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Several authors have argued that causes differ in the degree to which they are ‘specific’
to their effects. Woodward has used this idea to enrich his influential interventionist the-
ory of causal explanation. Here we propose a way to measure causal specificity using tools
from information theory. We show that the specificity of a causal variable is not well de-
fined without a probability distribution over the states of that variable. We demonstrate the
tractability and interest of our proposed measure by measuring the specificity of coding
DNA and other factors in a simple model of the production of mRNA.

1. Causal Specificity. Several authors have argued that causes differ in the
degree to which they are ‘specific’ to their effects. The existing literature on
causal specificity is mostly qualitative and recognizes that the idea is not yet
adequately precise (e.g., Weber 2006, 2013; Waters 2007; Woodward 2010).
Marcel Weber has suggested that the next step should be a quantitative mea-
sure of specificity (2006, 606). In this article we examine how to measure
specificity using tools from information theory.

Causal specificity is often introduced by contrasting the tuning dial and
the on/off switch of a radio. Hearing the news is equally dependent on the
dial (or digital tuner) taking the value ‘576’ and on the switch taking the
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value ‘on’. But the dial seems to have a different kind of causal relationship
with the news broadcast than the switch. The switch is a nonspecific cause,
whereas the dial (or digital tuner) is a specific cause. The difference has some-
thing to do with the range of alternative effects that can be produced by ma-
nipulating the tuner, as opposed to manipulating the switch.

Another widely discussed example of specific and nonspecific causes con-
trasts a coding sequence of DNA with other factors involved in DNA tran-
scription and translation (e.g., Waters 2007). But this example has to be care-
fully tailored to produce the desired intuition about specificity (Griffiths and
Stotz 2013). In section 5 we show that the causal specificity of coding se-
quences of DNA differs dramatically in different cases.

Like most of the recent literature, our account of causal specificity makes
use of Woodward’s interventionist theory of causal explanation (Woodward
2003). We give only the briefest summary of Woodward’s theory here, since
it should be well known to the presumptive audience for this article, and
Woodward has provided a succinct and readily accessible summary online
(Woodward 2012). Woodward construes causation as a relationship between
variables in a scientific representation of a system. There is a causal rela-
tionship between variables X and Y if'it is possible to manipulate the value of
Y by intervening to change the value of X. ‘Intervention’ here is a technical
notion with various restrictions. For example, changing a third variable Z
that simultaneously changes X and Y does not count as ‘intervening’ on X.
Causal relationships between variables differ in how ‘invariant’ they are. In-
variance is a measure of the range of values of X and Y across which the re-
lationship between X and Y holds. But even relationships with very small
ranges of invariance are causal relationships.

Both Waters (2007) and Woodward (2010) have suggested that causal
specificity is related to ‘causal influence’ (Lewis 2000; and see sec. 2). A
causal variable has ‘influence’ on an effect variable if a range of values of
the cause produces a range of values of the effect, as in the example of the
tuner. However, while Lewis proposed that ‘influence’ distinguishes causes
from noncauses, for Woodward it merely marks out causes that are partic-
ularly apt for intervention.

Although Woodward (2010) gives the most complete account of speci-
ficity to date, there remains much to be done, as he recognizes. Marcel We-
ber has suggested that causal specificity is merely a variety of Woodward’s
invariance. A variable is a more specific cause of some other variable, We-
ber suggests, to the extent that the causal relationship between cause and
effect variables is invariant across the range of values of both variables and
to the extent that the two variables have large ranges of values (Weber 2006,
606). Woodward disagrees, arguing that a causal relationship with these
properties may fail to meet some of the other conditions we discuss below,
such as being a bijective function from cause variable to effect variable
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(Woodward 2010, n. 17)." An attempt to quantify specificity is one obvious
way to move the discussion forward. As we see below, the points that Weber
and Woodward are making become much clearer when expressed using a
quantitative measure.

A skeptical reader may wonder why the apparently elusive notion of causal
specificity deserves such effort. Our motivation is the same as that of Wa-
ters and Weber: clarifying the notion of causal specificity may elucidate the
notion of biological specificity and facilitate the study of specificity in ac-
tual biological systems. The term ‘specificity’ entered biology in the 1890s
in response to the extraordinary precision of biochemical reactions, such as
the ability to produce an immune response to a single infective agent or the
ability of an enzyme to interact with just one substrate. By the 1940s biolog-
ical specificity had come to be identified with the precision of stereochemi-
cal relationships between biomolecules. In 1958, however, Francis Crick’s
theoretical breakthrough in understanding protein synthesis introduced a
complementary conception of specificity, sometimes referred to as ‘informa-
tional specificity’. Stereochemical specificity results from the unique, com-
plex three-dimensional structure of a molecule that allows some molecules
but not others to bind to it and interact. In contrast, informational specificity
is produced by exploiting combinatorial complexity within a linear sequence,
which can be done with a relatively simple and homogenous molecule such
as DNA (see Griffiths and Stotz 2013, chap. 3).

The notion of causal specificity in philosophy of science was not intro-
duced with any a priori assumption that it is the same thing as biological
specificity. However, Waters has used the idea of causal specificity to argue
that DNA encodes biological specificity for gene products, unlike other fac-
tors involved in making those products (Waters 2007). In contrast, Stotz
and Griffiths have used causal specificity to argue that the biological spec-
ificity for a gene product is distributed across several of these factors (Stotz
2006, Griffiths and Stotz 2013).

A merely intuitive approach to causal specificity is unlikely to be helpful
in settling disputes like this. In section 5 we show that a quantitative ap-
proach may allow a more definitive resolution. At the very least, it makes
clear which assumptions are driving the different conclusions reached by
the protagonists.

2. Specificity and Information. Causal specificity has been characterized
by Woodward as a property of the mapping between causes and effects:

1. A function mapping causes to effects will be injective if no effect has more than one
cause, surjective if every effect has at least one cause, and bijective if it is both injective
and surjective—every effect has one and only one cause and vice versa.
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My proposal is that, other things being equal, we are inclined to think of C
as having more rather than less influence on E (and as a more rather than
less specific cause of E) to the extent that it is true that:

(INF) There are a number of different possible states of C (¢, . .. ¢,), a
number of different possible states of £ (e, . . . e,,) and a mapping F from
C to E such that for many states of C each such state has a unique image
under F'in E (that is, F'is a function or close to it, so that the same state of
C is not associated with different states of E, either on the same or different
occasions), not too many different states of C are mapped onto the same
state of £ and most states of £ are the image under F' of some state of C.
(Woodward 2010, 305)

We propose to quantify Woodward’s proposal that a cause becomes more spe-
cific as the mapping of cause to effect resembles a bijection.

