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Biological membranes are host to proteins and molecules which may form domain-like
structures resulting in spatially varying material properties. Vesicles with such
heterogeneous membranes can exhibit intricate shapes at equilibrium and rich dynamics
when placed into a flow. Under the assumption of small deformations and a
two-dimensional system, we develop a reduced-order model to describe the fluid-structure
interaction between a viscous background shear flow and an inextensible membrane
with spatially varying bending stiffness and spontaneous curvature. Material property
variations of a critical magnitude, relative to the flow rate and internal/external viscosity
contrast, can set off a qualitative change in the vesicle dynamics. A membrane of
nearly constant bending stiffness or spontaneous curvature undergoes a small amplitude
swinging motion (which includes tangential tank-treading), while for large enough
material variations the dynamics pass through a regime featuring tumbling and periodic
phase-lagging of the membrane material, and ultimately for very large material variation
to a rigid-body tumbling behaviour. Distinct differences are found for even and odd spatial
modes of domain distribution. Full numerical simulations are used to probe the theoretical
predictions, which appear valid even when studying substantially deformed membranes.

Key words: capsule/cell dynamics, flow-vessel interactions, membranes

1. Introduction

Biological membranes are often modelled as being homogeneous in composition, a
simplification which has resulted in a trove of understanding of their shapes, dynamics in
flows, fission and beyond. But real biological membranes contain a vast array of proteins
which can form domains resulting in spatial variations in material properties, leading to
changes in vesicle shapes (Seifert 1997; Hu, Weikl & Lipowsky 2011). Simpler systems
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of synthetic multicomponent vesicles, whose membranes can be composed of different
lipid species, have been used to study the rich patterns and accompanying morphologies
which emerge from elastic heterogeneity (Baumgart, Hess & Webb 2003; Veatch & Keller
2003). These findings have been corroborated and expanded upon using both numerical
and analytical techniques (Elliott & Stinner 2013; Barrett, Garcke & Nürnberg 2017),
which in turn are of use when attempting to infer membrane properties experimentally
(Engelhardt, Duwe & Sackmann 1985; Baumgart et al. 2005; Tian et al. 2007).

The analytical study of vesicles with single-component membranes in flow has a long
history. Keller & Skalak (1982) demonstrated with a two-dimensional elliptical membrane
a transition from tank-treading (in which the membrane shape and orientation are fixed
but the membrane material slides along the surface) to tumbling (the long axis rotates in
a periodic fashion) beyond a critical interior/exterior viscosity contrast. But in general
a vesicle is not ellipsoidal and its shape must be determined through a balance of
interfacial forces, for instance, by describing the shape using a series expansion about
small parameters such as excess area (Misbah 2006; Lebedev, Turitsyn & Vergeles 2007;
Vlahovska & Gracia 2007). Detailed reviews on the small-deformation analyses for both
vesicles and capsules are provided by Vlahovska (2015) and Vlahovska & Misbah (2019).
Barthes-Biesel (1980), Barthes-Biesel & Rallison (1981) and Barthes-Biesel (1991) also
considered the impact of the internal/external viscosity ratio for nearly spherical capsules
assuming zero membrane bending stiffness. The leading-order solution demonstrates that
in addition to tank-treading and tumbling behaviour as predicted by the Keller–Skalak
model, there is another mode called ‘swinging’ (Noguchi & Gompper 2007), ‘vacillating
breathing’ (Misbah 2006) or ‘trembling’ (Kantsler & Steinberg 2006; Lebedev, Turitsyn
& Vergeles 2008) in which the orientation of the major axis oscillates while the vesicle
undergoes significant deformations – see also the review by Lebedev et al. (2008). Some
of the above terms are used interchangeably by various authors, a semantic issue also noted
by Misbah (2012).

Phase diagrams for the shapes and dynamics of vesicles in linear flows have been
mapped out by numerous authors (Lebedev et al. 2008; Deschamps et al. 2009a;
Deschamps, Kantsler & Steinberg 2009b; Zhao & Shaqfeh 2011; Zabusky et al. 2011;
Abreu et al. 2014); see also Barthes-Biesel (2016). The roles of nearby boundaries
(Zhao, Spann & Shaqfeh 2011), inertia (Salac & Miksis 2012), semi-permeability (Quaife,
Gannon & Young 2021), enclosed particles (Veerapaneni et al. 2011b), fluid viscoelasticity
(Mushenheim et al. 2016; Seol et al. 2019), thermal fluctuations (Wortis, Jarić & Seifert
1997; Schneider, Jenkins & Webb 1984; Morse & Milner 1994; Michalet, Bensimon &
Fourcade 1994; Seifert 1999; Finken et al. 2008; Ahmadpoor & Sharma 2016) and active
internal stresses (Gao & Li 2017; Young, Shelley & Stein 2021) are among the many
additional physical and biological features that have been considered, and a large body
of literature is devoted to suspensions of many deformable particles such as cells and
vesicles in flows (Kantsler, Segre & Steinberg 2008; Vlahovska, Podgorski & Misbah
2009; Veerapaneni et al. 2011a; Zhao, Shaqfeh & Narsimhan 2012; Freund 2014; Kumar
& Graham 2015; Raffiee, Dabiri & Ardekani 2019).

The behaviours of multicomponent vesicles in flows, meanwhile, has only just begun
to attract attention. Analytical results are scarce but numerical simulations have offered
substantial insight. Simulations in a stationary environment have revealed wrinkling
and budding deformations (Li, Lowengrub & Voigt 2012) and the formation of
multicomponent vesicles by adhesion and fusion (Zhao & Du 2011). Sohn et al. (2010)
studied two-dimensional multicomponent vesicles in a background shear flow, along
with the evolution of distinct surface phases, finding highly complex morphologies and
dynamics for highly deformed vesicles. Smith & Uspal (2007) showed using dissipative
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particle dynamics simulations that a shear flow can be used to separate buds from a
multicomponent vesicle. The influence of both bending rigidity and spontaneous curvature
variation on the equilibrium shape of a vesicle has also been investigated (Cox &
Lowengrub 2015). Subsequent boundary integral simulations by Liu et al. (2017) showed a
transition from tumbling to tank-treading to ‘phase-treading’ of the constituents along the
surface upon increasing the shear rate. Analytic results have also shown that a variation of
bending rigidity along a surface can induce migration in tank-treading vesicles (Olla 2011).
Synthetic systems have also been fruitful for testing theoretical predictions. Experiments
using a two-phase lipid vesicle in such a flow as a simplified model of red blood cell
dynamics showed similarly complex features (Tusch et al. 2018). Gera & Salac (2018b)
then used simulations to probe a wide array of morphological changes due to spatially
varying bending stiffness and line tension between two lipid phases. The phase separation
process itself is naturally of great interest, and experiments have been used to study
spinodal decomposition and viscous fingering along membrane surfaces (Veatch & Keller
2003; Lowengrub, Rätz & Voigt 2009; Marenduzzo & Orlandini 2013; Stanich et al. 2013).

In this article we derive analytical predictions for a two-dimensional, multicomponent
vesicle in a shear flow under the assumption of small deformations and already-formed
domains. Among the fruits of the reduced-order model so produced is a single equation
describing the inclination angle dynamics when the distribution of material properties
varies in the second spatial mode, the frequency in which they interact most strongly
with the extensional part of the background flow. In this most dynamic case, a change
in behaviour from swinging with tank-treading to tumbling is identified, passing through
a transition regime with periodic phase-lagging of the material relative to the vesicle’s
elongated axis. The method of matched asymptotics is used to produce an approximate
solution to the inclination angle equation through this sharp transition, as well as the
critical value of the bifurcation parameter signalling the transition from swinging to
tumbling which depends on the material property gradient, shear rate and internal/external
viscosity contrast. The asymptotic predictions are shown to compare favourably to the
results of full numerical simulations, even for highly deformed vesicles.

The paper is organized as follows. After presenting the mathematical framework in § 2
to describe the coupling of the fluid flow and elastic membrane stresses at zero Reynolds
number (Stokes flow), an expansion is performed around a nearly circular vesicle to
reduce the system down to time-dependent shape equations. The classical case of constant
membrane material properties is presented in § 3, in which the results of asymptotic
predictions are compared to full numerical simulations. In § 4 attention is turned to the case
of interest, that of spatially varying material properties, in which the resulting dynamics is
shown to depend strongly on the spectrum of the material properties, and in particular the
parity of the number of domains. Concluding remarks are provided in § 5.

2. Mathematical model

2.1. Membrane shape and small deformations
The membrane, or vesicle surface, S, is described by a surface parameterization r(s, t),
where s is the arclength and t is time. The unit tangent and outward-pointing normal
vectors on the surface are written as ŝ = rs and n̂ = ŝ⊥. The membrane is assumed
area-preserving with area A and inextensible with length L = 2πa (so that s ∈ [0, L)),
where a is the characteristic radius.

