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SUMMARY
This paper introduces an approach of collaborative control for individual robots to collaboratively
perform a common task, without the need for a centralized controller to coordinate the group. The
approach is illustrated by an application example involving multiple robots performing a collabora-
tive task to achieve a common goal. The objective of this example problem is to control multiple
robots that are connected to an object through elastic cables in order to bring the object to a target
position. There is no communication between the robots, and hence each robot is unaware of how
the other robots are going to react at any instant. Only the information pertaining to the object and
the target is available to all the robots at any instant. Genetic fuzzy system (GFS) is used to develop
controller for each of the robots. The nonlinearity of fuzzy logic systems coupled with the search
capability of genetic algorithms provides a tool to design controllers for such collaborative tasks.
A set of training scenarios are developed to train the individual robot controllers for this task. The
trained controllers are then tested on an extensive set of scenarios. This paper describes the develop-
ment process of GFS controllers for dynamic case involving systems consisting of three robots. It is
also shown that the GFS controllers are scalable for the more complex systems involving more than
three robots.

KEYWORDS: Collaborative control; Genetic fuzzy system; Decentralized control; Intelligent
systems; Machine learning; Cable robot.

1. Introduction
We investigate the applicability of the genetic fuzzy systems (GFSs), as an artificial intelligence
approach, for a system of robots to accomplish a common task collaboratively. Such collaborative
robotics technology can find numerous applications including multiple robots capturing a nonco-
operative object, transporting a large piece of hardware, cloud-based 3D mapping,1 helping human
workers in collaborative tasks,2, 3 coordinated search,4 etc. Collaborative robots have also been used
for moving a faulty robot to a target position.5 Unlike many existing collaborative control strategies,
the proposed approach assumes no centralized controller for the overall multi-robot system, and thus
the involved robots are independently controlled. In other words, each robot is unaware of the state
and specific future action of the partner robots although everyone in the group is aware of their
common goal.

With the increase in computational capability and the advent of new and improved machine learn-
ing algorithms over the last decade, there has been an increase in the development of intelligent
systems for various applications. Such intelligent systems provide significant advantages in terms of
adaptability, robustness to uncertainties, and improved efficiency. Another advantage of intelligent
systems is that it provides the ability to include a variety of inputs to make better decisions which in
turn leads to increased efficiency in performing physical tasks.
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Fuzzy logic system (FLS), sometimes referred to as Fuzzy Inference System (FIS), is one such
intelligent system that can provide robustness and adaptability to robot controllers. Coupling this
with an optimization heuristic like genetic algorithm (GA) gives a robot the ability to learn from
the past experience (data). Such GFSs have been developed with much success for clustering and
task planning,6 simulated air-to-air combat,7 aircraft conflict resolution,8 etc. Since FLSs consist
of a set of membership functions that define the inputs and a set of linguistic rules that define the
relationship between the inputs and outputs, it is more interpretable compared to other machine
learning techniques such as neural networks and support vector machines. Since it is trained using
GA, differentiable cost functions such as integral squared error are not a requirement. So, if the
mission requirement can be defined as a mathematical cost function, we do not need to have ground
truth data available. GA will traverse the search space looking for the optimal set of membership
functions and rulebase that minimizes the cost function, which makes it a form of reinforcement
learning. Reinforcement learning is a branch of machine learning where an agent is trained to take
the optimal control action to maximize a reward.

Fuzzy logic has been used for several robotics applications purely using expert knowledge without
any tuning of the fuzzy logic parameters. Hagras presented an FLS9 that improves the performance
under uncertainties for the real-time control of mobile robots navigating in dynamically changing
indoor and outdoor environments. This architecture required a smaller rulebase while improving the
performance of the controller. Mobadersany et al.10 presented a fuzzy-logic-based real-time approach
for path planning to navigate a robot in an environment consisting of unknown moving obstacles. The
efficiency of their approach was examined in the case of a drug-delivery nano-robot moving through
blood vessels. This method was able to achieve near-optimal paths and robustness under different
conditions. Seraji and Howard11 developed FLS using expert knowledge for robot navigation on
difficult terrain. FLSs have an inherent robustness12 which makes it very appealing for a lot of real-
life applications. FLSs have also been developed for online tuning of Proportional-Integral-Derivative
(PID) controllers.13, 14 Instead of using constant proportional (kp), integral (ki ), and derivative (kd )
gains, these values are constantly updated based on the current error (e) and change in error (�e).