We start from the simple idea that the more specific the relationship be-
tween a cause variable and an effect variable, the more information we have
about the effect after we perform an intervention on the cause. Starting from
this idea, we can apply the tools of information theory to measure some prop-
erties of causal mappings that relate values of the cause to values of the ef-
fect. For simplicity, we restrict ourselves to variables that take nominal val-
ues, with no obvious metric relating the diverse values.”> One property we can
measure in this way is Woodward’s INF. Rather than describing a relationship
as injective or bijective, information theory allows us to express the tendency
toward a bijective relationship as a continuous variable. Thus, our informa-
tional measure of specificity will preserve the essence of Woodward’s pro-
posal while allowing this desirable flexibility.

We use the term ‘information’ in the classic sense of a reduction of un-
certainty (Shannon and Weaver 1949). In information theory, the uncer-
tainty about an event can be measured by the entropy of the probability dis-
tribution of events belonging to the same class (see app. A for a brief primer
on information theory explaining the measures used in this article). Uncer-
tainty about the outcome of throwing a die is measured by the entropy of the
probability distribution of the six possible outcomes. Maximum entropy oc-
curs when all six faces of the die have equal probabilities. If the die is loaded,
the entropy is smaller, and there is less uncertainty about the outcome, be-
cause one side is more probable than the others.

2. Variants of our approach to causal specificity are possible for metric variables. The
analysis of variance, for example, gives measures that are respectively equivalent to en-
tropy, conditional entropy, and mutual information. The information theoretic approach
taken here is more general, but the analysis of variance retains more information about
the metric (see Garner and McGill [1956] for a comparison). Information theoretic var-
iants have also been developed to deal with continuous variables (e.g., Reshef et al.
2011; Ross 2014).

https://doi.org/10.1086/682914 Published online by Cambridge University Press


https://doi.org/10.1086/682914

MEASURING CAUSAL SPECIFICITY 533

Applying this framework to a causal relationship allows one to measure
how much knowing the value set by an intervention on a causal variable re-
duces one’s uncertainty about the value of an effect variable. We can mea-
sure this reduction of uncertainty by comparing the entropy of the proba-
bility distribution of the value of the effect before and after knowing the
value of the cause set by an intervention. The more the difference in entro-
pies, the more our uncertainty has been reduced. The maximum reduction
of uncertainty occurs when we start from complete ignorance (i.e., maxi-
mum entropy) and when, after knowing the value of the cause set by an in-
tervention, we end up with a completely specified value for the effect (null
entropy—e.g., when a die is so heavily loaded that it always comes up 6).

These ideas can be illustrated with simple diagrams showing how dif-
ferent values of a causal variable (C) map to different values of an effect
variable (E). We draw the reader’s attention to the fact that these diagrams
are causal mappings rather than conventional causal graphs. Nodes represent
values of variables, rather than variables, as they would in a causal graph.
Likewise, arrows do not represent causal connections between variables, as
they would in a causal graph. An arrow connecting a value of a cause to a
value of an effect means that interventions which set the cause to that value
will lead to the effect having that value, with some probability. For instance,
the arrow stemming from ¢; and pointing to e; corresponds to the joint event
(¢;, e;) with probability p(c;, e;). The hat in the formula means that the
value ¢; is fixed by an ‘atomic’ intervention (see app. B for a brief primer on
causal modeling, explaining in particular the concept of an atomistic inter-
vention).

For ease of presentation, we make some simplifying assumptions:

1. We consider only cases in which we start from complete ignorance
about the effect (maximum entropy).

2. We assume that all causal values, arrows, and effect values are equi-
probable.

3. We consider only cases relating one cause and one effect, ruling out
the possibility of confounding factors. However, the same measures
could be used in cases with confounding factors, as atomic interven-
tions on the causal value will break the confounding influence of
such factors on the association between values of the cause and val-
ues of the effect.

The simplest case is a bijection, where each value of the cause corresponds
to one value of the effect and vice versa (see fig. 1). Here, complete ig-
norance (maximum entropy) obtains when each value of the effect has a
probability of 1/2 before knowing the value set by the intervention on the
cause:
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Figure 1. Bijection between causal values and effect values.

= —Ep ) log, p(e))

- 2 log2(1>=1[bit].

After knowing the value of the cause set by the intervention (say, ¢;), the
effect is now fully specified (it is e, with probability 1), and the conditional
entropy is

H(E|C)

g (¢) X ple | &) logap(e | )

J=1

—é {llogz ) + 0log,(0)} = 0[bits].

The information gained by knowing the cause can be obtained by measuring
the difference between the entropy before and the entropy after knowing the
value set for the cause by the intervention. This quantity is the mutual in-
formation between £ and C:

I1(E;C) = H(E) — H(E|C) = 1]bit].

These three quantities H(E), H(E |(A?), and /(E; 6) characterize interesting
properties of the causal mapping above. The entropy, H(E) measures how
large and even the repertoire of possible effects is. It is the amount of infor-
mation that can be gained by totally specifying an effect among a set of pos-
sible effects (here, this is 1 bit). The conditional entropy H(E|C) charac-
terizes the remaining uncertainty about an effect when the value set for the
cause is known (here it is fully specified, so the uncertainty is 0 bits). Finally,
the mutual information /(E; C) measures the extent to which knowing the
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value set for the cause specifies the value of the effect (here, knowing the
value of the cause brings 1 bit of information).

Another simple case is when any value of the cause can lead to any value
of the effect (see fig. 2). We only present this as a limiting case because
manipulating the value of C between ¢, and ¢, would have no effect on the
value of £, and so Cis not a cause of E on the interventionist account. In this
case, as in the previous case,

201 1
H(E) = =) =log, (—) = 1[bit].
) 2
Because in this case knowing the value set by an intervention on C gives no

information about the value of E, the conditional entropy H (E |6) is equal
to H(E) (our uncertainty is unchanged):

H(E|C) = —2? %2? %logz (%) = 1[bit].