In the event that the membrane area is not far removed from that of a circle of length L, it
becomes convenient to work in polar coordinates (r, θ), with unit vectors r̂ and θ̂ , and we
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represent the surface S as r(s(θ, t), t) = r(θ, t)r̂(θ) = a(1 + ερ(θ, t)+ ε2ρ(2)(θ, t))r̂(θ),
where ε is a small non-negative constant. For small ε we have ŝ = θ̂ + ερθ r̂ + O(ε2) and
n̂ = r̂ − ερθ θ̂ + O(ε2). A schematic is provided in figure 1. Fourier series representations
of the shape functions ρ and ρ(2) are given by

ρ(θ, t) =
∞∑

n=0

an(t) cos(nθ)+ bn(t) sin(nθ), (2.1)

where an(t) and bn(t) are the time-varying Fourier coefficients, with a similar expression
for ρ(2)(θ, t) with coefficients a(2)n (t) and b(2)n (t). The length of the membrane may then
be written (suppressing the time dependence for the sake of presentation), for ε � 1 as

L =
∫ 2π

0
|rθ | dθ = 2πa

(
1 + εa0 + ε2a(2)0

)
+ πaε2

2

∞∑
n=1

n2
(

a2
n + b2

n

)
+ O(ε3). (2.2)

Fixing the membrane length to 2πa thus requires that a0 = 0 and

a(2)0 = −
∞∑

n=1

n2

4

(
a2

n + b2
n

)
, (2.3)

and the enclosed area may in that case be written as

A =
∫ 2π

0

r2

2
dθ = πa2

(
1 − ε2

2

∞∑
n=1

(
n2 − 1

) (
an

2 + bn
2
))

+ O(ε3). (2.4)

The constant ε may be written in terms of the area enclosed by the membrane if desired
as ε = (2/3)1/2(1 − RA)

1/2/Q, where RA = A/(πa2) is the ‘reduced area’ (equal to unity
when the membrane is circular) and

Q =
(

1
3

∞∑
n=1

(n2 − 1)(an
2 + bn

2)

)1/2

. (2.5)

The value of Q must be constant in time if the dynamics is area-preserving. The Fourier
contributions at mode n = 1 correspond to translation of the vesicle without shape change
up to O(ε3), and hence do not contribute in the expression above.

2.2. Stokes equations and viscous traction
The incompressible Stokes equations describing viscous flow both outside (+) and inside
(−) the vesicle are given by

∇ · σ± = 0, ∇ · u = 0, (2.6a,b)

where u(x, t) is the fluid velocity a point x = (x, y) at time t and σ± = −p±I +
μ±(∇u± + ∇Tu±) are the Newtonian stress-tensors for each fluid domain, with p±
and μ± the pressures and fluid viscosities external and internal to the membrane. The
undisturbed background flow is a linear, horizontal shear flow with shear rate γ̇ , u = γ̇ yx̂,
with constant pressure p∞. A no-slip boundary condition is assumed between the fluid and
membrane velocities on both sides of the membrane (there is no relative slipping between
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Soft Stiffκ

f
n̂x̂

ŷ
ŝ

γ̇yx̂

r(θ, t)
φ(t)

ψ+

ψ–θ

(b)(a)

Figure 1. (a) Schematic of the two-dimensional inextensible membrane with spatially varying bending
stiffness (or spontaneous curvature) in a shear flow, γ̇ yx̂; κ denotes the spatial variation in bending stiffness in
(2.14a,b). Softer regions are lighter in colour than the darker, stiffer domains. Here the material properties vary
in the second spatial mode (e.g. the membrane has two stiffer domains). (b) The stream function for the external
and internal flows are denoted by ψ+ and ψ−, respectively; the viscous traction, f , in (2.7), instantaneously
balances the elastic traction in (2.12).

the inner and outer membrane surfaces). The local viscous tractions, f ± = ±n̂ · σ±,
acting on the membrane from the exterior and interior interfaces result in the combined
local viscous traction

f = n̂ · [σ ]S = −[p]Sn̂ + n̂ ·
[
μ(∇u + ∇Tu)

]
S
, (2.7)

with [ f ]S = ( f + − f −)|S defined to be the jump in f across the boundary S.
The continuity equation in the bulk fluid is immediately satisfied with the introduction

of a stream function, ψ , defined such that u = ∇⊥ψ = ψyx̂ − ψxŷ. The Stokes equations
then reduce to biharmonic equations interior and exterior to the membrane:

∇4ψ± = 0, (2.8)

with ψ+ → γ̇ y2/2 as |x| → ∞, the background shear flow. The general form of the
θ -periodic solution to the biharmonic equation is given in Appendix A. Continuity of
velocity across the membrane boundary demands that

[∇ψ]S = 0, (2.9)

and surface inextensibility along the membrane demands that

∇s · u|S = ŝ
(
ŝ · ∇) · u|S = 0, (2.10)

where ∇s is the surface del operator.

2.3. Force and moment balance
The membrane is modelled as a thin linearly elastic shell. The bending moment is
approximated by M = B(s)(H − H̃(s))x̂ × ŷ, where B(s) and H̃(s) are the spatially
varying bending stiffness and spontaneous curvature, and H = ŝ · ∂sn̂ is the mean
curvature. Force and moment balance along the membrane surface at arclength s are
given by dM/ds + ŝ × F = 0 and f elastic + f = 0, where M is a thickness-averaged first
moment of the elastic stress with units of force, f elastic is the elastic force per area of the
membrane on a surrounding medium, with f elastic = dF/ds, and f is the viscous traction
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acting on the membrane, (2.7). Defining the tangential component of F as T(s) (the tension
per unit length), we then have

F (s) = T(s)ŝ − ŝ ×
(

d
ds

(
B(s)(H − H̃(s))

)
ẑ
)

= T(s)ŝ + n̂
(

B(H − H̃)
)

s
, (2.11)

and the elastic force acting on the surrounding medium is then given by

f elastic =
(
−TH +

(
B(H − H̃)

)
ss

)
n̂ +

(
Ts + H

(
B(H − H̃)

)
s

)
ŝ, (2.12)

where subscripts indicate partial derivatives. A different expression for the traction appears
in the literature starting with the Helfrich free energy which amounts to adding a term
B(s)(H − H̃(s))2/2 to T above (Guckenberger & Gekle 2017); see also the review articles
by Powers (2010) and Deserno (2015). In either case T plays the mathematical role of
a Lagrange multiplier which assures instantaneous membrane inextensibility, at every
moment taking whatever form is necessary to enforce this constraint.

2.4. Non-dimensionalization
A competition of viscous and elastic effects emerges when the stresses associated with the
flow, the material property variations and the shape deformations are all on the same scale.
In order to see this more clearly, the system is made dimensionless by scaling lengths by
a, velocities by aγ̇ , forces by μ+a2γ̇ , stresses by μ+γ̇ and energies by μ+a3γ̇ , while time
is scaled upon ε/γ̇ . The remaining dimensionless scalar parameters governing the system
are

RA = A
πa2 , λ = μ−

μ+ , H̃0 = a〈H̃(s)〉, Ca = μ+a3γ̇

〈B(s)〉 , C = Ca
ε
, (2.13a–e)

where RA is the reduced area, λ is the inner/outer viscosity ratio, H̃0 is the mean
spontaneous curvature (with 〈·〉 an average over the membrane perimeter), Ca is the
bending capillary number and C is a parameter which is O(1) as ε → 0. In addition to
these scalar parameters, and with variations away from their mean values assumed to be
small, we have the dimensionless distributions of the bending stiffness and spontaneous
curvature along the membrane surface as

B(s(θ), t)
〈B(s)〉 = 1 + εκ(θ, t), a H̃(s(θ), t) = H̃0 + εζ(θ, t), (2.14a,b)

respectively. Like the membrane shape we represent κ(θ, t) by its Fourier series, κ(θ, t) =∑∞
n=1 cn(t) cos(nθ)+ dn(t) sin(nθ), and ζ(θ, t) similarly with coefficients en(t) and fn(t).

