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SUMMARY
A novel 6-degree-of-freedom (DoF) parallel manipulator with three planar mechanism limbs is
proposed and its kinematics and statics are analyzed systematically. First, the characteristics of the
proposed manipulator are analyzed and the degree of freedom is calculated. Second, the formulae for
solving the displacement, the velocity, and the acceleration are derived. Third, an analytic example
is given for solving the kinematics and statics of this manipulator, and the analytic solved results are
analyzed and verified by the simulation mechanism. Finally, a workspace is constructed and analyzed
based on a comparison between the proposed manipulator and another 6-DoF parallel manipulator.
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Nomenclature:

Symbol Description
PM Parallel manipulator
DoF Degree of freedom
B, m The base, moving platform
O, o The center point of B, m
{B} Coordinate O-XYZ on B
{m} Coordinate o-xyz on m at o
P, R Prismatic joint, revolute joint
U, S Universal joint, spherical joint
Bi, bi The vertices of B and m
μ The number of redundant
ri, rij Virtual leg and active leg of PM
δi , δij The unit vectors of ri, rij i = 1, 2, 3; j = 1, 2
L, l The sides of B, m
e, E The distance from bi to o, Bi to O
bij Connection joints between gi and rij

α, β, γ Euler angles of m about (Z, Y1, Z2)
rvi , q Vertical rod, q = 31/2

v, ω Linear and angular velocity of m at o
a, ε Linear and angular acceleration of m
V, A General velocity and acceleration of m
nl, nj The number of links and the number of joints
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gi, gi , g Upper beam, its unit vector, and its haft length
Gi, Gi , G Lower beam, its unit vector, and its haft length
Xo, Yo, Zo The position components of o in {B}
vri, ωri Scalar velocity along ri and angular velocity of ri

vrij , ωrij Scalar velocity along rij and angular velocity of rij

vbi, vbij Velocity of gi at bi and bij

xl, xm, xnyl, ym, ynzl, zm, zn Nine orientation parameters of m
ωgi, εgi Angular velocity and acceleration of gj

vr , ar General input velocity, general input acceleration
J, H Jacobian, Hessian matrix of PM with planar limb
‖, ⊥, | Parallel, perpendicular, collinear constraint
ωrij , εrij Angular velocity and acceleration of rij

F, T The central force and torque applied on m at o
Fij Active force along rij

ωi1, Ri1 Scalar angular velocity of Gi about B, its unit vector
ωi2, Ri2 Scalar angular velocity of ri about Gi , its unit vector
ωi3, Ri3 Scalar angular velocity of gi about ri , its unit vector
ωi4, Ri4 Scalar angular velocity of rvi about m, its unit vector
ωi5, Ri5 Scalar angular velocity of gi about rvi , its unit vector

1. Introduction
Currently, various 6-DoF parallel mechanisms (PMs) have been applied in the fields of industrial
robots, micromanipulators, parallel machine tools, damping platform, rehabilitation robot, simulator
of real 3-dimensional (3D) earthquakes, walking leg, heavy-duty forging manipulator, and haptic
device, because the 6-DoF PMs have high stiffness, good dexterity, compact size, and high power
to weight ratio.1–3 In this aspect, Patricia Ben-Horin and Shoham3 and Zhang4 synthesized a class
of PMs with six limbs and several spherical (S) joints. Huang et al.5 analyzed the structure and the
property of the singularity loci of a 3/6 Gough–Stewart PM with six S joints. Aginaga et al.6 developed
a revolute joint-universal joint-spherical joint (6-RUS PM) with three S joints and analyzed its static
stiffness. Li et al.7 determined the maximal singularity-free zones in the 6D workspace of the 3/6
Gough–Stewart PM with six S joints. Tong et al.9 optimized a class of the generalized symmetric
Gough–Stewart PMs with six S joints. Shim et al.10 proposed a decoupled three prismatic joint -
revolute joint-prismatic joint-spherical joint (PRPS-type PM) with three S joints. Lee and Park11

introduced a 6-DoF PM which makes use of two stacked PMs and a central axis.
However, a spherical joint S is composed of a ball rod and a globe bearing; therefore, it has

following disadvantages: (1) The capability of the pulling force bearing is lower due to a small
effective surface of the force bearing between the ball and the globe bearing in the pulling direction.
(2) The rotation range of the ball rod in the globe bearing is small. (3) The precision of the spherical
joint S is lowed under alternately heavy loads or a long time service because a backlash between the
ball and the globe bearing cannot be removed. Hence, the applications of 6-DoF PMs with S joints
are limited. For this reason, the spatial PMs with the planar mechanism limbs have attracted much
attention. The planar mechanism limb only includes revolute joints R and prismatic joint P, which
has the following merits: (1) The planar mechanism of the limbs with R joint and P joint is simple in
structure and easy in manufacturing; (2) R joint has a larger capability of pulling force bearing than
that of S joint; (3) The precision of R joint is higher than that of S joint under large cyclic loading
because the backlash of R joint can be eliminated more easily than that of S joint by a preload; (4)
The workspace of the proposed manipulator can be increased because the rotation range of R joint is
larger than that of S joint before interference.

In this aspect, Wu and Gosselin12 developed a PM with three limbs formed by a planar four-
bar linkage for its spatial dynamic balancing. Gogu13 proposed a family of T2R1-type PMs with
bifurcated planar-spatial motion of the moving platform. Yoon and Ryu14 designed a locomotion
interface with two planar PMs that allows human walking. Yu et al.15 and Yang et al.16 proposed
some PMs with decoupled-motion architecture. In the aspect of the kinestatic analysis of conventional
PMs, the principle of virtual work,17,18 the spatial vector analytic approach,19–23 and the combination
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Fig. 1. (a) A 3D model of novel PM with three planar mechanism limbs, and (b) its kinematics and statics model.

of virtual work theory with Computer-Aided Design (CAD) variation geometry24 have been applied
to the study of kinematics and statics of PMs with 3 ∼ 6 active limbs. Up to now, there is no effort
toward the kinestatic analysis of 6-DoF PMs with planar mechanism limbs. For this reason, this paper
focuses on kinematic and static analysis of a novel 6-DoF PM with planar mechanism limbs. Its
structure characteristics, kinematics, and statics are studied systematically.