Thus, the information gained by knowing the value set for C is nil (C is en-
tirely nonspecific):

1(E;C) = H(E) — H(E|C) = 0]bits].

Notice that we can approach this null mutual information as a limit of a
genuine cause whose different values make decreasingly smaller differences
as regards the value of the effect. This implies that specificity and the inter-
ventionist criterion of causation are not fully independent. These two cases,
bijection (fig. 1) and exhaustive connection (fig. 2) illustrate limit cases of
Woodward’s ‘degree of bijectivity’ of causal mappings.

We can go further by examining two slightly more complicated cases.
The first is when each value of a cause leads to a proper set of values of the

N7
X

Figure 2. Any value of the cause can lead to any value of the effect.
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effect (see fig. 3). In this case the maximum uncertainty about the effect is
larger:

41 1
H(E)=—> —log,| — | = 2bits].
™ 4 4
Furthermore, knowing the cause less than fully specifies the effect. Assum-
ing equiprobability between the two effect values that can be produced by a
single value of the cause, the conditional entropy H (E |C) is

H(E| ©) = ~3p(@) (o6 log:p(e2)

i Gmgz G)) +2(0log,(0))} = 1[bit].

S} |

Thus, the information about the effect gained by knowing the cause is
I(E; C) = H(E) — H(E|C) = 1]bit].

Notice that knowing the value of the cause provides as much information
about the effect as in figure 1, but because the repertoire of effects is larger,
the remaining uncertainty— H (E |C )—15 not null anymore. The repertoire
of effects will be larger if, for instance, we increase the level of detail when

Figure 3. Single value of the cause can lead to more than one value of the effect.
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describing effects (compare a game of dice based on odd vs. even outcomes
to a game based on the values of the six individual faces).

Let us now consider the symmetric case (see fig. 4). As in figures 1 and 2,
if we suppose complete ignorance of the effects

H(E) = 1[bit].

Although in figure 4 two values of the cause can lead to the same effect,
knowing the value of the cause fully specifies the value of the effect just as
effectively as it does in figure 1. Thus

H(E|C) = 0[bits].

Therefore, the difference in uncertainty about the effect between not know-
ing the value of the cause and knowing it is

o~

I(E; C) = 1]bit].

Here again, knowing the cause provides as much information about the
effects as in figure 1, but because the repertoire of states of the causal var-
iable is now larger, some values lead to the same effects (this can happen if
we increase the level of detail in our description of the cause). Notice that

Figure 4. Different values of the cause lead to the same outcome.
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this will not matter if we are interested in controlling the value of the effect:
applying ¢, or ¢, will deterministically lead to e,.

Furthermore, we can distinguish between figures 1 and 4 if we introduce
a fourth quantity, that is, the entropy characterizing the repertoire of the
cause, which in these two cases is the maximum entropy. In figure 1 the en-
tropy H(C) = 1[bit], whereas in figure 4, H( )= BN 1/4log,(1/4) =

2[bits]. R

Thus, both the conditional entropy H (E |C) and the mutual information
1 (E ;C ) capture aspects of the intuition that causes differ in ‘specificity’.
Because the prior uncertainty H(E) is not constant—it depends in particular
on the size of the repertoire of effects—both measures are needed. The mu-
tual information /(E; C) measures how much a cause specifies an effect.
The conditional entropy H(E|C ) measures how much an effect is determined
when knowing the value set for the cause.

In the cases considered here, if H(E |C) = 0, then manipulating C pro-
vides complete control over E. This corresponds to Woodward’s observa-
tion (2010, 305) that it is more important that the mapping from C to E is
a surjective function than that it is also bijective. Woodward’s notion of a
fine-grained control, however, would be better represented using H(E) and
I(E; C). That s, fine-grained control requires that the repertoire of effects
is large and that a cause screens off many of them (recall that we are cur-
rently dealing only with nominal variables). In the ideal case, H(E) would
tend toward infinity, and / (E ; C) would tend toward H(E).

3. Comparing Two Variables. We now have a proposal for a measure of
causal specificity:

SPEC: the specificity of a causal variable is obtained by measuring how much
mutual information interventions on that causal variable carry about the ef-
fect variable.

It is important to note that, while mutual information is a symmetric measure—
I[(X;Y) = I(Y;X)—the mutual information between an intervention and its effect
is not symmetrical because the fact that interventions on C change £ does not
imply that interventions on E will change C: in general, I(C; E) #1(E; C).

Recall that the aim of producing a measure of causal specificity was to
use it to compare different causes of the same effect. So we need to look at a
case in which an effect depends on more than one upstream causal variable
and compare the mutual information they carry. To do so we explore some
increasingly complex cases involving gene transcription. In each case we
focus on (messenger) RNA as the effect variable and look at the relative
specificity of different upstream causal variables.

We begin with a simple case that has already been discussed in the liter-
ature, namely, comparing the causal contributions of RNA polymerase and
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DNA coding sequences to the structure of a messenger RNA (Waters 2007).
Both are causes of RNA, since manipulating either makes a difference to
the RNA. Polymerase is like the radio on/off button, and the DNA is like
the channel tuner, with a number of settings.’

We can formalize this in the following way (fig. 5). There are two causal
variables, DNA and POL, and one effect variable, RNA. Each variable can
take on a number of values. Assume, for now, that there are four possible
DNA sequences (d,, d», ds, d,) and that the RNA polymerase is either ‘pres-
ent’ or ‘absent’. Our effect variable can thus take on five values—four cor-
respond to the RNA sequences (7, 75, 73, 1) transcribed from the DNA, and
one is a state we call r,, which occurs when there is no transcription. In or-
der to calculate the mutual information, we need to assign each of the val-
ues a probability, and these must sum to 1. We begin by simply assigning
uniform probabilities over the causal variables, DNA and POL. What does
our specificity measure tell us about the two causal variables in this simple
scenario?

When we do the calculation (see the supplementary online companion
piece, Griffiths et al. [2015], sec. 1), interventions on either DNA or POL
carry the same amount of mutual information:

I(DNA;RNA) = p(POL) x H(DNA) = 0.5 x 2 = 1[bi]
I(POL;RNA) = H(POL) = 1bi].