Henceforth all variables are understood to be dimensionless.
For a membrane of length 2πa ≈ 120 μm and bending rigidity B ≈ 20kbT , with kb the

Boltzmann constant, as measured for a vesicle composed of dioleoylphosphatidylcholine
(DOPC) lipids (Dahl et al. 2016; Faizi et al. 2020), and using the viscosity of water, μ+ ≈
10−3 Pa s, the bending capillary number Ca is roughly 100 γ̇ [1 s] (e.g. if γ̇ = 10−1 s−1

then Ca ≈ 10). The experimental work of Baumgart et al. (2005), where the bending
rigidity ratio is approximately 1.25, corresponds here to ‖εκ‖∞ ≈ 0.1. The capillary
number is highly sensitive to the size; for instance, using a length more appropriate to
modelling a red blood cell, 2πa ≈ 20 μm, and with B ≈ 50kbT (Evans 1983), then Ca ≈
γ̇ /4. We proceed with the understanding that all variables are now dimensionless. The
dimensionless background flow, for instance, is given by u = yx̂, and the dimensionless
membrane perimeter is L = 2π.
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Swinging and tumbling of multicomponent vesicles in flow

2.5. Membrane shape dynamics
In order to compute the dynamics of the membrane shape, the traction balance is carried
out order by order in ε, included as Appendix B, and the tension so found is used
instantaneously to solve for the stream function, included as Appendix C. To summarize
the results, expansions are written for the pressure, p = p(0) + εp(1) + . . . , tension T =
T(0) + εT(1) + . . . and velocity u = unn̂ + usŝ = (u(1)n + εu(2)n + . . . )n̂ + (u(1)s + εu(2)s +
. . . )ŝ. The normal and tangential components of the velocity are given at leading order by

un|S = 1
(1 + λ) sin(2θ)− 2

∞∑
n=2

n (An cos(nθ)+ Bn sin(nθ))+ O(ε), (2.15)

us|S = −1
2

+ 1
2(1 + λ) cos(2θ)− 2

∞∑
n=2

(Bn cos(nθ)− An sin(nθ))+ O(ε), (2.16)

where

An =
C−1

[
αn(t)an + (1 − H̃0)cn − en

]
4(1 + λ) , Bn =

C−1
[
αn(t)bn + (1 − H̃0)dn − fn

]
4(1 + λ) .

(2.17a,b)
Here we have used the Fourier coefficients for the variations in shape given by an, bn, in
bending stiffness by cn, dn, and in spontaneous curvature by en, fn, and that C = Ca/ε =
O(1) as ε → 0, and have defined

αn(t) = C P0(t)+ n2 − 1. (2.18)

The function P0(t) is the leading-order mean pressure jump across the membrane, or
equivalently the scaled mean tension, (the two are bound together by an elastic analogue
of the Young–Laplace law) and is given by

P0(t) =
14b2 − C−1

∞∑
n=2

n(2n2 − 1)Cn

∞∑
n=2

n(2n2 − 1)(an
2 + bn

2)

, (2.19)

where

Cn = (n2 − 1)(an
2 + bn

2)+ (1 − H̃0) (ancn + bndn)− (anen + bnfn) . (2.20)

Note that n = 2 terms are present inside the summations in (2.15), (2.16) and (2.19).
Finally, the dynamics of the membrane shape is found using the normal component of

the velocity field along the surface. As derived in Appendix D, the shape functions satisfy

ρt = u(1)n

∣∣∣
S

= ψ
(1)
θ

∣∣∣
r=1

, (2.21)

ρ
(2)
t = u(2)n

∣∣∣
S

= ψ
(2)
θ + ρ

(
ψ
(1)
rθ − ψ

(1)
θ

)
+ ρθψ

(1)
r

∣∣∣
r=1

, (2.22)

with no ambiguity about the stream function (internal or external) owing to the continuity
of velocity, (2.9). The end result is that the Fourier modes describing the membrane shape
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at first order in ε evolve according to

dan

dt
= nC−1

2(1 + λ)
(
−αn(t)an + (H̃0 − 1)cn + en

)
, (2.23)

dbn

dt
= δn2

1 + λ + nC−1

2(1 + λ)
(
−αn(t)bn + (H̃0 − 1)dn + fn

)
, (2.24)

where αn(t) is given in (2.18), and δn2 is unity when n = 2 and is zero otherwise. In
addition, a1(t) = a1(0) and b1(t) = b1(0), which represents that the system is insensitive
to translations of the membrane in either direction at first order in ε (the body translates
along with the background flow with any vertical perturbation but the shape dynamics
is unchanged). The n = 2 mode is special since this corresponds to elongation along the
principal direction of the background shear flow, at an angle π/4 relative to the x-axis.

Since P0(t) depends on the membrane shape, the expressions above are immediately
nonlinear, even when only considering the leading-order shape dynamics in small ε. If
the mean spontaneous curvature is unity (H̃0 = 1) the membrane remains close enough to
its preferred state at first order in ε so that no additional forces are induced by bending,
and only spontaneous curvature variations affect the shape dynamics. For any other
mean spontaneous curvature (H̃0 /= 1), however, the effects of spontaneous curvature are
mathematically indistinguishable from bending stiffness at leading order via (2.23)–(2.24).
For the remainder of the paper, we will assume zero spontaneous curvature (en = fn = 0
for all n, and H̃0 = 0), but all of the results to come can be viewed as owing to variations
to spontaneous curvature rather than bending stiffness, or any combination thereof.

3. Dynamics of a membrane with uniform material properties

We begin by studying the dynamics of a membrane with uniform bending stiffness (cn =
dn = 0 for all n, and zero spontaneous curvature). In the steady (moving) state, since an
and bn are constant in time, the pressure jump P0(t) in (2.19) is also constant in time. The
dynamics in (2.23)–(2.24) then reveals that all Fourier components vanish exponentially
fast with the exception of b2, leaving the steady shape function ρ(θ, t) = b̃2 sin(2θ), with
b̃2 easily determined using area conservation alone:

εb̃2 = εQ = (2/3)1/2 (1 − RA)
1/2. (3.1)

Here RA is the reduced area, having referenced (2.4) when only b2 is non-zero.
In particular, a membrane with an initial shape of the form ρ(θ, 0) = b sin(2θ) is

instantly in a steady state for any b at first order in ε. This corresponds to a tilt angle
of π/4 between the vesicle’s elongated axis and the direction of flow. Although the
shape is stationary, material is still moving along the tangential direction in a so-called
tank-treading motion. In this configuration, the steady-state pressure jump is given by
P0 = −3C−1 + b̃−1

2 .
Since the bending stiffness is uniform, we are able to examine the steady shape and

orientation to higher order in ε. Assuming that the membrane shape has already relaxed
to the point that u(1)n = 0, and hence ρt = 0 from (2.21), a straight-forward continuation
of the regular asymptotic expansion yields equations describing the fluid flow at second
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Swinging and tumbling of multicomponent vesicles in flow

order resulting in the normal velocity on the membrane surface

u(2)n = b̃2 cos(2θ)− 3b̃2
2

2(1 + λ)
(

7C−1 + b̃−1
2

)
cos(4θ)

− 1
2(1 + λ)

∞∑
n=2

n
(
(n2 − 4)C−1 + b̃−1

2

) (
a(2)n cos(nθ)+ b(2)n sin(nθ)

)
. (3.2)

(Note that there are cos(2θ) and cos(4θ) terms inside the infinite sum.) The steady state at
second order is reached once u(2)n = 0:

lim
t→∞ ρ

(2)(θ, t) = ã(2)0 + ã(2)2 cos(2θ)+ ã(2)4 cos(4θ), (3.3)

where

ã(2)0 = −(b̃2)
2, ã(2)2 = (1 + λ)(b̃2)

2, (3.4a,b)

ã(2)4 = −3(b̃2)
2

4

(
[1 + 7b̃2C−1]/[1 + 12b̃2C−1]

)
, (3.5)

with b̃2 given in (3.1). Although we assumed above that C = O(1) as ε → 0, the limit
of infinite capillary number matches the results of Zahalak, Rao & Sutera (1987) who
assumed zero bending stiffness. That the zero-bending-stiffness limit is recovered as C →
∞ likely identifies this as a regular limit and not a singular one, though a more general
analysis for arbitrary C would be needed to make this result rigorous.