2. Characteristics of Novel PM with Three Planar Mechanism Limbs and Its DoF
A 3D model of a novel PM with three planar mechanism limbs is constructed using the advanced
CAD software, see Fig. 1a. This PM includes a platform m, a base B, and three identical planar
mechanism limbs ri (i = 1, 2, 3). In fact, m is a regular triangle �b1b2b3 with three vertices bi ,
three sides li = l, and a central point o; B is a regular triangle �B1B2B3 with three vertices Bi ,
three sides Li = L, and a central point O. Each of ri includes a vertical rod rvi , an upper beam
gi , a lower beam Gi , and two linear active legs rij . Each of rij comprises a linear actuator, a
cylinder, and a piston. In each of ri, rvi connects with m by a vertical revolute joint Ri4 at bi , and
it connects with the middle of gi by a horizontal revolute joint Ri5; the middle of Gi connects with
B by a horizontal revolute joint Ri2 at Bi ; the two ends of rij connect with the two ends of gi and
Gi by revolute joints; gi, Gi , and rij form a closed planar mechanism with two linear actuators.
Let ⊥ be a perpendicular constraint, ‖ be a parallel constraint, | be a collinear constraint, {m}
be a coordinate frame o-xyz fixed on m at o, and {B} is a coordinate frame O-XYZ fixed on B at
O. In this PM, (gi, Gi, ri , and rij ) are in the same plane; in addition, following geometric condi-
tions z ⊥ m, Ri4||z, Ri5||m, gi ||m, Ri1||B, Gi ||B, b1b3||x, ob2|y, b1b3 = b1b2 = b2b3 = l, Li = L,
obi = e, (i = 1, 2, 3, j = 1, 2) are satisfied.

In this PM, the number of links, nl = 23, including base B, a moving platform m, six cylinders,
six piston rods, three lower beams, three upper beams, and three vertical rods. The number of joints,
nJ = 27, including six prismatic joints and 21 revolute joints. The number of redundant constraints
is μ = 9, correspond to three planar mechanism limbs. The number of located degrees of freedom
of joints is

∑
fk = 6 × 1 + 21 × 1 = 27, including six prismatic joints and 21 revolute joints. Thus,

degree of freedom of this PM with three planar mechanism limbs is calculated based on the revised
Grübler–Kutzbach formula1,2 given below,

M = 6(nl − nJ − 1) +
∑

fk + μ = 6 × (23 − 27 − 1) + 27 + 3 × 3 = 6. (1)
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3. Displacement Analysis of PM with Three Planar Mechanism Limbs
The displacement analysis of active legs is a foundation for deriving the velocity of PM with three
planar mechanism limbs. The coordinates of bi in {m} and Bi in {B} are expressed as follows18:

Bi = E

2

⎡
⎣±q

−1
0

⎤
⎦ , B2 =

⎡
⎣ 0

E

0

⎤
⎦ , bm

i = e

2

⎡
⎣±q

−1
0

⎤
⎦ , bm

2 =
⎡
⎣0

e

0

⎤
⎦ , o =

⎡
⎣Xo

Yo

Zo

⎤
⎦ ,

(i = 1, 3)
e = ql/3

E = qL/3
.

(2)

Here, q = 31/2, E is the distance from Bi (i = 1, 3) to O, e is the distance from bi to o. “±” is replaced
by “+” as i = 1; “±” is replaced by “–” as i = 3. This condition is also available for Eqs. (3), (4),
and (7) with “±”.

Let ϕ be one of the three Euler angles (α, β, γ ). Set sϕ = sinϕ, cϕ= cosϕ. bi and z of m in {B}
are expressed by Eq. (A1) in the Appendix. The vectors of bi on m in {B} are expressed by the
transformed matrix (A1) in the Appendix based on Eq. (2) as follows:

bi = 1

2

⎡
⎣ ±qexl − eyl + 2Xo

±qexm − eym + 2Yo

±qexn − eyn + 2Zo

⎤
⎦ , b2 =

⎡
⎣ eyl + Xo

eym + Yo

eyn + Zo

⎤
⎦ , (i = 1, 3). (3)

Let r i (i = 1, 2, 3) be the vector from Bi to bi and ei be the vector from o to bi . They are derived
from Eqs. (2) and (3) as follows:

r i = 1

2

⎡
⎣±qexl − eyl + 2Xo − ±qE

±qexm − eym + 2Yo + E

±qexn − eyn + 2Zo

⎤
⎦ , r2 =

⎡
⎣ eyl + Xo

eym + Yo − E

eyn + Zo

⎤
⎦ , ei = e

2

⎡
⎣ ±qxl − yl

±qxm − ym

±qxn − yn

⎤
⎦ ,

e2 = e

⎡
⎣ yl

ym

yn

⎤
⎦ , (i= 1, 3). (4)

Let G0i and Gi be the vector of the lower beam Gi and its unit vector. These are derived from
Eq. (2) as follows:

G01 = B2 − B3 = E

2

⎡
⎣q

3
0

⎤
⎦ , G02 = B1 − B3 = E

⎡
⎣q

0
0

⎤
⎦ , G03 = B1 − B2 = E

2

⎡
⎣ q

−3
0

⎤
⎦ ,

Gi =
⎡
⎣Gix

Giy

Giz

⎤
⎦ = G0i

|G0i | , (i= 1, 2, 3). (5)