They are (given our working assumptions) equally causally specific. That
might seem odd, as the DNA sequences can take on four different values,
and the polymerase is simply ‘present’ or ‘absent’. Our measurement seems
to be saying that there is no difference between on/off switches and tuning
knobs. What has gone wrong?

To understand why this happens, recall that mutual information measures
how much information on average we get by looking at a causal variable.
Notice that the value of DNA is irrelevant if POL = absent, and our uni-
form distribution sets the probability of this at 0.5. So half the time, when we
look at the value of DNA, we learn nothing about the system. When POL =
present, knowing the value of DNA is useful: it delivers 2 bits of infor-
mation. In short, half the time, DNA gives us 0 bits of information, and the
other half of the time 2 bits. Hence, 1 bit on average.

What this shows is that our proposed measure for causal specificity is
sensitive to the probability distribution of the causal variables. This means
that either our specificity measure is incorrect, or Woodward’s INF (sec. 2)
is missing something, because that condition makes no mention of the prob-

3. Because we do not impose an order on the values of the DNA variable, it is more like
a digital tuner, to which any combination of digits can be entered, than an analogue tun-
ing dial.
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Figure 5. Causal mapping and probability distributions for DNA and RNA (left)
and POL and RNA (right).

ability distributions over the variables. In the next section, we see that this
dilemma corresponds to two different approaches to causal specificity.

4. Specific Actual Difference Making. The suggestion that the actual prob-
ability distributions of the causal variables matters when assessing which
causes are significant is an idea we have heard before. Waters argues that in
order to pick out the significant causes, you need to know the actual dif-
ference makers. For example, even when it is possible to manipulate POL
(which identifies it as a potential cause), if there is no actual difference in
POL in a population of cells, as Waters assumes, then it is not a significant
cause. Waters’s notion of an “actual difference maker” (2007, 567) can be
related to our specificity measure.

Waters treats the question whether a variable exhibits actual variation as
though it were a binary choice, but it makes sense to treat it as continuous.
The ‘actual variation’ is the entropy of the variable.

To show how this idea fits into our specificity measure, consider how the
mutual information (specificity) of each of our two variables DNA and POL
with RNA changes as we vary the probability distribution of POL (which,
in turn varies its entropy). In figure 6, each value on the X-axis represents a
different case. These range from cases in which the probability of present is
0 (polymerase is never around) to systems in which the probability of pres-
entis 1 (polymerase is always around). In these extreme cases, the variable
has become a fixed background factor and doesn’t actually vary, and thus
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Figure 6. Effects of changing probability of POL = present on several informa-
tional measures: the entropy of RNA (the effect), the mutual information between
RNA and DNA, and the mutual information between RNA and intervening on the
presence of polymerase. It can be shown that //(RNA) = I(RNA, DNA) + I(RNA,
POL) = p(POL) x H(DNA) + H(POL) (see Griffiths et al. 2015, sec. 1). The var-
iation in the effect can thus here be decomposed into the respective contributions of
the causes.

the entropy H (ﬁ)\L) is 0. When the probability of present is 0.5, POL is
maximally variable and has maximum entropy. The mutual information
between POL and RNA is also maximized at this point. Notice also, that as
we increase p(present) to 1, the mutual information between DNA and RNA
increases. When POL = present all the time, the full 2 bits of information
about RNA can be found in DNA. Our proposed measure of specificity
captures two things: the extent to which a relationship approaches a bijec-
tion (Woodward’s INF) and the degree to which the cause is an actual
difference maker (i.e., the cause also has high entropy). So the mutual in-
formation measure appears to capture the degree to which a cause is a ‘spe-
cific actual difference maker’ (SAD; Waters 2007).

Within our information theoretic framework there is a clear difference
between the SAD concept and Woodward’s INF. SAD uses the actual prob-
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ability distribution over the values of a causal variable in some population.
INF makes no distinction between the states of a causal variable. We rep-
resent this by supposing that the variable has maximum entropy: all its
states are equiprobable. This makes sense when we recall that for Wood-
ward causal variables are sites of intervention. For idealized external agents
intervening on the system, the value of a causal variable is whatever they
choose to make it.

It is possible to find different scientific contexts in which biologists seem
to approach causal relationships in ways that correspond to SAD and INF
respectively. Waters argues that classical genetics of the Morgan school
was only concerned to characterize causes that actually varied in their lab-
oratory populations (2007). Griffiths and Stotz argue that some work in be-
havioral developmental and much work in systems biology sets out to char-
acterize the effect on the system of forcing all causal variables through their
full range of potential variation (2013, 198-99). This kind of research, they
argue, is done with the aim of discovering new ways to intervene in com-
plex systems. The information theoretic framework allows us to distinguish
between the specificity of potential (INF) and actual (SAD) difference mak-
ers. Our measure of causal specificity sheds light on another issue that we
discussed in our introduction. Weber proposed that the specificity of a causal
relationship is simply the range of values of the variables across which a
causal relationship holds, or what Woodward calls the “range of invariance”
(Woodward 2003, 254). Woodward rejected this idea because a causal rela-
tionship might hold across a large range of invariance but fail to be bijective.
Our information theoretic framework captures both why Weber makes this
suggestion and why Woodward’s additional condition is needed. Weber’s
point corresponds to the fact that mutual information between cause and ef-
fect variables will typically be greater when these variables have more val-
ues, simply because the entropy of both variables is higher. Woodward’s
caveat corresponds to the fact that it will not do to increase the number of
values of a cause variable unless the additional values of the cause map onto
distinct values of the effect. Increasing the entropy of the cause variable will
not increase mutual information when no additional entropy in the effect
variable is captured. This is why the mutual information between the vari-
ables is the same in figures 1 and 4. In terms of figure A1, such an increase in
the size of region H(X) would be confined to the subregion H(X|Y) with no
increase in subregion /(X;Y). The same point, of course, holds mutatis mutan-
dis for the effect variable.