3.1. Steady-state deformation and inclination angle
The deformation parameter and orientation angle are two common metrics used to
characterize the dynamics of a membrane in flow. The Taylor deformation parameter is
defined as D = (L1 − L2)/(L1 + L2), where 2L1 and 2L2 are the major and minor axis
lengths of an ellipse which shares the same inertia tensor, derived in Appendix E, resulting
as ε → 0 in the representation

D(t) = ε

√
a2

2 + b2
2 + ε2

(
a(2)2 a2 + b(2)2 b2

)
/(

√
a2

2 + b2
2)+ O(ε3). (3.6)

For the case of uniform bending stiffness in the tank-treading steady state,

D = εb̃2 + O(ε3) =
√

2(1 − RA)/3 + O(ε3), (3.7)

which is notably independent of any other physics in the problem. The eigenvectors of the
inertia tensor, meanwhile, are used to define an inclination angle, φ, the angle between the
elongated axis of the membrane and the direction of flow, which has representation (see
Appendix E)

φ(t) = arctan

⎛
⎝−a2 +

√
a2

2 + b2
2

b2

⎞
⎠+ ε

(
b(2)2 a2 − a(2)2 b2

)
2
(
a2

2 + b2
2
) + O(ε2). (3.8)

In the case of uniform bending stiffness, in the steady state we find the angle

φ = π

4
− ε(1 + λ)

2
b̃2 + O(ε2) = π

4
− (1 + λ)

√
(1 − RA)/6 + O(ε2), (3.9)

consistent with the theory of Finken et al. (2008) for ε � 1. The predictions above are
plotted in figure 2 as lines for a range of reduced areas RA.
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0

5π/16

3π/16

π/8

π/4
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D φ
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Simulations
�2(1 – RA)/3

Simulations
π/4 – (1+λ)�(1 – RA)/6D = (L1 – L2)/(L1 + L2)

L2

L1 φ

(a) (b)

Figure 2. The steady-state deformation parameter (a) and inclination angle (b) in the case of constant bending
stiffness with viscosity ratio λ = 1 and ε varying from 0 to 0.15. Simulations (symbols) and analysis (lines)
are in close agreement even for highly deformed membranes.

For nearly circular membranes, the inclination angle approaches π/4. When fluid is
removed from the interior of the membrane, the inclination angle decreases and the
membrane tilts forward towards the direction of flow. An increase in the viscosity ratio
λ = μ−/μ+ further tilts the membrane down towards the direction of flow. From (3.9)
the critical value of the viscosity ratio for which the steady inclination angle is equal
to zero scales as 1/(1 − RA)

1/2 as RA → 1. Beyond this critical viscosity ratio the
membrane shape is no longer fixed in space and instead undergoes periodic tumbling.
The result is independent of the capillary number, so the same result has been observed
in previous work that assumes zero bending rigidity (Zahalak et al. 1987) and elsewhere
with constant bending stiffness (Finken et al. 2008). The result also qualitatively matches
the dynamics of a membrane in three dimensions studied by Vlahovska & Gracia (2007),
where the inclination angle was also found to be independent of bending rigidity in the
small-deformation regime.

To assess the validity of the asymptotic approximations derived above, we solve
the complete fluid-structure interaction problem numerically. The incompressible
Navier–Stokes equations (which limit to the Stokes equations in (2.8) as the Reynolds
number tends to zero) are solved at Reynolds number 10−3 on a regular grid using
a projection method (Kolahdouz & Salac 2015) and the vesicle is represented using a
semi-implicit level set scheme (Osher & Fedkiw 2002). A generalized minimal residual
algorithm (GMRES) with algebraic multigrid as provided by the Portable, Extensible
Toolkit for Scientific Computation (PETSc) library (Balay et al. 2012, 2018, 1997) is
used for the level-set solver. Derivatives of the level sets are also tracked, in a so-called
‘jet’-scheme, to improve the accuracy of interpolants needed to communicate information
from the membrane to the fluid and vice versa (Nave, Rosales & Seibold 2010; Seibold,
Rosales & Nave 2012). More details on the numerical methods used and a convergence
study for the code are available in the literature (Velmurugan, Kolahdouz & Salac 2016;
Gera & Salac 2018a).

Figure 2 includes the results of the full simulations (symbols). The steady-state
deformation parameter and inclination angle both show excellent agreement with the
numerical simulations (and the predicted order of accuracy as ε → 0, not shown),
providing fortuitous accuracy even for substantial membrane deformations where the
asymptotic approximations are not immediately expected to hold. The slight overestimate
of the deformation parameter for general ε is accompanied by a slight underestimate of
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Swinging and tumbling of multicomponent vesicles in flow

the inclination angle, owing to the higher velocities sampled by a more elongated vesicle.
In general, the transition between tank-treading and tumbling can depend weakly on the
bending capillary number, which the above analysis suggests enters at the next order in ε
(Lebedev et al. 2007; Noguchi 2010; Zhao & Shaqfeh 2011).

4. Dynamics of a membrane with variable material properties

If the membrane composition is not uniform, the advection of material around the
surface can contribute substantially to the membrane dynamics. Again owing to the
mathematically similar contributions of bending stiffness and spontaneous curvature
variation we focus our attention on bending stiffness variations. Since the bending stiffness
and its spatial variation, κ , are assumed to be material quantities, they evolve in time
according to a surface advection equation which is coupled to the shape equations,
introducing a serious analytical challenge. For the sake of tractability, however, we assume
that mode mixing is small and treat κ as simply advecting by the mean tangential velocity
−1/2 in (2.16). We will see that this approximation leads to predictions that match very
well with the results of full numerical simulations. With the bending stiffness variation
confined to a single mode M with amplitude κ̄ (assumed positive), we thus write

κ(θ, t) = κ̄ cos (M(θ + εt/2)) = cM(t) cos(Mθ)+ dM(t) sin(Mθ), (4.1)

where cM(t) = κ̄ cos(εMt/2) and dM(t) = −κ̄ sin(εMt/2). The shape equations are still
those in (2.23)–(2.24), with cm and dm also now appearing in (2.19). The cases M = 2
and M /= 2 are of distinctly different character, and we now proceed to consider them
independently.

4.1. A bifurcation in the dynamic case, M = 2
The situation in which the bending stiffness variation is present in the second spatial mode
(i.e. two stiff domains, as in figure 1) is a special case, as this is where the distribution of
material properties most strongly interacts with the elongating deformation induced by the
flow. From (2.23)–(2.24) the shape dynamics in the second mode evolve according to

da2

dt
= C−1

1 + λ (−α2(t)a2 − κ̄ cos (εt)) , (4.2)

db2

dt
= 1

1 + λ + C−1

1 + λ (α2(t)b2 + κ̄ sin (εt)) , (4.3)

where α2(t) = 3 + CP0(t). Inserting P0(t), or equivalently solving for α2(t) so that d(a2
2 +

b2
2)/dt = d(Q2)/dt = 0, the above simplify to

da2

dt
= −η(a2, b2, t)b2,

db2

dt
= η(a2, b2, t)a2, (4.4a,b)

where

η(a2, b2, t) = (1 + λ)−1Q−2
[(

1 + κ̄C−1 sin (εt)
)

a2 + κ̄C−1 cos(εt)b2

]
. (4.5)

Recall that Q is a constant which is set at t = 0; if the initial shape deformation resides only
in the second Fourier mode, for instance, then Q = (a2(0)2 + b2(0)2)1/2. At first order in
ε there is no change in the deformation parameter: D(t) = (2/3)1/2(1 − RA)

1/2 + O(ε2),
so the observed shape does not exhibit large variations in time. The inclination
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Swinging (with tank-treading)
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Tumbling (with periodic phase-lag)

min
t φ(t) = –0.4

κ̄C–1

κ̄C–1 = 0.8

κ̄C–1 = 1.2

π/2

–π/2

–3π/2

–2π
2π0 3π 4π 5ππ

–π

0

εt

φ(t)

ε

0

(a) (b)

Figure 3. (a) The inclination angle as a function of time from simulations (symbols) and theory (lines), with
ε = 10−2, Q = 3, or RA = 0.998 and λ = 1. Swinging is observed for κ̄C−1 = 0.8, tumbling for κ = 1.2.
Both include additional tank-treading motion, indicated by lines in the snapshots – see also figure 4 and
supplementary movies M1–M3. (b) Contours of the minimum inclination angle during periodic orbits,
mint φ(t), computed using the full numerical simulations. Note that κ̄C−1 = εκ̄Ca−1 so that the vertical axis
also depends on ε.

angle, however, reveals something striking. Writing (a2, b2) = Q(cos 2φ(0), sin 2φ(0)) (the
inclination angle is given by φ = φ(0) + O(ε)) and inserting into (4.4a,b), an equation for
φ(0) arises:

φ
(0)
t = β

(
cos(2φ(0))+ κ̄C−1 sin(2φ(0) + εt)

)
, (4.6)

with β = (1 + λ)−1Q−1. This equation is more constructively analysed by defining the
slower time scale τ = εt, so that

εφ(0)τ = β
(

cos(2φ(0))+ κ̄C−1 sin(2φ(0) + τ)
)
. (4.7)

Numerical solutions of (4.7) for κ̄C−1 = 0.8 and κ̄C−1 = 1.2 are shown as lines in
figure 3(a), for ε = 10−2, λ = 1 and Q = 3. The dynamics alternate between a slow linear
drift of φ(0)(τ ) where φ(0)τ = O(1) and a rapid departure when φ(0) is near zero. Figure 4,
along with supplementary movies M1–M3 available at https://doi.org/10.1017/jfm.2022.
40, show the complex dynamics associated with these plots. When κ̄C−1 = 0.8, the
elongated axis swings back and forth relative to the direction of flow; when κ̄C−1 = 1.2,
the shape slowly nears a zero inclination angle, then undergoes a rapid tumble. Also shown
in figure 3(a) as symbols are the results found using the full numerical simulations, as in
§ 3, showing close agreement with the solutions generated by (4.7).