Although expert knowledge can be used to build FLSs and this capability is appealing to a lot
of applications, it makes sense to have a mechanism to tune the parameters of the FLS automat-
ically. Self-tuning FLSs are very useful especially when there are many inputs and outputs and
their relationships are not that straightforward or well known. As the number of inputs and out-
puts increases, it becomes increasingly difficult to manually tune the parameters, both membership
functions and rulebase, of FLSs. Jang presented an architecture and learning procedure called ANFIS
(Adaptive Network based Fuzzy Inference System)15 that uses the backpropagation algorithm, nor-
mally employed for training neural networks, to tune the membership functions and rulebase of an
FLS. This is a popular training approach that has been successfully used for a lot of estimation
and prediction tasks.16–18 Shimojima et al.19 presented a supervised learning mechanism based on
GA which also uses the gradient descent principle to shape the membership functions and obtain
the consequents of the rules. Jain et al.20 presented a tuning process using simulated annealing to
optimize the parameters of the FLSs for nonlinear Single-input-single-output (SISO) and Multiple-
input-multiple-output (MIMO) systems for controlling the outlet temperature of a heat exchanger as
well as a nonlinear coupled tank system.

Artificial neural networks (ANN) have also been traditionally used for developing controllers. The
ability to learn from data by applying the backpropagation algorithm has meant that neural networks
are applied to broad range of applications. Control agents can be trained using reinforcement learn-
ing to take optimal actions at every instant to reach a final desired state. Q-learning, which is a form
of reinforcement learning, has gained a lot of popularity recently in training ANNs and convolu-
tional neural networks (CNNs) for various applications including training agents to autonomously
play Atari games,21 the development of the AlphaGo system that defeated professional human Go
players,22 etc.

In this paper, we develop GFSs to control multiple robots that are connected to an object through
cables to bring the object to any desired position within the workspace of the robots. The advantage
of using FLS is that they can model nonlinear systems and are inherently robust. GA is used to
train the FLS on a set of training scenarios by tuning the membership functions and the linguistic
rulebase. GA is a search heuristic inspired from the process of natural selection that can perform
an extensive search of a complicated n-D space, where n is the number of variables, to find a near
optimal solution.23 GA starts off with an initial set of solutions also called a population of individuals,
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Fig. 1. A game played collaboratively by a group of people. The objective for the individuals is to collaboratively
control the cables to bring the object to the target position.

the size of which is predefined for the particular optimization problem being solved. Each individual
solution in a population is called a chromosome. During each generation, a set of chromosomes are
selected for crossover. The chromosomes are ranked based on their fitness values (calculated using
the fitness function that need to be maximized or a cost function that is minimized), and the higher
ranked individuals have a greater probability of being selected for crossover. Such a selection process
is known as roulette wheel selection. Once selected, the process includes doing a crossover on pairs
of chromosomes to obtain two child chromosomes. Mutation is often performed on certain selected
chromosomes where a randomly chosen cell of the chromosome is arbitrarily changed. Although the
approach described here is widely used, there are other operators that take the place of crossover
and mutation like self-crossover,24 regrouping, migration, etc.25 Other selection functions such as
tournament selection and reward-based selection are also in use.26, 27 In some cases, the crossover
and mutation operators need to be modified to make sure that these operators produce legitimate
solutions.

For this research, the FLS is trained to output an action at each instant that can help with bringing
the object to the desired position within a particular time-frame. Since the system uses decentralized
control, this approach is expected to be more scalable especially during training process.

2. Problem Statement
The inspiration for this problem comes from a game involving people pulling on cables to collabo-
ratively control the position of an object to bring it towards a target, as shown in Fig. 1. The people
participating in this game do not talk to each other; instead they focus on the target and try to adjust
their own efforts of pulling and releasing until the object reaches the target position. The strategy
involved in such a game can reflect the human capabilities of learning and gaining experience with
respect to decentralized control and collaboration. Inspired by this human game, we are developing
decentralized control strategy and algorithms to allow individual robots to perform similar activi-
ties showing the capability of multi-robot collaboration.28, 29 Such a collaborative activity might be
rather easy for humans, but quite challenging for robots because of the current limitations of robot
intelligence. As a starting point, we use planar cable robots to control the position of the object.