In addition to the SAD and INF conceptions of specificity, there is a third
option corresponding to a suggestion by Weber that causal specificity should
be assessed on the assumption that causal variables are neither restricted to
their actual variation in some population nor allowed to vary freely but in-
stead restricted to their ‘biologically normal’ range of variation: “What we
need is a distinction between relevant and irrelevant counterfactuals, where
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relevant counterfactuals are such that they describe biologically normal pos-
sible interventions” (Weber 2013, 7). We call this REL. Weber tells us that
a biologically normal intervention must (1) involve a naturally occurring
causal process and (2) not kill the organism. More work is obviously needed
to make this idea precise, but we see in section 5 that even in this crude form
REL provides a useful framework for modeling actual cases. At a practical
level, we interpret REL as assessing causal specificity with a uniform prob-
ability distribution within the range of variation in the variable that would be
produced by known mechanisms acting on relevant timescales for the causal
processes we are trying to model.

5. Distributed Causal Specificity. We have suggested that causal specific-
ity can be measured by the amount of mutual information between variables
representing cause and effect. This implies that the degree of specificity of
a causal relationship depends on the probability distributions over the two
variables, and we have argued that this relates to Waters’s claim that sig-
nificant causes are specific actual difference makers. We have also taken
on board Weber’s point that it may be more interesting to explore, not the
strictly actual variation but the ‘biologically normal’ variation (REL). In this
section we apply our measure to a more complex case than the roles of RNA
polymerase and DNA in the production of RNA, namely, the role of splicing
factors and DNA in the production of alternatively spliced mRNA. Impor-
tantly, we also attempt to fill out these measures with realistic values.

In contemporary molecular biology the image of the gene as a simple
sequence of coding DNA with an adjacent promoter region is very much a
special case. This image remains important in the practice of annotating ge-
nomes with ‘nominal genes’—regions that resemble reasonably closely the
textbook image (Fogle 2000; Burian 2004; Griffiths and Stotz 2007, 2013).
But a more representative image of the gene, at least in eukaryotes, is a
complex region of DNA whose structure is best understood top down in
light of how that DNA can be used in transcription and translation to make a
range of products. Multiple promoter regions allow transcripts of different
lengths to be produced from a single region. This and other mechanisms al-
low the same region to be transcribed with different reading frames. mRNA
editing allows single bases in a transcript to be changed before translation.
Trans-splicing allows different DNA regions to contribute components to a
single mRNA. Here, however, we concentrate on the most ubiquitous of
these mechanisms, alternative cis-splicing, a process known to occur, for ex-
ample, in approximately 95% of human genes (nominal genes).*

4. For more detail on all these processes, see Griffiths and Stotz (2013). It may be use-
ful to know that the prefix frans- denotes processes involving a different region of the
DNA, while the prefix cis- denotes processes involving the same or an immediately
adjacent region.
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Genes are annotated with two kinds of regions, exons and introns. The
typically much larger introns are cut out of the corresponding mRNA and
discarded. In alternative cis-splicing (hereafter just ‘splicing’) there is more
than one way to do this, giving rise to a number of different proteins or func-
tional RNAs. For simplicity, we ignore mechanisms such as exon repetition
or reversal, and the fact that exon/intron boundaries may vary, and treat this
process as if it were simply a matter of choosing to include or omit each of
a determinate set of exons in the final transcript.

With alternative splicing, the final product is codetermined by the coding
region from which the transcript originates and some combination of trans-
acting factors that bind to the transcript to determine whether certain exons
will be included or excluded. These factors are transcribed from elsewhere
in the genome, and their presence at their site of action requires the acti-
vation of those regions and correct processing, transport, and activation of
the product. The entire process thus exemplifies the themes of ‘regulated
recruitment and combinatorial control’ characteristic of much recent work
on the control of genome expression (Ptashne and Gann 2002; Griffiths and
Stotz 2013). We simplify this by representing alternative splicing as a single
variable, each of whose values correspond to a set of trans-acting factors
sufficient to determine a unique splice variant.

The role of alternative splicing is well known, but recent work on causal
specificity does not treat this issue with much care. Weber states that, “de-
pending on what protein factors are present, a cell can make a considerable
variety of different polypeptides from the same gene. Thus we have some
causal specificity, but it is no match for the extremely high number of dif-
ferent protein sequences that may result by substituting nucleic acids” (We-
ber [2006] endorsed by Waters [2007, n. 28]). Here Weber seems to be mak-
ing a problematic comparison of the actual range of splicing variants present
in a single organism with the possible genetic variants that could be pro-
duced by mutation. Recently, Weber has explicitly argued for this compar-
ison, stating that only ‘biologically normal’ interventions should be consid-
ered and that variation in DNA coding sequences is biologically normal. He
concludes that DNA and RNA deserve a unique status among biological
causes because their biologically normal ability to vary in a way that in-
fluences the structure of gene products is “vastly higher (i.e., many orders of
magnitude) than that of any other causal variables that bear the relation INF
to protein sequences (e.g., splicing agents)” (Weber 2013, 31).

We are not convinced that it is a meaningful comparison to take, for
example, the Drosophila DSCAM gene,” with 38,016 splice variants all or

5. In the Drosophila receptor DSCAM (Down syndrome cell adhesion molecule), 4 of
the 24 exons of the Dscam gene are arranged in large tandem arrays, whose regulation
is an example of mutually exclusive splicing. One block has 2 exons (leading to one of
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most of which are found in any actual population of flies, and say that al-
ternative splicing has negligible causal specificity because this number of
variants is much lower than the number of variants possible by mutation of
the DSCAM coding sequence with no limit on the number of mutational
steps away from the actual sequence (Weber 2013, 19). This seems to be
a classic example of the way in which philosophers are unable to sustain
parity of reasoning (Oyama 2000, 200ff.) when thinking about DNA. The
principle that only ‘biologically normal’ variation should be counted is rig-
orously enforced for nongenetic causes but not for genetic causes. An anon-
ymous reviewer has pointed out that even when variation in the coding
DNA sequence is restricted to a small (and thus ‘biologically normal’) num-
ber of mutational steps, the number of possible variants expands very rap-
idly because of the sheer number of nucleotides (about 6,000 in DSCAM).
Which ranges of variation in splicing agents and coding sequences it is
meaningful to compare will depend on the biological question being ad-
dressed, as we now discuss.