When κ̄C−1 is small, the bending stiffness variation only introduces a periodic
perturbation of the constant bending stiffness dynamics. Linearizing (4.7) about φ(0) =
π/4, for small κ̄C−1 we arrive at the periodic solution

φ(0)(τ ) = π

4
+ κ̄

2C cos(τ )+ O
((
κ̄C−1

)2
, ε

)
as κ̄C−1 → 0, (4.8)

whose period, �τ = 2π (or �t = 2π/ε), is twice that of the material’s tangential motion
along the surface (since the mean surface tangential velocity is −ε/2), owing naturally to
the number (two) of stiffer domains. Material tank-treads tangentially along the membrane
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Swinging and tumbling of multicomponent vesicles in flow

κ̄C–1 = 0.8

κ̄C–1 = 1.2

(a)

(b)

Figure 4. Snapshots of the dynamics associated with figure 3(a): swinging with tank-treading (κ̄C−1 = 0.8, a)
and tumbling with phase-lagging (κ̄C−1 = 1.2, b) with variable bending stiffness in the M = 2 mode. A line in
each snapshot connects the two softer regions, which are lighter in colour than the darker, stiffer regions. The
vesicle elongates so that the softer regions tend to sit in large curvature regions, while the principal direction
of the background flow stretches the vesicle towards inclination angle π/4. See also supplementary movies
M1–M3.

while the shape swings back and forth. The rapid slipping in figure 3(a) for the smaller
κ̄C−1 value occurs when the stiffer material passes quickly over the region of highest
curvature.

For very large values of κ̄C−1, the dynamics limit to a pure (rigid-body) tumbling
motion. Assuming a regular perturbation expansion in small C/κ̄ , the inclination angle
has the asymptotic behaviour

φ(0)(τ ) = π

2
− τ

2
− C

4κ̄
(2 cos(τ )− ε(1 + λ)Q)+ O

(
(C/κ̄)2 , ε2

)
as κ̄C−1 → ∞,

(4.9)
with all other parameters assumed O(1). When κ̄C−1 is finite, the tumbling motion is
joined by a small relative tangential material oscillation. This periodic phase-lag of the
material becomes more pronounced as κ̄C−1 is reduced closer to unity, and vanishes as
κ̄C−1 → ∞, leading ultimately to pure (rigid-body) tumbling motion.

For a given material property contrast, we have now seen that decreasing the shear
rate below a critical value produces, perhaps counter-intuitively, a tumbling motion,
while increasing it above this value invites the vesicle to swing. With a very slow
background flow, the vesicle elongates in the directions of its softest components (or
higher spontaneous curvature regions) in a quasi-steady manner – the material is nearly
matched to the shape as it rotates like a rigid body. But in a flow with a large shear rate,
material is driven around the surface with larger viscous stresses relative to the elastic
stresses, and the stiffer material may be driven past the high curvature regions. High
curvature regions can rapidly align with the softer regions via a rapid swing.

Similar transitions from swinging to tumbling have been observed in red blood cells
(Noguchi 2009), capsules (Kessler, Finken & Seifert 2008; Barthes-Biesel 1991, 2016)
and vesicles even with uniform bending rigidity (Kantsler & Steinberg 2006; Lebedev
et al. 2007; Deschamps et al. 2009a,b) but at smaller reduced areas. In addition, the
variation in spontaneous curvature along the surface of a red blood cell has previously
been modelled through a simple energy barrier – there too the contrast in material
properties revealed a transition from tumbling to swinging (Skotheim & Secomb 2007).
More directly, Vlahovska et al. (2011) investigated the dynamics of microcapsules of
non-spherical reference shape in shear flow, much like the specification of a non-uniform
spontaneous curvature. In their fully three-dimensional treatment they too observed
tumbling to swinging behaviour upon increasing the shear rate beyond a critical value.
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4.1.1. Matched asymptotic analysis
Between these two extremes lies a critical value of κ̄C−1 which signals a bifurcation
from swinging to tumbling. Figure 3(b) shows the minimum inclination angle achieved
during the periodic dynamics for a range of ε and κ̄C−1 found using the full numerical
simulations. The bending stiffness variation needed to set off a tumbling dynamics is near
unity as ε → 0 (consistent with the much simpler numerical solutions of (4.7)) and is a
decreasing function of ε. Note that κ̄C−1 = εκ̄Ca−1 depends on ε in figure 3(b). A thin
band near this bifurcation ridge shows an unexpected result: the membrane’s inclination
angle can decrease to values less than zero even during a (rather dramatic) swinging
motion. Common intuition from single-component membrane dynamics suggests that
once the elongated axis has dipped below the x-axis the membrane will surely tumble;
this intuition is thus not always correct.

We are therefore led to investigate the regime where κ̄C−1 = 1 + O(ε) and we define
α = (κ̄C−1 − 1)/ε with α = O(1) as ε → 0. For values of τ where φ(0)τ = O(1) as ε →
0, the inclination angle is drifting slowly and an outer solution is derived assuming a
regular expansion in ε, φ(0) = φ

(0)
outer + O(ε), resulting in φ(0)outer(τ ) = 3π/8 − τ/4 + O(ε).

The initial value of φ(0) does not appear in the outer solution because the distribution of
bending stiffness begins entirely in the cos(2θ) mode at τ = 0 from (4.1); there is a rapid
correction on a time scale O(ε) (just visible near τ = 0 in figure 3a) before the outer
solution becomes dominant, and memory of the initial state is almost immediately lost.

An inner region of rapid variation in φ(0) emerges when φ(0) ≈ 0, or when τ ≈ 3π/2.
The scaling of the inner region in τ and the solution there are found by appealing to
dominant balance as ε → 0 (Bender & Orszag 2013), leading to the definition of an inner
variable σ = (τ − 3π/2)/ε1/2, so that (4.7) reads as

ε1/2φ(0)σ = β
(

cos
(

2φ(0)
)

− (1 + εα) cos
(

2φ(0) + ε1/2σ
))
, (4.10)

where β = (1 + λ)−1Q−1, and an ansatz φ(0)inner = p(0)inner(σ )+ ε1/2p(1)inner(σ )+ O(ε). At
leading order we find

d
dσ

p(0)inner = βσ sin(2p0
inner), (4.11)

which has solution
p(0)inner(σ ) = tan−1

(
C0eβσ

2
)
, (4.12)

with C0 an integration constant. However, in order for this inner solution to merge with
the outer solution, or

lim
τ→3π/2−

φ
(0)
outer = lim

σ→−∞φ
(0)
inner, (4.13)

we must have that C0 = 0. At the next order (4.10) then produces

d
dσ

p(1)inner = β

(
α − σ 2

2
− 2σp(1)inner

)
, (4.14)

and the solution
p(1)inner(σ ) = −σ

4
+ Υ

(
erf(β1/2σ)+ C1

)
eβσ

2
, (4.15)

where C1 is an integration constant and

Υ = 1
8

(
π

β

)1/2

(1 − 4βα). (4.16)
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Swinging and tumbling of multicomponent vesicles in flow

The error function, erf(β1/2σ) = (2/
√

π)
∫ β1/2σ

0 e−t2 dt, is an odd function which tends
towards −1 as σ → −∞ and to 1 as σ → ∞. Again the requirement of matching to
the outer solution demands that terms which are unbounded as σ → −∞ vanish, leading
to C1 = 1. The inner solution alone then represents a composite approximation for τ ∈
(O(ε), 3π/2]:

φ(0)(τ ) ∼ 3π

8
− τ

4
+ ε1/2Υ

[
erf

(√
β

ε

(
τ − 3π

2

))
+ 1

]
exp(β(τ − 3π/2)2/ε).

(4.17)
This solution becomes unbounded when τ increases beyond 3π/2, so is incapable of
merging with the possible outer solutions to the right of τ = 3π/2, either 7π/8 − τ/4
if (1 − 4βα) > 0 (a swing) or −π/8 − τ/4 if (1 − 4βα) < 0 (a tumble). Instead we
continue the solution by solving (4.7) on τ � 3π/2 using the initial data from the inner
solution above, φ(0)(3π/2) = ε1/2Υ + O(ε).