The motion plane of the robots is assumed to be horizontal. The objective is to have the robots
to work collaboratively to bring the object to an arbitrarily defined target position by pulling or
retracting the elastic cables that are connected to the object. One major constraint is that each robot’s
controller only has information about the target and the object and does not have any knowledge
about the states of the partner robots. Thus, this provides a good example to test a set of robots
that can work collaboratively without the need for centralized control. To test the feasibility of the
proposed intelligent approach, we trained a GFS as a controller for each individual robot to control
the position of the object.

The cables are pulled or released by controlling the joint of each robot, which are attached to a
spool over which the cable can wind. Depending on the rotation of each joint, the cable reeled by the
joint either extends or compresses.
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Fig. 2. Schematic showing the different vectors for a 5-robot system. This figure can be generalized for an
n-robot system.

3. Multi-robot Problem
This section describes the dynamic analysis for the multi-robot problem.

Let rBi be the vector connecting the object to robot i . Let pi be the length of the cable around the
spool attached to robot i . rBi can be written in terms of the position vectors of robot i and the object,
as follows.

rBi = ri − rB (1)

The total length of the cable connecting object to robot i will be rBi + pi . Let l0 be the minimum
length of the elastic cable and k be the spring constant of the cable. Fig. 2 shows the visual repre-
sentation of the different vector relations. The tension on this cable will act along the unit vector, r̂Bi,
and is given by

Ti = k(rBi + pi − l0)r̂Bi = k[(pi − l0)r̂Bi + rBi] (2)

Substituting for rBi from Eq. (1) in Eq. (3),

Ti = k[(pi − l0)r̂Bi + ri − rB] (3)

Let the mass of the object be m. Then, by applying Newton’s second law, the following relationship
is obtained.

∑
i

Ti = m r̈B (4)

Since the robots are placed on the vertices of a regular polygon, the following relationship holds.

∑
i

ri = 0 (5)

Substituting Eqs. (3) and (5) into Eq. (4) gives the following governing equation for the object under
equilibrium condition. Here, n refers to the number of robots in the system.

k
∑

i

((pi − l0)r̂Bi) − nrB = m r̈B

where r̂Bi = ri − rB

|ri − rB|
(6)

Eq. (6) is a nonlinear equation in rB as the unit vector, r̂Bi, has the term |ri − rB| in the denominator.
Eq. (6) is a 2-D vector equation pertaining to the motion of the object which is connected to the
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robots through the elastic cables. Thus, the objective of the system can be written as

minimize J =
∫ T

0
dist(t)dt

subject to k
∑

i

((pi − l0)r̂Bi) − nrB = m r̈B

(7)

Here, dist (t) refers to the distance between the object and the target at time t . In this case, each robot
has only one joint driven by a DC motor. For our simulation study, the specifications of an actual DC
motor were used to set the limits for the motor torque and angular velocity and the values for the
other motor parameters. Since we are designing controllers to control the voltages of the DC motors
for the dynamic case, it is necessary to obtain the electro-mechanical equations corresponding to the
joint. These equations are given below.

pi = rs ∗ θi (8)

KT Ii − Tirs − bθ̇Gi = J θ̈Gi (9)

L
d Ii

dt
+ Ii R = Vi − Keθ̇Gi (10)

I = KT

Gr
TGi (11)

Eqs. (8)–(11) should be written for each robot. The joint is driven through a gear with a gear ratio of
Gr . In the equations, KT is the torque constant of the motor; Ke is the back-emf constant of the motor;
TG is the torque output to the spool; θG is the angular velocity of the spool; T is the cable tension
force; rs is the radius of the spool; bθ̇G is a damping torque; J is the moment of inertia of the spool
or the motor load; i is the current flowing through the motor circuit; and V is the voltage applied by
the controller. Eqs. (6)–(11) give the relationship between the robot voltages and the motion of the
object. Thus, the objective of this example case is to develop robotic controllers that can control the
position of the object by controlling the voltages of the respective driving motors.