Let g0i and gi be the vector and the unit vector of the upper beam gi . These are derived from
Eqs. (3) and (5) as follows:

g0i =
{

z × (G0i × r i) = (z · r i)G0i − (z · G0i)r i , as arccos
〈
G0i , g0i

〉 ≤ 90◦,
−z × (G0i × r i) = −(z · r i)G0i + (z · G0i)r i , as arccos

〈
G0i , g0i

〉
> 90◦, (6)

gi = [gix giy giz]
T = g0i/

∣∣g0i

∣∣ (i = 1, 2, 3).
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here,

z · r i = 1

2
[zl(±qexl − eyl + 2Xo − ±qE) + zm(±qexm − eym + 2Yo + E)

+ zn(±qexn − eyn + 2Zo)],

z · r2 = zl(eyl + Xo) + zm(eym + Yo − E) + zn(eyn + Zo), (i = 1, 3), (7)

z · G01 = E(qzl + 3zm)/2,z · G02 = Eqzl,z · G03 = E(qzl − 3zm)/2.

Let Bi1Bi = BiBi2 = G, bibi1 = bibi2 = g, r ij be the vector from Bij to bij . r ij are expressed as
follows:

Bi1 Bi = Bi Bi2 = GGi , gi1 = bi bi1 = −ggi , gi2 = bi bi2 = ggi , i = 1, 2, 3{
r i1 = Bi1 Bi + Bi bi + gi1 = r i + GGi − ggi

r i2 = Bi bi − Bi Bi2 + gi2 = r i − GGi + ggi

. (8)

Let δi be the unit vector of r i , δij be the unit vector of r ij . The formulae for solving ri, rij , r ij , δi

and δij are derived from Eqs. (5), (6), (7), and (8) as follows:

r ij = r i+( − 1)j mi , ri= (r2
ix + r2

iy + r2
iz)

1/2, rij= (r2
ijx + r2

ijy + r2
ijz)

1/2,

mi = ggi − GGi = g
g0i∣∣g0i

∣∣ − G
G0i

|G0i | , δi = r i

ri

, δij = r ij

rij

, (i = 1, 2, 3, j = 1, 2). (9)

4. Velocity Analysis of 6-DoF PM with three Planar Mechanism Limbs

4.1. Basic kinematic equations
The velocity analysis provides a theoretical foundation for the derivation of statics and acceleration
of a 6-DoF PM with three planar mechanism limbs. Let V , v, ω, A, a, and ε be the general
forward velocity, the translational velocity, the angular velocity, the general forward acceleration, the
translational acceleration, and the angular acceleration of m at o respectively. They are expressed as
follows:

V =
[

v

ω

]
, A =

[
a
ε

]
, v =

⎡
⎣vx

vy

vz

⎤
⎦ , ω =

⎡
⎣ωx

ωy

ωz

⎤
⎦ , a =

⎡
⎣ax

ay

az

⎤
⎦ , ε =

⎡
⎣ εx

εy

εz

⎤
⎦ . (10)

Let ζ be a vector. Its skew-symmetric matrix ζ̂ or s(ζ ) satisfies ζ̂ = ζ× = s(ζ ) and ζ̂ T = –ζ̂ .1 Let vbi

be the velocity of m at bi, vbij be the velocity vector of the upper beam gi at bij , ωgi be the angular
velocity of gi ; ωri be the angular velocity of ri, ωrij be the angular velocity of rij , ωgij be the scalar
angular velocity of gi about rij at bij , vri be the scalar velocity along ri , and vrij be the input scalar
velocity along rij . Let ωi1 and Ri1 be the scalar angular velocity of the lower beam Gi about B at Bi

and its unit vector respectively; ωi2 and Ri2 be the scalar angular velocity of ri about Gi at Bi and
its unit vector respectively; ωi3 and Ri3 be the scalar angular velocity of gi about ri at bi and its unit
vector respectively, and there is Ri3||Ri2. Let ωi4 and Ri4 be the scalar angular velocity of vertical
rod rvi about m at bi and its unit vector respectively. Let ωi5 and Ri5 be the scalar angular velocity
of gi about rvi at bi and its unit vector respectively. Their relative basic kinematic equations and the
geometry-constrained equations are expressed by Eqs. (A2) to (A7) in the Appendix.

4.2. Angular velocity ωri of virtual leg ri and linear velocity vri along virtual leg ri

The angular velocity ωri of the virtual leg ri and the linear velocity vri along ri must be derived before
solving the general input velocity and the general forward velocity. Their derivations are explained
as follows.
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Let D1 = r i · (Ri1 × Ri2) = −Ri2 · (Ri1 × r i), D2 = Ri1 RT
i2 − Ri2 RT

i1. From Eq. (A7), we
derive the following equations:

ωi1 = −RT
i2δ̂

2
i (ν − êiω)

−D1
= Jωi1V , Jωi1 = RT

i2

D1
[ δ̂

2
i −δ̂

2
i êi ], ωi2 = −RT

i1δ̂
2
i (ν − êiω)

D1
. (11)

ωri is derived from Eqs. (A3) and (11) as given below:

ωri = ωi1 Ri1 + ωi2 Ri2 = D2δ̂
2
i (ν − êiω)

D1
= Jωri V , Jωri = D2

D1
[ δ̂

2
i −δ̂

2
i êi ]. (12)

vri is derived from Eq. (A5) as given below:

vri = vbi · δi = (ν + ω × ei) · δi = δi · ν + (δi × ei) · ω = Jνi V , Jνi = [ δT
i −(êiδi)T ]1×6. (13)

4.3. Angular velocity ωgi of upper beam gi and angular velocity ωrij of active leg rij

The angular velocity ωgi of the upper beam gi and the angular velocity ωrij of the active leg rij

must also be derived before solving the general input and forward velocities. Their derivations are
explained as follows.