The solution at leading order is again that in (4.12) but this time C0 /= 0. After finding
the solution at the next order (included as Appendix F), however, in order to match both
the data at τ = 3π/2 and to merge with an outer solution it becomes clear that C0 =
O(ε1/2), and then the equation for p(1)inner in (4.14) and its general solution in (4.15) go
unchanged. Removing unbounded terms as σ → ∞ selects C1 = −1, and matching the
data at τ = 3π/2 selects C0 = tan(2ε1/2Υ ), resulting in the following composite solution
for τ ∈ [3π/2, 3π/2 + 2π − O(ε1/2)):

φ(0)(τ ) ∼ 3π

8
− τ

4
+ tan−1

[
tan

(
2ε1/2Υ

)
exp(β(τ − 3π/2)/ε)

]

+ ε1/2Υ

[
erf

(√
β

ε

(
τ − 3π

2

))
− 1

]
exp(β(τ − 3π/2)2/ε). (4.18)

The critical dependence of the dynamics on the sign of κ̄C−1 − 1 as ε → 0 is thus
established, most clearly through the dependence of the argument of tan−1 on the sign of
Υ , and thus on the sign of (1 − 4βα) (and recalling that α = (κ̄C−1 − 1)/ε).

Since β > 0, if κ̄C−1 < 1 then (1 − 4βα) > 0 and the solution above shows a rapid
return to a positive inclination angle just less than π/2, representing a dramatic swinging
motion. If κ̄C−1 > 1, however, then the dynamics depend on β = [(1 + λ)Q]−1. If β >
1/(4α), then (1 − 4βα) < 0 and as τ increases beyond 3π/2 the inclination angle dips
rapidly towards negative values and below −π/2, representing a tumble. If β < 1/(4α),
however, the inclination angle becomes negative as τ increases away from 3π/2 for a
short while, but then for longer times it launches back towards positive values: in this case
the membrane’s long axis dips below the horizontal, hinting at a tumble, but then rapidly
pulls back up into positive inclination angles in a high-amplitude swing. Inclination angles
from numerical solution of (4.6) with ε = 10−2 are plotted for a range of κ̄C−1 in figure 5.
The approximations in (4.17)–(4.18) are visibly indistinguishable (and not shown) from
numerical solution of (4.6) in this parameter regime.

The inclination angle equation, (4.6), only provides a solution for the O(1) behaviour
of the inclination angle, φ(0)(t), so while the expressions above are accurate asymptotic
solutions to (4.6), the equation itself is only representing the O(1) behaviour of the
inclination angle φ(t). While these analytical representations show remarkable accuracy
when compared to the full numerical simulations, seen in figure 3(a), certain aspects of
the full system are delicate. For instance, the analysis above suggests that the critical
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κ̄C–1 = 0
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Figure 5. Theoretical inclination angle (solutions of (4.6)) with spatial period M = 2 of material property
variation, viscosity ratio λ = μ−/μ+ = 1, ε = 10−2 or RA = 0.998, and Q = 3 for a range of κ̄C−1.

κ̄C−1 beyond which tumbling occurs is an increasing function of ε, but this lies in
stark contrast to the results of the full numerical simulations shown in figure 3(b). The
analysis above shows, however, that the critical value for the onset of tumbling is indeed
κ̄C−1 = 1 + O(ε) as ε → 0, and generally provides accurate dynamics in a very wide
variety of settings.

4.2. The case M /= 2
Turning now to the case where M /= 2, the daunting system is rendered harmless
upon observation of a periodic steady state in which P0(t) is constant. According to
(2.23)–(2.24) with P0 assumed constant, as t → ∞ we find an = 0 and bn = 0 for
all n /∈ {2,M}. Meanwhile, as in the constant bending stiffness case, b2 relaxes to an
equilibrium value b̃2, where b̃2 = C/α2 = C(3 + C P0)

−1.
Shape deformations continue periodically in the Mth Fourier mode, however, according

to (2.23)–(2.24) (upon inserting cM(t) and dM(t) from (4.1)). At leading order in ε

the system is quasi-steady; with τ = εt again, we write ∂taM = ε∂τaM (similarly for
bM). Neglecting a transient relaxation from initial data, to leading order in small ε
we find

aM(t) = −κ̄
αM

cos
(

Mεt
2

)
, bM(t) = κ̄

αM
sin
(

Mεt
2

)
. (4.19a,b)

Simply, then, in the periodic steady state we have a2
M + b2

M = κ̄2/α2
M and aMcM +

bMdM = −κ̄2/αM . As both are constant, along with the constant value of b2 in the limit
as t → ∞, upon inspection of P0 in (2.19) we verify the consistency of this result:
P0 is indeed constant in this periodic steady state. Since b̃2 is determined purely by
the constraint of constant area, from (3.1), the pressure jump P0 associated with these
dynamics is the same as that in the constant bending case. Moreover, the deformation
parameter and inclination angle in the M /= 2 case are also unchanged. The membrane
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Figure 6. Inclination angle dynamics with bending stiffness variations in the Mth spatial mode for M ∈
{1, 2, . . . , 8} with ε = 0.1 or RA = 0.865 and λ = 1 for three variation amplitudes, from the full numerical
simulations. (a) κ̄C−1 = 0.75, (b) κ̄C−1 = 2 and (c) κ̄C−1 = 4. Tumbling is observed in small, even modes.
(See also supplementary movies M4–M6.)

simply elongates in the direction of the principle axis of the straining flow while shape
oscillations in the Mth mode traverse along this constant background geometry in a
trembling dynamics.

When κ̄C−1 is sufficiently large, interactions between the modes of bending stiffness
can no longer be neglected (i.e. our simple specification of κ(θ) in (4.1) becomes
inaccurate). Full numerical simulations are used to explore this challenging region
of parameter space. Figure 6 shows the inclination angles computed using the full
numerical simulations for M ∈ {1, 2, . . . , 8}, with ε = 0.1 and λ = 1 fixed, for three
different bending stiffness variations: κ̄C−1 = 0.75, κ̄C−1 = 2 and κ̄C−1 = 4. The M = 2
mode results in tumbling in all three cases, consistent with figure 3(b). The swinging
amplitude with even M values increases with increasing κ̄C−1, however, and the M =
4 case transitions from swinging to tumbling for some κ̄C−1 ∈ (2, 4). Supplementary
movies M4–M6 show the dynamics of vesicles with M ∈ {1, 2, . . . , 8} represented in
figure 6(a–c).

In the simulated dynamics, we observe membrane swinging for small, even M, but not
odd M, or large even M with an insufficiently large value of κ̄C−1. When M is even,
the two regions of largest curvature have a symmetric interaction with the membrane,
and elongation in the direction of the softer material reduces the energy at both ends.
Bending stiffness information in the M = 4, mode, for instance, bleeds into the M = 2
mode, which interacts directly with the extensional part of the background flow and can
lead to tumbling, as discussed in the previous section. When M is odd, however, the large
curvature regions have an asymmetric interaction with the membrane; reorientation of the
elongated axis which would reduce the bending energy on one end would increase it on the
other end. Finally, when M is large, either even or odd, averaging results in convergence
to the case of constant bending stiffness, and departures from the inclination angle
chosen by the principal axis of the background flow, π/4 as ε → 0, become negligible. It
remains to be seen whether a sufficiently large κ̄C−1 can result in tumbling for any even
M; extremely stiff regions do not pass easily across high curvature regions, suggesting
that tumbling might ensue for very large values of κ̄C−1, but high spatial frequency
averaging suggests convergence to pure tank-treading as in § 3. The answer may well
depend on the reduced area and viscosity ratio. We leave this intriguing question for future
inquiry.
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5. Discussion

The material property variations along the surface of a multicomponent vesicle can impact
the vesicle dynamics in a background flow differently depending on the spatial modes of
its distribution, the magnitude of those variations and even the parity of the number of
domains. Small amplitude variations in material properties lead to periodic oscillations of
a pure tank-treading steady state about an inclination angle of π/4; large variations can
result in a rigid-body tumbling mode with a constant rotation rate; and an intermediate
regime shows a bifurcation from swinging with tank-treading to tumbling with periodic
material phase-lag. As the membrane becomes more deflated, the critical value of κ̄C−1

required for the vesicle to tumble is found to decrease, with κ̄C−1 approaching 1 as ε
approaches 0. As a general principle, the vesicle has a tendency to elongate so that the
softer parts of the membrane sit in the regions of largest curvature, while the background
flow tends to elongate the vesicle along the principal axis with a fixed inclination angle of
π/4. When these two directions are not aligned, swinging, or even tumbling, ensues. That
the capillary number is highly sensitive to the vesicle size may be of use to experimental
realizations of the results described in this paper.

