence the proportions of the various types of gamete approach
asymptotically those which would be reached in one generation
without linkage, the ratio of successive differences from the final
values being l — l—l'. Hence if either I or I' is larger than k the
effects of linkage are unimportant. A similar proof holds for a
pair of sex-linked factors.

Selection in a tetraploid organism.
In a tetraploid race which is stable, i.e. yields only diploid

gametes, five types of zygote and three of gamete exist. Gregory (6)
and Blakeslee, Belling and Farnham (7) have shown that zygotes
produce gametes as follows:

Zygotes . Gametes
AAAA AA
AAAa IAA : 14a
AAaa IAA : 44a : laa
Aaaa lAa : laa
aaaa aa

Gregory thought that AAaa gave IAA : 2Aa : laa, but his
results, as well as theory, suggest the above ratio. As in Part n
we first consider tetraploidy without selection, and then the process
of selection in a population which would be in equilibrium but for
that selection. Let the mth generation be formed from gametes in
the ratios pmAA : 2qmAa : rmaa, where pm + 2qm + rm = 1, and

Um-PJ?-+J.™. They form zygotes in the ratios :
a + r

pm
2AAAA : 4pmqmAAAa : (4>qn*

: 4iqmrmAaaa : rm*aaaa.
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. •. pm+1 = pm +1 (gm
2 - pmrm)

qtn+i = 2m ~ § (?m2 ~ Pmrm)
rm+i = rm + § (gm

a - p m r m ) .
Hence Um+x = wm = it, and when equilibrium is reached

o a = v r .
2oo x^oo oo

n - M" M l
nence P . - (

and the population in equilibrium is in the ratios :

AAAA :-rr-.—r.AAAa:
(!+«)• •(!+«)* (l + u

4M . 1
; Aaaa : -^ r-. aaaa.

Putting dm = qm*-Pmrm, we find

m-1

r=0

Hence the ratios of the different classes converge very rapidly
to their final values. Under selection of a population which has
reached such an equilibrium, if A is completely dominant,

_
n+1~

-j-2 = Aun = j - — ^ - - , approximately, if k be small.
an {] + w)
.-. ifM0=l, Am, = l0

Hence when dominants are few un changes at the same rate as
in a diploid organism; when they are many, much more slowly.
To compare the change in the number yn of recessives we find

while in a diploid population

Hence here too the rate is always slower in the tetraploids,
though not much so when recessives are few.

25—2
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If dominance is incomplete, as is usual in tetraploid organisms,
and after selection the zygotes are in the ratios :

un*AAAA : 4(1 -kJvjAAAa : 6(1 -k^uJAAaa
: 4(1 — k3)unAaaa : (1 —kt)aaaa,

- k,) un
3 + 3 (k3 - k2) un

2 + (kt - k3) un

approximately, if the coefficients are small. The possible equilibria,
if any, are given by the roots of

huj + 3 (k, - *,) uj + 3 (k3 - k2) ux+kt-k3 = 0.
The various possible cases, and their stability, could easily be

investigated. If the advantage of the various genotypes increases
or decreases with the number of dominant factors they contain, so
that ki>k3>k2>k1>0, or 0 >kl>k2>k3>ki, no equilibrium is
possible,

n=[ (i + unydun .

If &, = 0 this contains a term proportional to un or un
2. If

A, =£ 0 all the terms are logarithmic and selection is always rapid.
But AAAa is more likely to resemble AAAA than Aa to
resemble A A. Hence polyploidy diminishes the probability of a
rapid selection in populations where recessives are few. Since
stable polyploidy is only known in hermaphrodite plants there is
no need to discuss cases of sex-linkage or different intensities of'
selection in the two sexes. The theory can readily be extended to
the higher forms of polyploidy.

SUMMARY.

Expressions are found for the changes caused by slow selection
in populations whose characters are determined by incompletely
dominant, multiple, or polyploid factors, and for the equilibria
attained in certain of these cases.
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