To make a meaningful comparison between splicing agents and coding se-
quences it is also necessary to specify a population of entities across which
they produce variation. Waters (2007) focuses on two examples in which
most of the actual variation is caused by variation in DNA. The first is the
population of phenotypic Drosophila mutants in a classical genetics lab-
oratory. The second is the population of RNA transcripts at one point in
time in a bacterial cell in which there is no alternative splicing. Obviously,
neither of these cases is a useful one with which to evaluate the causal
specificity of splicing agents, but they do exemplify two important classes
of comparisons we might make. First, we might compare the variation be-
tween individuals in an evolving population and seek to determine whether
variation in DNA coding sequences is the sole or main specific difference
maker. Second, we might consider the transcriptome (population of tran-
scripts) in a single cell, either at a time or across time, and ask whether var-
iation in DNA coding sequences is the sole or main specific difference maker
between these transcripts. Weber also considers examples of these two kinds.
However, neither Waters nor Weber considers a third important case, which
is the variation between cells in an organism, both spatial and temporal. This
is the kind of variation that needs to be explained to understand develop-

two alternative transmembrane segments), the others contain respectively 12, 48, and 33
alternative exons (leading to 19,008 different ecto-domains). A neuronal cell differs not
only with respect to which one of the 38,016 variants (in a genome of about 15,000
genes) it expresses but in the exact ratio in which it expresses up to 50 variants at a time.
Each block of exons seems to possess a unique mechanism that ensures that exclusively
only one of the alternative exons is included in the final transcript. For details and ref-
erences, see Griffiths et al. (2015), sec. 3.
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ment, the context in which controversy over the causal roles of genes and
other factors most often arises.

Both actual and relevant (‘biologically normal’) variation in genes or splic-
ing agents will be different in each of these three cases. In the case of an
evolving population, mutation is a biologically normal source of variation,
but without any limit on the number of mutational steps from the current
sequence, let alone variation in genome size or ploidy, the values of the DNA
variable would simply be every possible genome, which would be both un-
manageable and biologically meaningless. It might seem natural to exclude
any other sources of variation on the grounds that they are not heritable, but a
number of evolutionary theorists would hotly dispute this (e.g., Jablonka and
Lamb 2005; Bonduriansky 2012; Uller 2012). Furthermore, the machinery
of splicing also changes over evolutionary time, so in the evolutionary case
the ‘biologically normal’ variation in splicing is greater than the amount of
variation observed in any actual population. These are very complex issues,
and we cannot undertake the extensive work of establishing the relevant
ranges of variation of genetic and other variables in the evolutionary case in
this article.

Instead, we examine the simpler case suggested by Waters, the popula-
tion of RNA transcripts in a single cell at one time. But while Waters con-
siders only cells with no splicing, we consider cells with splicing, so as to
make a comparison possible. For the transcriptome of a single cell at a time,
the relevant values of the DNA variable are the different sequences that can
be transcribed by the polymerase. If we ignore complexities such as mul-
tiple promoters, we can set this equal to the nominal gene count in the ge-
nome, so that realistic figures are available. The values of the DNA variable
will be weighted by the probability of each gene being expressed. The val-
ues of the splicing variable can be set equal to the number of splicing
variants from each gene, weighted by the probability of each splice variant.

We now propose a quantification of the respective causal specificity of
the DNA and splicing variables for this very simple case. To further sim-
plify the exposition, we assume that the polymerase is always present (an as-
sumption that can be relaxed easily; see Griffiths et al. 2015, sec. 2). We
focus on the mutual information measure outlined above, but we need to
take a slightly different approach to compare the specificity of splicing with
the specificity of DNA, for we assume that splicing factors are recruited
only after a given strand of DNA has been transcribed. We do this because,
in reality, it is not the case that any set of splicing factors can be combined
with any gene. If we were to model splicing in this way, then the outcome of
most combinations of genes and sets of splicing factors would be that the
system fails to produce any biologically meaningful outcome. So it is both
simpler and more biologically realistic to represent the process sequentially,
as the transcription of an mRNA followed by the recruitment of a set of
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Figure 7. Simplified relationship between DNA (D), splicing (S), and RNA (R)
variables, assumed in the models in section 5. Selection of a value for DNA opens a
proper set of possibilities of splicing. There is a bijective relationship between
splicing and RNA.

splicing factors. In other words, the transcription of a given DNA strand
opens a set of possibilities among a proper set of the possible combinations
of splicing factors (fig. 7). This entails that the information in splicing fac-

tors, measured by H (S ), contains all the information in DNA, measured by
H(D):*

H(D, S) = H(S).

Because the entropy in the DNA variable is conserved in the entropy of the
splicing variable, the mutual information between RNA and splicing will
also conserve the mutual information between RNA and DNA. Thus, we need
a way to decompose our causal specificity measure into two components,
isolating the separate contributions of DNA and splicing.

6. In the following equations, D and R are the variables DNA and RNA (see fig. 6),
and S is the splicing variable.
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As mentioned above, we treat the splicing process as if it were simply a
matter of choosing to include or omit each of a determinate set of exons in
the final transcript. Each value of our splicing variable corresponds to a set
of trans-acting factors sufficient to determine a unique splice variant of the
RNA. In other words, we consider a bijective relationship between sets of
splicing factors (once recruited) and RNA variants. This bijection entails
that the mutual information between RNA and interventions on splicing
1 (R; S) is simply equal to the so-called self-information of splicing, / (S ; S),
which is itself equal to the entropy of splicing H (S) . We can then decompose
the entropy of splicing according to well-known chain rules:

-~

1(R;S) = I(S;S) = H(S) = H(D, S) = H(S | D) + H(D).

Noting that / (R D) H (D) when the polymerase is always present (see
sec. 5) and that /(R; S|D) (S|D) (see Griffiths et al. 2015, sec. 2), w
can rewrite the equation as

I(R;S) = I(R;S|D) + I(R; D).

This equation provides a decomposition of the mutual information between
RNA and splicing, (R S), into two components, the mutual information
between RNA and DNA, R D) and the mutual information between RNA
and splicing conditional on DNA, /(R; S |D) Because /(R; S |D) >0, this
entails that / (R S) >1 (R D) If we simply proceed as before, taking mutual
information as a measure of causal specificity, we find that the specificity of
splicing is always greater than or equal to the specificity of DNA. As we
mentioned above, however, we need to account for the fact that all the
information contributed by DNA to RNA is conserved in the splicing var-
iable. Fortunately, we can decompose the mutual information in splicing to
obtain two terms that represent the contribution from the DNA and the
contribution from the splicing process. The term H (D) in the decomposi-
tion of / (R S ) represents the amount of information that is preserved in the
sphcmg process but originates in the DNA. The variation in RNA properly
coming from the splicing process is represented by the term H (S |D)—a
term that, roughly, reflects the number of splicing variants per DNA strand.