Although we have focused on variations in bending stiffness, at leading order we find
the same shapes, dynamics and bifurcation from swinging to tumbling when considering
variations in spontaneous curvature instead. Equations (2.23)–(2.24) indicate that when
the preferred mean curvature along the membrane, H̃0, is not unity, the effects of
bending stiffness variations and spontaneous curvature variations are indistinguishable
for each Fourier mode. A model linking the two (e.g. if bending stiffness is proportional
to spontaneous curvature for a given lipid species) may then be necessary to make
claims about material properties in full using this passive means of probing membrane
composition. If H̃0 = 1, however, then only spontaneous curvature variations enter at first
order in ε.

Replacing bending stiffness by spontaneous curvature, if H̃0 = 0, the transition between
tumbling and swinging for the M = 2 spatial mode is predicted at the critical value
a[H̃]C−1 = 1 as ε → 0, with [H̃] the curvature contrast. Estimating the spontaneous
curvature variations of a red blood cell to be roughly [H̃] = 0.5 μm−1 with a ≈ 3 μm,
and with Ca ≈ γ̇ /4 from § 2.4, the theoretical prediction is that the bifurcation should
appear near γ̇ ≈ 2 s−1. This is very close to the shear rates used in experiments showing
the onset of this transition (Abkarian, Faivre & Viallat 2007; Abkarian & Viallat 2008).

In the fully three-dimensional system, material domains are not confined to motion in the
flow direction only and this may result in a substantial departure from the results described
herein in certain regimes. Particularly when slow motions yield to sudden reorganization,
as in a rapid swing or tumbling event, the addition of such an escape direction may
prove critical. But some material properties cannot so easily be disturbed, for instance,
the spontaneous curvature of a red blood cell provided by the scaffolding of its spectrin
network (Dao, Lim & Suresh 2003; Hatami-Marbini & Mofrad 2015). That the transition
from tumbling to swinging in red blood cells appears to be predicted already using this
two-dimensional analysis, however, is intriguing.

The distribution of membrane domains is of substantial biological importance.
Membrane heterogeneity can impact fundamental cellular functions such as signal
transduction and membrane trafficking (Simons & Toomre 2000; Maxfield 2002; Edidin
2003), and improper composition can cause diseases such as Alzheimer’s (Vetrivel &
Thinakaran 2010; Rajendran & Annaert 2012). The predictions of this work suggests a
means of determining not only the constant material properties of a membrane or vesicle
using a background flow, which has been an experimentally viable method for decades, but
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now also of determining material property variations by linking time-series dynamics to
spatial material variations, and even the possibility of using a simple pressure probe near
such a swinging, tumbling and trembling membrane. With good fortune, these predictions
will be of use for measuring heterogeneous membrane properties using only viscous
stresses in the near future.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.40.
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Appendix A. Stream function and incompressibility in polar coordinates

The (dimensional) biharmonic equation in polar coordinates (r, θ) has a general solution
known as the Michell solution (Michell 1899). Neglecting terms which are non-periodic
in θ , the biharmonic equations inside (−) and outside (+) the vesicle are solved by

ψ± = A±
0 r2 + B±

0 r2 ln(r)+ C±
0 ln(r)+

(
A±

1 r + B±
1 r−1 + C±

1 r3 + D±
1 r ln(r)

)
cos(θ)

+
(

E±
1 r + F±

1 r−1 + G±
1 r3 + H±

1 r ln(r)
)

sin(θ)

+
∞∑

n=2

(
A±

n rn + B±
n r−n + C±

n rn+2 + D±
n r2−n

)
cos(nθ)

+
∞∑

n=2

(
E±

n rn + F±
n r−n + G±

n rn+2 + H±
n r2−n

)
sin(nθ). (A1)

The coefficients above are determined instantaneously in time by demanding that ψ−
and its derivatives are bounded at the origin, convergence to the far-field limit (ψ+ →
γ̇ r2 sin2(θ)/2 as r → ∞), continuity of velocity across the membrane boundary, [∇ψ]S =
0, traction balance (see Appendix B), and surface inextensibility along the membrane,
∇s · u|S = 0, where ∇s is the surface del operator,

∇s = ŝ
(
ŝ · ∇) =

(
θ̂ + ερθ r̂ + O(ε2)

) (
θ̂ + ερθ r̂ + O(ε2)

)
·
(

r̂∂r + θ̂
1
r
∂θ

)

= θ̂
1
r
∂θ + ε

(
θ̂ρθ∂r + r̂

ρθ

r
∂θ

)
+ O(ε2). (A2)

Inextensibility is given in terms of the radial and azimuthal velocity components ur and uθ
by

∇s · u|S = ∇s ·
(

ur r̂ + uθ θ̂
)∣∣∣

S
= 1

r
(∂θuθ + ur)

∣∣∣∣
r=1

+ O(ε|u|) = 0. (A3)
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In terms of the stream function, the relations ur = ψθ/r and uθ = −ψr are inserted into
the above to give

∇s · u|S = 1
r

(
−∂rθψ + 1

r
∂θψ

)∣∣∣∣
r=1

+ O(εψ) = 0. (A4)

More terms above are kept to extend the approximation to higher order.

Appendix B. Traction balance asymptotics

Traction balance is demanded order by order in the small parameter ε. Regular
perturbation expansions for the (dimensionless) stream function, ψ = ψ(1) + εψ(2) +
. . . , pressure p = p(0) + εp(1) + ε2p(2) + . . . and viscous traction f = f (0) + ε f (1) +
. . . are assumed. The dimensionless viscous traction is given at leading order (from (2.7))
by f (0) = −[p(0)]n̂, and the contribution at first order in ε is given by

f (1) = −
(

[p(1) + ρ(θ, t)∂rp(0)] + 2[∂θψ(1) − ∂rθψ
(1)](λ)

)
n̂

+ [∂θθψ(1) + ∂rψ
(1) − ∂rrψ

(1)](λ)ŝ, (B1)

where we have defined a jump operator which incorporates the viscosity ratio,

[ψ](λ) = ψ+ − λψ−∣∣
S . (B2)

This viscous traction must balance with the elastic traction. At leading order, traction
balance in the tangential and normal directions returns

∂θT(0) = 0, (B3)

−T(0) − [p(0)] = 0. (B4)

Hence, T(0) = −[p(0)] =: P0(t); the leading-order isotropic tension is balanced with the
leading-order pressure jump across the interface, a dimensionless statement of an elastic
Young–Laplace law. At the next order in ε, traction balance in the tangential and normal
directions are given by

∂θT(1) − C−1
(
(H̃0 − 1)∂θκ + ∂θζ + ∂3

θ ρ + ∂θρ
)

+ [∂θθψ(1) + ∂rψ
(1)−∂rrψ

(1)](λ) = 0,
(B5)

with C = Ca/ε defined in (2.13a–e), κ and ζ the first-order material property variations
defined in (2.14a,b), and

− T(1) +
(
ρ + ∂2

θ ρ
)

P0 − C−1
(
(H̃H̃0 − 1)∂2

θ κ + ∂2
θ ζ + ∂4

θ ρ + ∂2
θ ρ
)

−
(

[p(1) + ρ(θ, t)∂rp(0)] + 2[∂θψ(1) − ∂rθψ
(1)](λ)

)
= 0. (B6)

In the limit of infinite bending capillary number (i.e. zero bending stiffness) these
expressions are consistent with those provided by Zahalak et al. (1987). The membrane
length and area constraints, enforced out to second order in ε as ε → 0, are used to
determine pressure jump at the interface P0 at leading order (or the isotropic tension T(0)),
leading to the expression in (2.19).
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Appendix C. First-order solution

Equations (2.8), (2.9), (2.10), (B5) and (B6) are solved simultaneously for the
dimensionless first-order stream function ψ(1) (via (A1), properly scaled) and pressure
p(1) both inside and outside the vesicle, and for the first-order membrane tension, T(1).
The resulting stream functions are given by

ψ(1)− = r2

4
− r2(3 − r2)

4(1 + λ) cos(2θ)

+
∞∑

n=2

rn
(
(n + 1)− (n − 1)r2

)
(Bn cos(nθ)− An sin(nθ)) (C1)

and

ψ(1)+ = r2

4
−
(
λ+ r2(1 − 2λ)+ r4(1 + λ)

4r2(1 + λ)
)

cos(2θ)

+
∞∑

n=2

(
(n + 1)r2−n − (n − 1)r−n

)
(Bn cos(nθ)− An sin(nθ)) (C2)

(note that n = 2 terms are also in the summation), where An, Bn are given in (2.17a,b). With
p(0)+ = p∞ and p(0)− = p∞ + P0 the (spatially constant) leading-order pressure fields,
with P0 given in (2.19), the first-order pressure fields are

p(1)− = Π − 3λr2

1 + λ sin(2θ)+ 4λ
∞∑

n=2

(n2 − 1)rn (Bn sin(nθ)+ An cos(nθ)) (C3)

and

p(1)+ = (2λ− 1)
r2(1 + λ) sin(2θ)+ 4

∞∑
n=2

r−n(n2 − 1) (Bn sin(nθ)− An cos(nθ)) , (C4)

where Π is a constant. Finally, the membrane tension at first order is given by

T(1) = Π − sin(2θ)−
∞∑

n=1

(4(1 + λ)Bn − P0bn) sin(nθ)+ (4(1 + λ)An − P0an) cos(nθ).