Dot multiply both sides of Eq. (A4) by Ri6; ωi3 and ωgi are derived based on (Ri6 ⊥ Ri4, Ri6 ⊥
Ri5) and Eq. (12) as follows:

(ω + ωi4 Ri4 + ωi5 Ri5) · Ri6 = (ωri + ωi3 Ri3) · Ri6, ⇒ ωi3 = RT
i6(ω − ωri)

Ri3 · Ri6
, D3 = Ri3 RT

i6

Ri3 · Ri6
,

ωgi = ωri + ωi3 Ri3 = ωri + D3(ω − ωri) = (E3×3 − D3)ωri + D3ω (14)

= (E3×3 − D3) Jωri V + [ 03×3 D3 ]V = Jωgi V , Jωgi = (E3×3 − D3)Jωri + [ 03×3 D3 ].

Dot multiply both sides of Eq. (A4) by δij based on δij ⊥ Ri2, it leads to

ωgi · δij = ωrij · δij + ωgij Ri2 · δij ⇒ ωgi · δij = ωrij · δij . (15)

Cross multiply both sides of Eq. (11d) by δij , it leads to

δij × (ν + ω × ei + ωgi × gij ) = δij × (νrijδij + rijωrij × δij ) = rijωrij − rijδij (ωrij · δij ). (16)

Substitute Eq. (15) into Eq. (16), ωrij is derived as given below:

ωrij = δij

rij

× (ν + ω × ei + ωgi × gij ) + δij (ωrij · δij )

= δij × (ν + ω × ei)

rij

+ δij × (ωgi × gij )

rij

+ δijδ
T
ijωgi

= Jωij V , Jωij = 1

rij

[
δ̂ij −δ̂ij êi

] +
(

δijδ
T
ij − δ̂ij ĝij

rij

)
Jωgi, (i = 1, 2, 3, j = 1, 2).(17)

4.4. General input velocity Vr , forward velocity V, and statics model
The statics model provides a theoretical foundation for determining actuator, establishing stiffness
model, and solving elastic deformation for a 6-DoF PM with three planar mechanism limbs.
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Dot multiply both sides of Eq. (11d) by δij , vrij is derived from Eqs. (14) and (17) as follows:

νrij = νbij · δij = (νbi + ωgi × gij ) · δij = (ν + ω × ei) · δij + ( Jωgi V × gij ) · δij

= J ij V , J ij = [
δT

ij (êiδij )T
]

1×6
+ (ĝijδij )T Jωgi, (i = 1, 2, 3, j = 1, 2). (18)

Let Frij (i = 1, 2, 3; j = 1, 2) be the active force applied on and along rij , and (F, T) be the
workload wrench applied on m at o. The general input velocity V r , the general forward velocity V,
and the statics are derived based on the principle of virtual work,1 and the derived velocity formula
is as follows:

(V r )6×1 = J6×6V ,

V = J−1Vr,

f TV r + [FT T T]V = 0,

f = −(JT )−1

[
F
T

]
, V r =

⎡
⎢⎢⎢⎢⎢⎣

vr11

vr12

vr21

vr22

vr31

vr32

⎤
⎥⎥⎥⎥⎥⎦ , f =

⎡
⎢⎢⎢⎢⎢⎣

Fr11

Fr12

Fr21

Fr22

Fr31

Fr32

⎤
⎥⎥⎥⎥⎥⎦ , J =

⎡
⎢⎢⎢⎢⎢⎣

J11

J12

J21

J22

J31

J32

⎤
⎥⎥⎥⎥⎥⎦ .

i = 1, 2, 3;j = 1, 2,

(19a)

J ij = [
δT

ij (êiδij )T
]

1×6
+ (êijδij )T Jωgi, Jωri = D2

D1

[
δ̂

2
i −δ̂

2
i êi

]
,

Jωgi = (E3×3 − D3)Jωri + [03×3 D3], (19b)

D1 = Ri · (Ri1 × Ri2), D2 = Ri1 RT
i2 − Ri2 RT

i1, D3 = Ri3 RT
i6/(Ri3 · Ri6).

Here, J is a 6 × 6 Jacobian matrix of PM with three planar mechanism limbs.
When given the general input velocity V r of active legs rij (i = 1, 2, 3; j = 1, 2), the general

forward velocity V of the moving platform can be solved using Eq. (19). When given the workload
wrench (F, T) applied on m, the active forces Frij applied on and along rij can be solved using
Eq. (19).

4.5. Analysis of structure singularity
When rij |gi (i = 1, 2, 3, j = 1, 2) are satisfied, each of rij has two kinematic solutions. This case is
called as a structure singularity of PM with three planar mechanism limbs. In this case, r ij ⊥ z is
satisfied. From Eq. (9) and gi ⊥ z, it leads to

r ij · z = r i · z + (−1)j mi · z ⇒ r i · z = (−1)jGGi · z. (20)

Next, from Eqs. (7) and (20), a structure singularity equation is derived as given below:

zlXo + zmYo + znZo = E(qzl + zm) ⇒ z · o = E(qzl + zm). (21)

The structure singularity can be determined based on Eq. (21) and must be avoided. Therefore, the
angle between active leg rij and the upper beam gi must be less than 180◦ for avoiding the structure
singularity.