4. GFS
Fuzzy logic, in contrast with Boolean logic, deals with degrees of truth rather than a binary True or
False. There is a membership value for each value in a fuzzy set, which is more in tune with the human
thought process. This gives a fuzzy boundary between two sets. This process of converting a crisp
value to fuzzy membership values that represent the membership level of the crisp value to each of
the fuzzy sets is called fuzzification. Fuzzification process is done by defining membership functions
for each input to the FLS. Another important aspect of an FLS is the rulebase which includes a set of
linguistic rules that connect the inputs to the outputs. An example for an FLS rule is If Food is Good
and Service is Good then Tip is Good.

For a small-scale FLS, the rules can be defined using expert knowledge of the relation between
inputs and outputs due to the linguistic nature of the rulebase. But, this becomes difficult for larger
FLSs and FLSs where the relation between the inputs and outputs are not clearly known. It is under
these scenarios where it is necessary to augment the FLS with a search heuristic such as GA to
provide the FLS with the learning capability, and such systems are known as GFSs.

In order to evaluate the output of an FLS which is a crisp value, we have to evaluate each rule
in the rulebase and then defuzzify the resultant aggregate solution. The aggregate solution will be a
region defined under the membership function for the output variables, similar to the one shown
in Fig. 3. There are different defuzzification strategies used,30 the most popular of which is the
centroid defuzzification. Centroid defuzzification gives the x-value of the centroid of the area which
is generally close to the middle of the range of the output variables. The probability of centroid
defuzzification to output a value close to the extremes of the output variable is very small. As can
be seen from Fig. 3, largest of mean (LOM) defuzzification outputs the value that has the largest
absolute value of x where the membership value is the highest.

In the case of GFS, the set of parameters to be tuned include the boundaries of the membership
functions and the set of rules in the rulebase. For some applications, GA is also used to tune the shape
of the membership functions, although in most cases it is safe to assume triangular and trapezoidal
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Fig. 3. Centroid and LOM defuzzification outputs.

membership functions. Intelligent systems such as GFSs are used in a wide variety of applications
due to their learning and adaptive capabilities. Cordon and Herrera have presented an overview of
the GFSs, showing the use of the GAs in the construction of the FLS knowledge bases.31

Genetic fuzzy methodology can be used to tune different types of membership functions depend-
ing on how they are defined. Triangular membership functions are defined by the x-coordinates of
the three vertices. Symmetric triangular membership functions can be defined using the center of
the base of the triangle and its width. Gaussian membership functions are defined using the mean
(center) and standard deviation. In this paper, we only consider triangular membership functions.

5. Methodology for Training the Robots
In order to achieve the common goal, each robot needs to be trained in a collaborative environment
using a set of training scenarios. These training scenarios will have different target positions for
the object. By training the robots to achieve the goal of moving the object to these different target
positions, the robots will learn to work collaboratively to bring the object to any target location within
the polygon connecting the robots. Each robot is modeled as a GFS and they have information only
pertaining to the state of the object with respect to the target location and has no information about
the states of the partner robots.

The schematic of the training process is shown in Fig. 4. GA starts off with a set of individuals
for the population. Each individual is a vector that consists of parameter values for the multi-robot
system. For each individual in GA, the system could be simulated to evaluate the cost function.
The cost function would be representative of bringing the object to the target in the shortest time.
The individuals with lower cost values have more likelihood of being selected for crossover and
mutation and being chosen into the next generation. The individuals with high cost values have more
likelihood of getting thrown out. This process of modifying the population of individuals continues
for a predefined number of generations. During each generation, the best system of robots is also
evaluated on a validation set to check for overfitting. After GA is finished, the individual with the
best training and validation cost is chosen. This individual defines the trained system of collaborative
robots that is capable of bringing the object to the target and can be tested on new scenarios to
evaluate its effectiveness and generalization capability.