Thus, if one wants to compare the causal specificity of splicing and DNA,

one needs to know which of these two terms, /' ( ) and H (S |D) makes the
greatest contribution to (R S )

The answer will crucially depend on the biological system. In Dro-
sophila, an important determinant of neuronal diversity is the single Dscam
gene with 38,016 splice variants (see Griffiths et al. 2015, sec. 3). This
gives a maximum entropy of approximately log,(38,016) = 15.2 bits for
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H (§|B), compared with 0 bits for H ( ) The diversity of this class of
transcripts in Drosophila is entirely explained by posttranscriptional pro-
cessing.’

The homologues of this gene in humans, Dscam and Dscam-like, present
a very different picture. The number of splicing variants per gene appears to
be no greater than three. Assuming that the transcription of each of these
two DNA regions is equiprobable, this gives a maximum entropy of ap-
proximately 1.6 bits for H(S|D), to be compared with 1 bit for #(D). DNA
and splicing are roughly equal determinants of diversity in this class of
transcripts.

A more meaningful comparison to the Dscam case in Drosophila, how-
ever, may be other classes of vertebrate cell-surface proteins. Generalizing
from real cases,® we might imagine a class of transcripts that derives from,
say, 100 related genes, each of which has 150 splicing variants. Assuming
once again that the transcription of any of these DNA regions is equiprob-
able, this gives approximately 7.2 bits for H (S|D) to be compared with ap-
proximately 6.6 for H(D). Both DNA and splicing variables are important
determinants of diversity in this class of transcripts.

Assigning specificity to the causes of transcript diversity in a single cell at
a time is relatively tractable. The analyses just given could, in principle, be
extended to the entire transcriptome at one stage in the life cycle of a well-
studied system such as yeast. But this would be of limited interest. What is
at stake in disagreements over the relative causal roles of coding regions
of DNA and other factors in gene expression would be better represented
by comparing the transcriptome in a cell at different times in its life cycle,
or comparing transcriptomes between different cell types in an organism.
These comparisons are both ways of thinking about development—the pro-
cess by which regulated genome expression produces an organism and its life
cycle. In comparing the same cell across times, a critical feature is that which
genes are transcribed and how their products are processed depends on tran-
scription and processing at earlier times. For the population of cells in an

7. Our decision to use actual figures for genes and isoforms but assume equiprobability
(maximum entropy) for each variable can be justified in this particular case on both the
INF and REL approaches (sec. 4). The data required for Waters’s SAD approach are not
available, but there is no reason to suppose it would give qualitatively different results.

8. Dscam is homologous between almost all animals, but in vertebrates the two ho-
mologous genes, Dscam and DscamL1, do not encode multiple isoforms. There are,
however, several hundred cell adhesion and surface receptor genes in vertebrates: the Ig
superfamily, as well as integrins, cadherins, and selectins. This genetic diversity is com-
bined with complex regulatory patterns, albeit not on the scale of the Dscam expression
in Drosophila. The three neurexin genes display extensive alternative splicing, a pro-
cess that can potentially generate thousands of neurexin isoforms alone. For details and
references, see Griffiths et al. (2015), sec. 3.
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organism, somatic mutations that could arise during development become
relevant, leading to the need to say something about the number of muta-
tional steps that counts as a ‘biologically realistic’ intervention on this var-
iable. We hope to confront these complexities in future work.

6. Conclusion. Causal specificity is the label given to an intuitive distinc-
tion among the many conditions that are necessary to produce an effect. The
specific causes are those variables that can be used for fine-grained control
of an effect variable. It has been suggested that a specific relationship be-
tween two variables is one that resembles a bijective mapping between the
values of the two variables (Woodward 2010). The concept of causal spec-
ificity can be clarified considerably by going a step further and attempting to
measure it.

Our quantitative measure of specificity starts from the simple idea that the
more specific the relationship between a cause variable and an effect var-
iable, the more information we have about the effect after we perform an
intervention on the cause. Section 2 used information theoretic measures
to express this idea. We found that if the conditional entropy of the effect
on interventions on the cause H (E |C = 0), then manipulating C provides
complete control over E. We argued, however, that the idea of sensitive
manipulation, or fine-grained influence (Woodward 2010), would be better
represented by measuring the entropy of the effect H(E) and the mutual
information between cause and effect / (E ; C). Fine-grained influence re-
quires both that the repertoire of effects is large and that the state of the
cause contains a great deal of information about the state of the effect. In the
ideal case, H(E) would tend toward infinity, and 7 (E ; C) would tend to-
ward H(E). R

Section 3 examined the behavior of / (E ; C) as a measure of causal spec-
ificity (SPEC). The behavior of the measure depends on the probability dis-
tributions over the states of the variables, as well as the structure of the
causal graph. Other things being equal, a variable with many states that are
rarely or never occupied is a less specific cause than one equally likely to be
in any of its states, that is, one with higher entropy. Section 4 showed that
this feature is a strength of our proposed measure. It is in line with the qual-
itative reasoning of Waters (2007), who argues that the property which jus-
tifies singling out one cause as more significant that another can be its spec-
ificity with respect to the actual variation seen in some population, and of
Weber (2013), who suggests that we focus on the somewhat wider class of
‘biologically normal’ variation.

The sensitivity of our measure to the underlying probability distributions
contrasts with presentations of causal specificity in which it is assumed that
the value can be inferred from the structure of a causal graph. Our attempt to
quantify specificity forces this assumption to become explicit. The least ar-
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bitrary way to represent this assumption in our models would seem to be to
make all values of the causal variables equiprobable. Making this assump-
tion is probably not appropriate for settling the disputes about the relative
significance of various causal factors in biology with which Waters and We-
ber are concerned. However, in the broader context of the interventionist
account of causation, it may be entirely appropriate, because causal vari-
ables are the sites of voluntary intervention by an idealized agent.