5. Acceleration Analysis of 6-DoF PM with Three Planar Mechanism Limbs
A standard acceleration formula is a basis of the analysis of dynamics and the control of a 6-DoF
PM with three planar mechanism limbs. Let arij be the input scalar acceleration along rij , abi be the
translational acceleration of m at bi , and εgi be the angular vector acceleration of gi .
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Differentiate Eq. (18) with respect to time, arij is derived using Eq. (A5) in the Appendix, and
Eqs. (14) and (17) as follows:

arij = [δT
ij (ei × δij )T]A + (gij × δij )Tεgi + V T1hij V , (i = 1, 2, 3, j = 1, 2),

1hij =
[

03×3 03×3

03×3 êi δ̂ij

]
−

[
E3×3

êi

]
δ̂ij Jωij + JT

ωgi ĝij (δ̂ij Jωgi − δ̂ij Jωij ). (22)

Here, 3hij is the sub-Hessian matrix. A detail derivation of arij is given by Eq. (A8) in the Appendix.
Differentiate Eq. (14) with respect to time, and εgi is derived as given below:

εgi = (E3×3 − D3)′ωri + (E3×3 − D3)εri + D′
3ω + D3ε = D′

3(ω − ωri) + (E3×3 − D3)εri + D3ε.

(23)

From Eq. (23), it leads to

(gij × δij )Tεgi = (ĝijδij )Tεgi = (ĝijδij )TD′
3(ω − ωri) + cijεri + (ĝijδij )TD3ε

= [01×3 (ĝijδij )TD3]A + (ĝijδij )TD′
3(ω − ωri) + cijεri , (cij )1×3 = (ĝijδij )T(E3×3 − D3).

(24)

Based on Eqs. (A2) and (A3) in the Appendix and Eq. (14), the differentiation of
Ri3, (Ri3 RT

i6), (Ri3 · Ri6), and D3 with respect to time are derived as follows:

R′T
i3 = V T JT

ωri

δ̂iR̂i1R̂2
i3

|Ri1 × δi | , (Ri3 RT
i6)′ = R′

i3 RT
i6 + Ri3(R̂i5R̂i4ω − R̂i4R̂i5ωgi)

T,

(Ri3 · Ri6)′ = R′T
i3 Ri6 + RT

i3(R̂i5R̂i4ω − R̂i4R̂i5ωgi),

D′
3 = R′

i3 RT
i6 + Ri3(R̂i5R̂i4ω − R̂i5R̂i4ωgi)T

Ri3 · Ri6

− D3
R′

i3 · Ri6 + Ri3 · (R̂i5R̂i4ω − R̂i4R̂i5ωgi)

Ri3 · Ri6
. (25)

A detailed derivation of Eq. (25) is given by Eqs. (A9), (A10), and (A11) in the Appendix.
Next, item (êijδij )TD′

3 in Eq. (24) is derived based on Eq. (25) as follows:

(ĝijδij )TD′
3 = R′T

i3

ĝijδij RT
i6 − Ri6(ĝijδij )TD3

Ri3 · Ri6

+ (ωTR̂i4R̂i5 − ωT
giR̂i5R̂i4)

(ĝijδij )T Ri3 − Ri3(ĝijδij )TD3

Ri3 · Ri6
. (26)

Thus, item (ĝijδij )TD′
3(ω − ωri) in Eq. (24) is transformed into a standard model as follows:

(ĝijδij )TD′
3(ω − ωri) = V Tdij (ω − ωri) = V T2hij V , 2hij = [03×3 dij ] − dij Jωri . (27)

Here, dij is a 6 × 6 matrix. Its expression is given by (A12) in the Appendix.
Differentiate ωri in Eq. (12) with respect to time, it leads to

εri = (Ri1 R′T
i2 − R′

i2 RT
i1)

D1
(δ̂

2
i ν − δ̂

2
i êiω) − ωri

D1
[(vriδ

T
i + riω

T
ri δ̂i)(Ri1 × Ri2) + riδ

T
i R̂i1 R′

i2]

+ D2

D1
{δ̂2

i a − δ̂
2
i êiε + [δi(ω

T
ri δ̂i) − (δ̂iωri)δ

T
i ](ν − êiω) − δ̂

2
i [(ω × ei) × ω]}. (28)
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Thus, item cijεri in Eq. (27) is transformed into a standard model as given below:

cijεri = cij D2

D1
[δ̂

2
i −δ̂

2
i êi]A + V T3hij V ,

3hij = JT
ωri

D1

{
δ̂iR̂i1R̂2

i3

|Ri1 × δi | (cij Ri1E3×3 − cT
ij RT

i1)[δ̂
2
i −δ̂

2
i êi]

+ ri δ̂i

(
R̂i1R̂2

i3

|Ri1 × δi | R̂i1δi − Ri1 × Ri2

)
cij Jωri

− cT
ijδ

T
i (Ri1 × Ri2)Jνi + δ̂i(cij D2δi + DT

2 cT
ijδ

T
i )[E3×3 −êi]

}

+ 1

D1

[
03×3 03×3

03×3 êis(δ̂2
i DT

2 cT
ij )

]
. (29)

Here, 3hij is the sub-Hessian matrix. The detail derivation of Eq. (29) is shown by Eq. (A13) in the
Appendix.

From Eqs. (23) to (27), it leads to

(gij × δij ) · εgi = ( ĝijδij )TD′
3(ω − ωri) + (ĝijδij )T(E3×3 − D3)εri+[01×3 (ĝijδij )TD3]A

=
[

cij D2δ̂
2
i

D1
(ĝijδij )TD3 − cij D2δ̂

2
i êi

D1

]
A + V T(2hij + 3hij )V . (30)

Finally, a standard formula for solving the general input acceleration Ar is derived from Eqs. (23),
(27), and (30) as follows:

arij= ( J ij )1×6 A + V T(hij )6×6V ,

Ar=J6×6 A + V THV ,

A=J−1(Ar − V THV ),

hij =
3∑

k=1

k(hij )6×6,

Ar =

⎡
⎢⎢⎢⎢⎢⎣

ar11

ar12

ar21

ar22

ar31

ar32

⎤
⎥⎥⎥⎥⎥⎦

6×1

, J =

⎡
⎢⎢⎢⎢⎢⎣

(J11)1×6

(J12)1×6

(J21)1×6

(J22)1×6

(J31)1×6

(J32)1×6

⎤
⎥⎥⎥⎥⎥⎦ ,

H =

⎡
⎢⎢⎢⎢⎢⎣

(h11)6×6

(h12)6×6

(h21)6×6

(h22)6×6

(h31)6×6

(h32)6×6

⎤
⎥⎥⎥⎥⎥⎦ ,

i = 1, 2, 3
j = 1, 2,

(31)

J ij =
⎡
⎣δT

ij + ( ĝijδij )T(E3×3 − D3)D2δ̂
2
i

D1
(êiδij )T + (ĝijδij )TD3 − (ĝijδij )T(E3×3 − D3)D2δ̂

2
i êi

D1

⎤
⎦.