5.1. GFS controllers for the 3-robot system
GFS controllers directly control the voltage of the joint motor of each robot for the next time step.
Thus, there are three GFS controllers that control the voltage of the respective DC motor in order
to bring the object to the desired position on the table. Eqs. (6), (9), and (10) provide the governing
equations of the dynamic system. The equations are solved using a differential equation solver for
the dynamic simulation of the overall behavior of the system. The schematic of the GFS controllers
is shown in Fig. 5. Each GFS controller takes in four inputs: (1) distance between the current object
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Fig. 4. Schematic showing the training process. The parameters of each robot are tuned using GA to minimize
a cost function.

Fig. 5. Schematic for the GFS controllers associated with robot i . The schematic is the same for all robots in
the system.

position and the target position measured along the vector connecting the robot to the target, (2) the
angle between the object-robot vector and the target-robot vector, (3) x-component of object velocity,
and (4) y-component of object velocity.

In order for the controllers to bring the object to the target position, the controllers need to be
trained on a set of chosen scenarios. During the training process, the FLS parameters, namely the
boundaries of the membership functions as well as the rulebase, are tuned using GA. In parallel with
the training, the GFS can be validated using other validation scenarios in order to spot any overfitting.
Overfitting happens when the cost function on validation set increases while the training cost contin-
ues to decrease. Each scenario is run for a maximum time (T f ) of 15 s. During the training process,
GA tunes the membership functions and rulebase of the FISs included in the GFS to minimize the
following cost function.
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Fig. 6. Input membership functions of the GFSs for the 5-robot problem. The points tuned by GA are shown by
the green dots.29

C =
∫ T f

0
dist(t)dt + 50(T f − tend) (12)

T f is the maximum time and tend refers to the time at which the simulation stops. Apart from
reaching the maximum time, T f , the simulation can also stop when the elastic cable length goes
outside the range of 1–2 m. So, the T f − tend term is used to penalize such early stoppage situations.
dist (t) is the distance between the object and the target at each time step.

5.2. GFS controllers for the 5-robot system
In order to test the scalability of the approach, GFS controllers were developed for the 5-robot system.
The 5-robot problem is much more complicated to control as compared to the 3-robot case. The
robots use the same schematic shown in Fig. 5. The output from the GFS is the voltage that need to
be applied at the current time step.

During the training process, GA tunes the membership functions and rulebase of the 5-FISs
included in the GFS to minimize the cost function given by Eq. (12). The maximum time, T f , for the
5-robot case is set to 20 s.

In this case, the membership functions are modeled as triangles and GA tunes five membership
function parameters for each input variable, as shown in Fig. 6. The x-values of the five green dots
are tuned using GA for each input variable. Only one parameter of the two extreme membership
functions is tuned. On the other hand, the output variable is defined using five triangular membership
functions and each vertex is tuned using GA. This means that GA tunes 15 parameters of the output
membership functions for each robot. This provides more learning capacity for the controllers. Also,
since the controllers have four inputs and each input variable is defined using three membership
functions, there will be 34 = 81 rules in the rulebase for each FIS. Thus, a total of 580 parameters are
tuned by GA for the five FISs.

6. Results

6.1. 3-robot system
The GFSs control the voltages of the three robots to bring the object to the desired target position.
LOM defuzzification is used by each GFS. The cable can stretch from 1 to 2 m within which the
spring force kx is valid. Outside of this range, the dynamic equation of motion defined in Eq. (6) is
invalid. The simulation stops whenever the length of any of the cables goes beyond 2 m. During the
training process, such scenarios are penalized in the cost function. The motor is connected to a spool
of radius 12.5 mm through a gear with a gear ratio of 2.4 that makes the maximum torque output to
the spool to be 2.4TM and the maximum angular velocity to be ωM/2.4.

The object’s path towards the target, the distance v/s iterations plot, and the torques of each motor
are shown in Figs. 7 and 8. The controller torques for robots 1 and 3 act like a bang-bang controller
whereas the torque of robot 2 is relatively smaller. This means that in most cases, robot 2 makes the
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Fig. 7. 3-robot system: Scenario 1.

minor adjustments that are needed to bring the object closer to the target. In fact, the robots were able
to bring the object to settle within 2 cm of the target position for all of the 100 scenarios tested.