(C5)
The free constant Π appears in both p(1)− and T(1), indicating an ambiguity which is
understood upon interpretation of the pressure and tension fields as Lagrange multipliers
which enforce fluid and membrane incompressibility and inextensibility, respectively, and
recalling that the two are linked by the Young–Laplace law. The value ofΠ has no bearing
on the dynamics.

Appendix D. From the stream function to the surface velocity

For a given station in arclength s, the no-slip condition is written as ∂tr(s, t) = u(r(s, t), t);
to focus on fixed values of θ we write r(s, t) = r(s(θ, t), t) = r(θ, t)r̂(θ). Then noting that

∂r
∂t

∣∣∣∣
s
= dr

dt
− ∂r
∂s
∂s
∂t

∣∣∣∣
θ

= dr
dt

− ŝ
∂s
∂t

∣∣∣∣
θ

, (D1)
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dotting with the normal vector removes the need to determine ∂ts for fixed θ :

n̂ · ∂r
∂t

= n̂ · dr
dt

= n̂ · u
∣∣
S , (D2)

and thus ∂t(r(θ, t)r̂) · n̂ = n̂ · u|S. Then with u = unn̂ + usŝ = ur r̂ + uθ θ̂ , and all
dimensionless velocities expanded as u = u(1) + εu(2) + . . . ,

d
dt

(
r(θ, t)r̂

) · n̂ =
(
ερt + ε2ρ

(2)
t + O(ε3)

) (
1 + O(ε2)

)
= ερt + ε2ρ

(2)
t + O(ε3) (D3)

and

n̂ · u
∣∣
S =

(
r̂ − ερθ θ̂ + O(ε2)

)
· u
∣∣∣
S

=
(

u(1)r + ε
(

u(2)r − ρθu(1)θ
)

+ O(ε2)
)∣∣∣

S
. (D4)

Recall that the dimensional velocity is scaled by γ̇ , so that a dimensionless velocity u(1)
which is O(1) as ε → 0 corresponds to a dimensional velocity γ̇u(1) which is O(ε) as
ε → 0. Since the velocities in the radial and azimuthal directions are given by

ur|S = 1
r
ψθ(r, θ)

∣∣∣∣
r=1+ερ+O(ε2)

= ψ
(1)
θ

∣∣∣
r=1

+ ε
(
ψ
(2)
θ + ρ

(
ψ
(1)
rθ − ψ

(1)
θ

))∣∣∣
r=1

+ O(ε2),

(D5)

uθ |S = −ψr(r, θ)|r=1+ερ+O(ε2) = −ψ(1)r

∣∣∣
r=1

− ε
(
ψ(2)r + ρψ(1)rr

)∣∣∣
r=1

+ O(ε2), (D6)

the velocity in the surface normal direction may be written as

n̂ · u
∣∣
S = ψ

(1)
θ

∣∣∣
r=1

+ ε
(
ψ
(2)
θ + ρ(ψ

(1)
rθ − ψ

(1)
θ )+ ρθψ

(1)
r

)∣∣∣
r=1

+ O(ε2). (D7)

Hence, since the dimensional time is scaled by ε/γ̇ ,

ρt = u(1)n

∣∣∣
S

= u(1)r

∣∣∣
S

= ψ
(1)
θ

∣∣∣
r=1

(D8)

and

ρ
(2)
t = u(2)n

∣∣∣
S

= u(2)r − ρθu(1)θ
∣∣∣
S

= ψ
(2)
θ + ρ

(
ψ
(1)
rθ − ψ

(1)
θ

)
+ ρθψ

(1)
r

∣∣∣
r=1

. (D9)

Since the gradient of the stream function is continuous across the membrane boundary,
either ψ+ or ψ− may be inserted into the above without ambiguity. Using the results
of Appendix C, the normal and tangential components of the velocity are then given by
(2.15)–(2.16).

Appendix E. Inertia tensor, deformation parameter and inclination angle

The deformation parameter, D = (L1 − L2)/(L1 + L2), is defined using the axis lengths
2L1 and 2L2 of the ellipse which shares the same inertia tensor. With Ω denoting the
vesicle’s interior, the inertia tensor is defined as

I =
∫
Ω

(
y2 −xy

−xy x2

)
dx dy. (E1)

When Ω is the interior of an ellipse with major and minor axis lengths 2L1 and
2L2, respectively, oriented with its major axis at an angle θ relative to the x-axis, this
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tensor has eigenvalues λ1 = πL3
1L2/4 and λ2 = πL1L3

2/4, with associated eigenvectors
v1 = (sin2 θ,− sin(2θ)/2) and v2 = (cos2 θ, sin(2θ)/2). In terms of the eigenvalues
of the inertia tensor, then, L1 = (4/π)1/4(λ3

1/λ2)
1/8 and L2 = (4/π)1/4(λ3

2/λ1)
1/8, the

deformation parameter is given by

D = L1 − L2

L1 + L2
= λ

1/2
1 − λ1/2

2

λ
1/2
1 + λ1/2

2

, (E2)

and the inclination angle may be recovered from v2 via θ = tan−1(ŷ · v2/x̂ · v2).
Considering the general membrane boundary S, parameterized as in § 2, the inertia

tensor above instead has eigenvalues

λ1 = 1
4

⎧⎨
⎩π + 2πε

√
a2

2 + b2
2 + ε2

⎛
⎝3

(
a2

2 + b2
2

)
+ 2

a(2)2 a2 + b(2)2 b2√
a2

2 + b2
2

⎞
⎠
⎫⎬
⎭+ O(ε3), (E3)

λ2 = 1
4

⎧⎨
⎩π − 2πε

√
a2

2 + b2
2 + ε2

⎛
⎝3

(
a2

2 + b2
2

)
− 2

a(2)2 a2 + b(2)2 b2√
a2

2 + b2
2

⎞
⎠
⎫⎬
⎭+ O(ε3), (E4)

and then (E2) produces the deformation parameter in (3.6). The eigenvector associated
with λ2 has components

x̂ · v2 = b3
2 + a2b2

(√
a2

2 + b2
2 + a2

)
− ε

(√
a2

2 + b2
2 + a2

)
(b(2)2 a2 − a(2)2 b2), (E5)

ŷ · v2 = b2
2

√
a2

2 + b2
2, (E6)

and then tan−1(ŷ · v2/x̂ · v2) returns the inclination angle in (3.8).

Appendix F. General solution to the inner expansion equations

The general solution to (4.11) is

p(0)inner(σ ) = mπ + tan−1
(

C0 eβσ
2
)
, (F1)

for m an integer and C0 an integration constant. At the next order (4.10) then produces

d
dσ

p(1)inner = β

(
1 − C2

0 e2βσ 2

1 + C2
0 e2βσ 2

)(
α − σ 2

2
− 2σp(1)inner

)
, (F2)

and the solution

p(1)inner(σ ) = C1 eβσ
2

1 + C2
0 e2βσ 2 − σ

4

+ π1/2 eβσ
2

8β1/2
(
1+C2

0 e2βσ 2) (C2
0(1+4αβ)erfi

(
β1/2σ

)
+(1 − 4αβ)erf

(
β1/2σ

))
,

(F3)

where C1 is an integration constant. The imaginary error function, erfi(β1/2σ) =
(2/

√
π)
∫ β1/2σ

0 et2 dt, tends towards eβσ
2
/
√

πβσ 2 as |σ | → ∞.
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The approach in § 4.1 requires that p(0)inner(0)+ ε1/2p(1)inner(0) = ε1/2Υ + O(ε), with Υ
defined in (4.16), resulting in

mπ + tan−1 (C0)+ ε1/2C1

1 + C2
0

= ε1/2Υ + O(ε). (F4)

Here we see that C0 cannot be O(1) as ε → 0, as in this case matching the initial data at
τ = 3π/2 is not possible. But C0 cannot be zero or else either matching to the data above,
or merging with the outer solution as σ → ∞, is not possible. The equation above is then
to be seen as a signal that C0 is in fact O(ε1/2) as ε → 0.
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