Here, H is the Hessian matrix of a 6-DoF PM with planar mechanism limbs, and hij (i = 1, 2, 3; j =
1, 2) are the 6 × 6 sub-Hessian matrices of H. khij (k = 1, 2, 3) are the 6 × 6 sub-Hessian matrices
of hij .

When given the general input velocity V r and the acceleration Ar of active legs rij (i = 1,
2, 3; j = 1, 2), the general forward acceleration A of the moving platform can be solved using
Eq. (31).
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Table I. Given parameters of a 6-DoF PM of with three planar mechanism limbs.

Symbols (unit) l (mm) L (mm) 2g (mm) 2G (mm) F (kN) T (N· m)

Value 120 240 30 40 [0 0 –1]T [0 0 10]T

6. Analytical Examples of Kinematics and Statics and Numerical Solved Results
In order to verify all derived equations, an analytical numerical example and the solved results are
given as follows. The relative given parameters are listed in Table I.

The analytic results are obtained from a data file, which is generated from a compiled program. The
simulation results are also obtained from a data file, which is generated from a simulation mechanism
in the advanced CAD software. The solved and verified processes are explained as follows: (1) Give
the translational acceleration arij of the active legs rij (i = 1, 2, 3; j = 1, 2) and the workload wrench;
see Fig. 2a and Table I. (2) Solve the displacement and the translational velocity of rij (i = 1, 2, 3;
j = 1, 2), the solutions are shown in Figs. 2b and c. (3) Solve the angular velocity of active legs rij ,
the displacement, the translational velocity, and the translational acceleration of the moving platform
m based on the displacement of rij , the solutions are shown in Figs. 2d–g. (4) Solve the orientations,
the angular velocity, and the angular acceleration of the moving platform m, the solutions are shown
in Figs. 2h–j. (5) Solve the active forces of the active legs rij , the solutions are shown in Fig. 2k. (6)
Construct a simulation mechanism using the advanced CAD software, and verify all the analytically
solved results.

The characteristics of a 6-DoF PM with three planar mechanism limbs are found from the solved
results as follows:

1. When rij (i = 1, 2, 3; j = 1, 2) are varied within 280 ∼ 450 mm, the displacement components of
m are varied within (0 ∼ 220, 0 ∼ 160, 220 ∼ 250) mm for (Xo, Yo, Zo) respectively; see Fig. 2e.
It implies that the novel 6-DoF PM with three planar mechanism limbs has a quite large position
workspace.

2. When rij (i = 1, 2, 3; j = 1, 2) are varied within 280 ∼ 450 mm, the orientation components
of m are varied within (100 ∼ 50, 0 ∼ 20, –110 ∼ 20)◦ for (α, β, γ ) respectively; see Fig. 2e. It
implies that the novel 6-DoF PM with three planar mechanism limbs has a quite large orientation
workspace.

3. When the displacement, the linear velocity, and the linear acceleration of the active legs rij are
varied smoothly, the displacement, the linear velocity, and the linear acceleration of m are varied
smoothly in a large range; the orientations, the angular velocity, and the angular acceleration of
m are also varied smoothly in a large range. The active forces of rij are varied smoothly in a
large range. It implies that the novel 6-DoF PM with three planar mechanism limbs has good
characteristics of kinematics and statics.

7. Workspace and Comparisons
When given the same parameters and under condition of m moving in three translations (see Table II),
the workspace volume VW of the 6-DoF PM with three planar mechanism limbs and the workspace
volumes VWθ of a 6–6 Stewart PM2,4 are solved based on relative analytical formulae, see Figs.
3a–c. Here, θ is the limited rotational angle of the S joint, θ = ± (30, 35, 40, 45, 50)◦; see
Fig. 3d. The solved relative data of the curve family are input into the advanced CAD software,
and the 3D surface of the workspaces is formed from a family of curves; see Fig. 3. The solutions
of the workspace volumes of the two PMs are listed in Table II. It is known from the solved results that
the workspace volume VWθ of the 6–6 Stewart PM is enlarged with the increase of θ . Generally, since
θ should be less than ±35◦ before interference occurs in the S joint, VW = 71.905 mm3 is larger than
VW35 = 33.585 mm3.

The construction procedures of the workspace volumes are explained as follows:

Step 1. Set the constrained conditions as follows: The extensions of the active leg rij of PM are in
the range of 0.5→0.75 m, the rotation angles of the spherical joint are in the range of ±θ .
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Fig. 2. Analytically solved results of kinematics and statics.

Table II. Solved workspace volumes of two PMs under given parameters, and m moving only in translations.

Given parameters Solved results
of volume

Different PMs e (mm) rij (mm) E (mm) 2g (mm) θ (◦) workspace (mm3)

6-DoF PM with 3 planar 100 500 ∼ 750 250 25 VW 71.905
mechanism limbs

6–6 Stewart PM 100 500 ∼ 750 250 0 ±30 VW30 20.793
±35 VW35 33.585
±40 VW40 48.745
±45 VW45 58.947
±50 VW50 77.163
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Fig. 3. Workspace volumes of two PMs under given parameters and different θ . (a) Front view of VW and
VW35; (b) top view of VW and VW35; (c) front view of VW and VWθ ; (d) structure of S joint with limited
angle θ .