Section 5 used our measure to assess the relative specificity of different
causes that contribute to the same effect. The idea of specificity has been
used to argue that DNA sequences are the most significant causes because
of their supposedly unrivalled degree of specificity. Our discussion revealed
that this is completely premature. First, it is necessary to specify the causal
process in question. The causes of individual differences in an evolving pop-
ulation are quite different from the causes of transcript diversity in a single
cell, and different again from the causes of spatial and temporal diversity
among the cells of a single organism. We constructed a simple model with
which we were able to quantify the specificity of a DNA coding sequence
and of splicing factors with respect to transcript diversity in a single cell at
a time. We showed that the relative specificity of these two variables can be
very different for different classes of transcripts. The idea that DNA ob-
viously has an unrivalled degree of specificity seems to arise because earlier
qualitative discussions implicitly compared the actual variation in the splic-
ing variable within cells to the possible variation in the DNA variable on an
evolutionary timescale.

While it seems plausible to us that the specificity of coding DNA as a
cause of evolutionary change is very high, we pointed out that proper ex-
ploration of this would require serious thought about which range of vari-
ation in the DNA variable can be meaningfully compared with which range
of variation in other cellular mechanisms. Similar work would be needed
before our measure can be applied to what is arguably the most pressing
case, namely, the relative specificity of different causes in development. We
hope to focus on this case in future work.

We believe that the work reported here amply demonstrates the philo-
sophical payoff of developing quantitative measures of causal specificity.
However, a great deal remains to be done. First, although our measures
provide information about causal specificity rather than the presence of cau-
sation per se, in future work we hope to provide an information theoretic
statement of the interventionist criterion of causation. Second, our measure
of specificity is only one of several information theoretic measures that can
be used to characterize causal relationships. In future work we hope to ex-
plore the potential of these other measures for the philosophy of causation.
Third, and perhaps most urgently, we gave only minimal attention in this
article (in sec. 4) to the ways in which the relationship between two vari-
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ables can be affected by additional variables. In a forthcoming paper we
extend our framework to deal with these interactions.

Appendix

A Primer on Information Theory

Information theory provides us with tools to measure uncertainty and to
measure the reduction of that uncertainty. Importantly, for our purposes, it
tells us how information about the value of one variable can reduce the
uncertainty about the value of another, related, variable.

The simplest case occurs when a discrete variable has only two values,
which can then be known by answering a single question (e.g., by yes or
no). The answer is said to convey 1 unit of information (a bit). If the set of
possible values for the variable now contains 2" equally likely elements, we
can remark that n dichotomous questions (n bits) are needed to determine
the actual value of the variable. The quantity of information contained in
knowing the actual value is thus n = log,(2"). If we adopt a probabilistic
framework in which each possible value has equal probability p = 1/2", we
can say that knowing any actual value of the variable brings — log, p bits of
information. When the values are not equiprobable, the average information
gained by knowing an actual value of the variable is measured as an average
over the probabilities of the different values. This quantity is the entropy of
the probability distribution of the variable, defined as

H(X) = —§p<xi>logzp<xi>,

where x; represent values of the variable X, and N is the number of different
values. Entropy measures the uncertainty about the value of the variable and
is always nonnegative. Uncertainty is maximized (maximum entropy) when
each value is equiprobable. Departing from uniformity will always make
one (or more) values more probable, and so decrease uncertainty. In a sim-
ilar way, increasing the number of possible values will increase uncertainty.
All of the above can be generalized to cases in which the number of possible
values is not a power of 2.

If X and Yare two random variables (with respectively N and M different
values, noted x;, y;), we can define the entropy of the couple X, Y-

Ma

XY = -3

i=

P z7yj Ingp( z7yj)

1
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This enables us to define the conditional entropy, representing the amount
of uncertainty remaining on Y when we already know X:

H(Y|X)=H(X,Y) - H(X)

= —ip(x,») ngp(yj |x;) log, p(y; ] x:).

In a similar way, the mutual information, that is, the amount of redundant
information present in X and Y, is obtained by

I(X:Y)=H(X)+H(Y)— H(X,Y)

RN v p(xi; )
fzzl /:EIP( " %) 10g2p(x[)p(yj) .

Mutual information can be thought of as the amount of information that one
variable, X, contains about the other, ¥ (normalized variants of mutual
information are available).

Conditional entropy is null, and mutual information is maximal, when Y
is completely determined by X. Note that conditional entropy is generally
asymmetric, while mutual information is always symmetric:

H(X|Y)#H(Y|X)
I(X;Y) = 1(Y;X).

The relationships between these three different measures are represented in
figure Al. See Cover and Thomas (2012) for more detail.

Figure Al. Relationships between the different informational measures, en-
tropy H(X), conditional entropy H(X|Y), and mutual information /(X;Y).
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Appendix B

Causal Modeling

Causal modeling provides us with the tools to track the effects of inter-
ventions on a system. Where statistical modeling would look at statistical
associations between supposed causes and supposed effects, causal mod-
eling introduces the requirement of intervening on the system to compute
the causal effect. More precisely, consider a causal model consisting of

1. a set of functional relationships x;, = f(pa;, u;), i = 1 ...n, where x;
is the value of the variable X; being caused by X;’s parent variables
pa,, according to some function f, given some background conditions
u;

2. a joint distribution function P(u) on the background factors.

Then the simplest ‘atomic’ intervention consists in forcing X; to take some
value x; irrespective of the value of the parent variables pa,, keeping every-
thing else unchanged. Such an intervention can be written formally with the
do() operator. As Pearl writes: “Formally, this atomic intervention, which we
denote by do(X; = x;) or do(x;) [or X;] for short, amounts to removing the
equation x; = f'(pa;, u;) from the model and substituting X; = x, in the
remaining equations. The new model when solved for the distribution of
X, yields the causal effect of X; on X, which is denoted P(x;|X;)” (2009,
70).

The causal effect P(x;|x;) is to be contrasted with the observational con-
ditional probability P(x;|x;), which can be affected by confounding factors
leading to spurious associations or spurious independence. Other recent works
in mathematics and computer science have brought information theory to-
gether with causal modeling to study information processing in complex sys-
tems (Ay and Polani 2008; Lizier and Prokopenko 2010). These works also
build on Pearl (2009) and are consistent with the work presented here. How-
ever, our approach and measures are significantly different, reflecting the fact
that we start from a concern with ‘causal selection’ in a context of interven-
tion and control. The differences between these approaches will be explored
in a future paper. See Pearl (2009, esp. chap. 3) for more details.
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