6.2. 5-robot system
Once the FISs are trained for the 5-robot case, the system was tested for 100 different target loca-
tions within the workspace of the robots. Two of these scenarios are shown in Figs. 9 and 10. The
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Fig. 8. 3-robot system: Scenario 2.

controllers are able to bring the object to within 2 cm of the target within a time-frame of 20 s.
The starting torque is set to 0.59 Nm so that the system starts off from equilibrium. This is unlike
the 3-robot scenarios where the three robots started off with the maximum torques of 1.667 Nm. We
noticed that the centroid defuzzification works better for the 5-robot problem. The centroid defuzzifi-
cation takes into account the output from each rule in the rulebase, whereas LOM defuzzification, in
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(c) Distance plot

(b) Distance plot

(a) Object’s path towards the target
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Fig. 9. 5-robot system: Scenario 1.

most cases, only uses the rule with the highest firing strength. If the simulations are run for a larger
time-frame, it is noticed that the object could drift outside the target region for many of the scenarios.
Increasing the time-frame of the simulations during the training scenarios might be able to solve this
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(c) Controller torques

Fig. 10. 5-robot system: Scenario 2.

issue. But, nevertheless, the robots bring the object to the target for 85% of the scenarios tested and
stays within 2 cm of the target for approximately 10 s before drifting apart.

Since the object is connected to five elastic cables, there are more vibrational effects on the object
for the 5-robot problem. Moreover, the system uses decentralized control where each robot is unaware
of the actions of the partner robots. This makes the problem more complex as the number of robots
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Fig. 11. 5-robot system: Fault occurred in robot 2 during Scenario 1. The remaining four robots were able to
bring the object to the target.

increases. This is further complicated by the fact that the cables cannot stretch beyond 2 m. As a
result, of the 100 test scenarios, there are some scenarios where the robots are unable to bring the
object exactly to the target location. This is still being investigated as we are trying to improve the
performance of the controllers.

The robots were also tested on a few scenarios where one of the robots failed. The failed robot
was assumed to have no active control capability. It was seen that the other robots were still capable
of bringing the object to the target position. Figure 11 shows one scenario where robot 2 failed. This
means that the DC motor voltage for this robot is zero (V2 = 0). For this scenario, the target position
is the same as that of Scenario 1 (Fig. 9). It can be seen that the failure of robot 2 affects the path
followed by the object, although the robots were able to bring the object to the target. This shows
that the other four robots were still able to find a way to bring the object to the target in spite of
robot 2 behaving like a passive system. It is possible that robot failure would be more fatal for target
positions that are closer to the boundaries. Such scenarios will be investigated in more detail in a
separate future research effort regarding the fault-tolerance topic.

7. Conclusions and Future Work
This paper presented a decentralized approach for a group of independent robots for collaboratively
achieving a common goal. The robots were trained using the GFS methodology. Through the training
process performed using GA, the robots were able to come up with an effective strategy to bring the
object to the target position. It was shown that once the system was trained, the goal could be quickly
achieved for all the scenarios tested in the case of the 3-robot problem.
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The same approach was used for training and testing for systems involving five robots. The robots
were able to bring the object to the target position for most of the cases. The lack of a central con-
troller and the inter-robot communication reduces any overhead requirement. Such a methodology
also ensures that even if one of the robots were to malfunction, the system will not collapse entirely
and should still be able to perform even though fewer robots are contributing to the common goal.
This will be especially true for problems with larger number of robots where the liability of indi-
vidual robots will be low. In all the cases where the robots were able to successfully achieve the
common goal, the system settled very fast (<15 s). The controllers were able to perform efficiently
even though there were several constraints considered in the system such as the maximum length of
the cable and the limited degrees of freedom of the robots.

Research is being done on how to improve the efficiency of the robots for the 5-robot problem
and how this approach can be used for problems involving more number of robots. As the number of
robots increases, the collaborative strategy needed to achieve the goal becomes more complicated.
Nevertheless, the success of this approach of the robot from the 3-robot to the 5-robot case means that
the proposed GFS approach is scalable for different problem sizes. However, the potential benefits
and limitations associated with the scalability are the ongoing investigation topics for the research.
We plan on validating this approach on actual hardware. We will also study the fault tolerance aspect,
such as the one shown in Fig. 11, in more detail in the future.
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