Step 2. Search all the positions that can be reached by the center of m using the inverse displacement
formulae in Eq. (9) in Matlab.

The search principle for compiling program is described as follows:

� Set Euler angles (α, β, γ ) of m to be 0, then solve the center coordinate of m.
� Judge the constrained conditions of the coordinate of m at o using the inverse displacement formulae

in Eq. (9). If the coordinate of m at o satisfies all the constrained conditions, it is located in the
workspace of PM with a fixed orientation; otherwise, it is not located in the workspace.

� Solve all the boundaries of the workspace.

Step 3. Transfer all the solved position data into the advanced CAD software, generate a family of
similar spatial curves, and construct lower and upper boundary surfaces from the family of similar
spatial curves.
Step 4. Generate the workspace volumes of the PM by lower and upper boundary surfaces; see
Fig. 3.
Step 5. Based on the displacement formulae of the existing 6–6 Stewart PM,2,4 repeat Steps 1 to 4,
and construct a workspace of the existing 6–6 Stewart PM.
Step 6. Assemble all the 3D workspaces Vw and VWθ , θ = ± (30, 35, 40, 45, 50)◦ with the same
[B]; see Fig. 3d. The measured volumes of every 3D workspace are listed in Table II.

8. Conclusions
The proposed novel 6-DoF PM with three planar mechanism limbs has the following merits:

� The planar mechanism of limb only includes revolute joints and prismatic joint; therefore it is
simple in structure and easy to manufacture.

� The revolute joint has a larger capability of pulling force bearing than that of a spherical joint.
� The revolute joint has a higher precision than a spherical joint under large cyclic loading because

the backlash in the revolute joint can be eliminated more easily than that in the spherical joint or
the universal joint.
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� The workspace can be increased because the revolute joint has a larger rotation range than a
spherical joint before interference.

The formulae for solving the standard Jacobian/Hessian matrices and the kinematics/statics, and
determining the structure singularity are established for the 6-DoF PM with three planar mechanism
limbs. The derived formulae are verified by the simulation results. When given the general input
velocities and accelerations of the six active legs, the general forward velocity and acceleration of the
moving platform can be solved using the established kinematics model. When given the workload
wrench applied on the platform, the active forces applied on and along the six active legs can be
solved using the established statics model.

The solved results show that the proposed 6-DoF PM with three planar mechanism limbs has quite
large position workspace and orientation workspace, and good kinematic and static characteristics,
and the workspace volume is much larger than that of the 6–6 Stewart PM.

The studied results in this paper provide a theoretical foundation for determining/selecting
actuators, establishing the dynamics and stiffness models, solving the elastic deformation, and the
control of a 6-DoF PM with three planar mechanism limbs in the future.
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Appendix
The coordinates of bi and z of m in {B} are expressed as follows:18

bi = RB
mbm

i + o(i = 1, 2, 3),

RB
m =

⎡
⎣ xl yl zl

xm ym zm

xn yn zn

⎤
⎦ =

⎡
⎣ cαcβcγ − sαsγ −cαcβsγ − sαcγ cαsβ

sαcβcγ + cαsγ −sαcβsγ + cαcγ sαsβ

−sβcγ sβsγ cβ

⎤
⎦ ,

z = RB
m

⎡
⎣0

0
1

⎤
⎦ =

⎡
⎣ zl

zm

zn

⎤
⎦ . (A1)

Here, RB
m is the rotation matrix from {m} to {B} of order ZYZ (about Z by α, about Y1 by β, and

about Z2 by γ ); xl, xm, xnyl, ym, ynzl, zm, zn are nine orientation parameters of m.18 Let ϕ be one of
three Euler angles (α, β, γ ). sϕ = sinϕ, cϕ = cosϕ.

The relative basic kinematic equations and the geometry-constrained equations are expressed by
Eqs. (A2), (A3), (A4), and (A5) as follows:1

Ri1 = Gi , Ri2 = Ri3 = Ri1 × δi

|Ri1 × δi | , Ri4 = z, Ri5 = gi1

|gi1| ,

Ri6 = Ri4 × Ri5, R′
i4 = ω × Ri4, R′

i5 = ωgi × Ri5, (A2)

ωri = ωi1 Ri1 + ωi2 Ri2, (A3)

ωgi = ω + ωi4 Ri4 + ωi5 Ri5 = ωri + ωi3 Ri3 = ωrij + ωgij Ri2, (A4)

νbi = ν + ω × ei = vri · δi + ωri × r i , vri = vbi · δi , r i = riδi ,

νbij = νbi + ωgi × gij = ν + ω × ei + ωgi × gij = νrij + ωrij × r ij , vrij = vbij · δij , r ij = rijδij .

(A5)

Cross multiplying both sides of the first Eq. (A3) by r i , based on Eq. (A5), leads to

ωi1 Ri1 × r i + ωi2 Ri2 × r i = ωri × r i = νbi − vri · δi = (δi · δi)νbi − (νbi · δi)δi

= −δi × (δi × νbi) = −δ̂
2
i νbi = −δ̂

2
i (ν + ω × ei) = −δ̂

2
i (ν − êiω). (A6)

Dot multiply both sides of Eq. (A6) by Ri2 and Ri1 respectively, it leads to

ωi1(Ri1 × r i) · Ri2 = RT
i2δ̂

2
i (−ν + êiω),ωi2(Ri2 × r i) · Ri1 = RT

i1δ̂
2
i (−ν + êiω). (A7)
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The detailed derivation of arij is given as follows:

arij = v′
rij= [(vbi+ωgi × gij ) · δij ]′ = (νbi+ωgi × gij )′ · δij + (νbi+ωgi × gij ) · δ′

ij

= [abi + εgi × gij + ωgi × (ωgi × gij )] · δij + (νbi+ωgi × gij ) · δ′
ij

= abi · δij + δij · (εgi × gij ) + δij · [ωgi × (ωgi × gij )] + (νbi+ωgi × gij ) · δ′
ij

= δT
ij [a+ε × ei + ω × (ω × ei)]+(gij × δij )T εgi + ωT

gi ĝij δ̂ijωgi + νT
biδ

′
ij − (ĝijωgi)

T δ′
ij

= [δT
ij (ei × δij )T]A + [ω × (ω × ei)] · δij + (gij × δij )T εgi + ωT

gi ĝij (δ̂ijωgi + δ′
ij ) + νT

biδ
′
ij

= [δT
ij (ei × δij )T]A + (gij × δij )Tεgi + V T1hij V , (i = 1, 2, 3, j = 1, 2), (A8)

δ′
ij = ωrij × δij = −δ̂ijωrij .

The detailed derivations of the differentiations of Ri3, (Ri3 RT
i6), (Ri3 · Ri6), and D3 with respect

to time are given as follows:

R′
i3 =

(
Ri1 × δi

|Ri1 × δi |
)′

= (Ri1 × δi)′

|Ri1 × δi | − (Ri1 × δi) |Ri1 × δi |′
|Ri1 × δi |2

= (Ri1 × δi)′

|Ri1 × δi |

− Ri3[(Ri1 × δi)T(Ri1 × δi)]′

2 |Ri1 × δi |2

= (Ri1 × δi)′

|Ri1 × δi | − Ri3[(Ri1 × δi)′T(Ri1 × δi) + (Ri1 × δi)T(Ri1 × δi)′]
2 |Ri1 × δi |2

= (Ri1 × δi)′

|Ri1 × δi | − Ri3[(Ri1 × δi)′T Ri3 + RT
i3(Ri1 × δi)′]

2 |Ri1 × δi | = (Ri1 × δi)′ − Ri3 RT
i3(Ri1 × δi)′

|Ri1 × δi |

= (E3×3 − Ri3 RT
i3)(Ri1 × δi)′

|Ri1 × δi | = R̂2
i3R̂i1δ̂i

|Ri1 × δi |ωri , R′T
i3 = V TJ T

ωri

δ̂iR̂i1R̂2
i3

|Ri1 × δi | . (A9)

Ri3(R′T
i6) = Ri3(Ri4 × Ri5)′T = Ri3[(ω × Ri4) × Ri5 + Ri4 × (ωgi × Ri5)]T ,

RT
i3(Ri4 × Ri5)′ = RT

i3[(ω × Ri4) × Ri5 + Ri4 × (ωgi × Ri5)] =RT
i3R̂i5R̂i4ω − RT

i3R̂i4R̂i5ωgi,

(A10)

(Ri3 RT
i6)′ = R′

i3 RT
i6 + Ri3(R′T

i6) = R′
i3 RT

i6 + Ri3(R̂i5R̂i4ω − R̂i4R̂i5ωgi)
T ,

(Ri3 · Ri6)′ = (RT
i3)′ Ri6 + RT

i3(Ri4 × Ri5)′ = R′T
i3 Ri6 + RT

i3(R̂i5R̂i4ω − R̂i4R̂i5ωgi).

D′
3 =

(
Ri3 RT

i6

Ri3 · Ri6

)′
= 1

Ri3 · Ri6

[
(Ri3 RT

i6)′ − D3(Ri3 · Ri6)′
]

= R′
i3 RT

i6 + Ri3(R̂i5R̂i4ω − R̂i5R̂i4ωgi)T

Ri3 · Ri6
− D3

R′
i3 · Ri6 + Ri3 · (R̂i5R̂i4ω − R̂i4R̂i5ωgi)

Ri3 · Ri6

(A11)

Formula for solving dij is represented as below:

dij = 1

Ri3 · Ri6

{
JT

ωri

δ̂iR̂i1R̂2
i3

|Ri1 × δi | [( ĝijδij )RT
i6 − Ri6( ĝijδij )TD3]

+
([

03×3

E3×3

]
R̂i4R̂i5 − JT

ωbiR̂i5R̂i4

)
[( ĝijδij )T Ri3 − Ri3( ĝijδij )TD3]

}
. (A12)
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The detail derivation of formulae (29) is given as follows:

cijεri = cij (Ri1 R′T
i2 − R′

i2 RT
i1)

D1
(δ̂

2
i ν − δ̂

2
i êiω)

− cijωri

D1
[(vriδ

T
i + riω

T
ri δ̂i)(Ri1 × Ri2) + riδ

T
i R̂i1 R′

i2]

+ cij D2

D1
{δ̂2

i a − δ̂
2
i êiε + [δi(ω

T
ri δ̂i) − (δ̂iωri)δ

T
i ](ν − êiω) − δ̂

2
i [(ω × ei) × ω]}

= cij D2

D1
[δ̂

2
i −δ̂

2
i êi]A + R′T

i2(cij Ri1E3×3 − cT
ij RT

i1)

D1
[δ̂

2
i −δ̂

2
i êi]V

− ωT
ric

T
ijδ

T
i (Ri1 × Ri2)vri + ωT

riri δ̂i(Ri1 × Ri2)cijωri − R′T
i2riR̂i1δicijωri

D1

+ ωT
ri δ̂i(cij D2δi) + ωT

ri δ̂iDT
2 cT

ijδ
T
i

D1
[E3×3 −êi]V + ωT êis(δ̂

2
i DT

2 cT
ij )ω

D1

= cij D2

D1
[δ̂

2
i −δ̂

2
i êi]A + V T3hij V . (A13)

Here, s(δ̂
2
i DT

2 cT
ij ) is the skew-symmetric matrix of (δ̂

2
i DT

2 cT
ij ).
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