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Vertically forced stably stratified cavity flow:
instabilities of the basic state
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The linear stability of a stably stratified fluid-filled cavity subject to vertical
oscillations is determined via Floquet analysis. Retaining the viscous and diffusion
terms in the Navier–Stokes–Boussinesq equations, with no-slip velocity boundary
conditions, no-flux temperature conditions on the sidewalls and constant temperatures
on the top and bottom walls, we find that the instabilities are primarily subharmonic
(as is typical in many parametrically forced systems), except for in a few low-forcing-
frequency ranges where the instabilities are synchronous. When the viscosity is small,
the Floquet modes resemble the inviscid eigenmodes of the unforced problem, except
in boundary layers. We establish scaling laws quantifying how viscosity regularizes the
degeneracy associated with the inviscid idealization, and how it scales the thickness
and intensity of the boundary layers. The product of boundary layer thickness and
intensity remains constant with decreasing viscosity, leading to a delta distribution of
vorticity on the walls in the limit of zero viscosity. This is in contrast to the zero
wall vorticity in the inviscid case.
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1. Introduction

Parametrically driven internal waves in a laterally enclosed container filled with
an initially linearly stratified fluid have received relatively little attention compared
with the study of parametrically driven interfacial waves, known as the Faraday
wave problem (see the review by Miles & Henderson 1990). For the Faraday wave
problem, Benjamin & Ursell (1954) showed that the linear stability of the flat-surface
solution for an inviscid laterally unbounded fluid of infinite depth that is driven by
a single-frequency parametric excitation reduces to the consideration of a Mathieu
equation. Kumar & Tuckerman (1994) showed that viscosity introduces couplings,
so that the linear stability is no longer described by a single (damped) Mathieu
equation. Edwards & Fauve (1994) demonstrated experimentally that in containers
of large horizontal-to-depth aspect ratios containing fluids of moderate viscosity, the
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surface wave response to parametric forcing is not strongly dependent on the lateral
boundaries of the container. Yih (1960), following the approach of Benjamin &
Ursell (1954), showed that the linear stability of an inviscid continuously stratified
and laterally unbounded fluid subjected to vertical oscillations also reduces to a
Mathieu equation.

Thorpe (1968) considered the laterally bounded stratified problem. He determined
the eigenmodes of a container filled with a linearly stratified inviscid fluid, as
well as their leading-order nonlinear and viscous corrections, by considering small
perturbations about the unforced linearly stratified state. In a rectangular container,
the eigenmodes can be obtained via separation of variables and are simply products
of trigonometric functions of the independent variables. In the two-dimensional
case, these modes are enumerated by their horizontal and vertical half-wavenumbers,
and the linear dispersion relation gives their frequency (the imaginary part of the
eigenvalue; the eigenvalues are purely imaginary complex conjugates in the inviscid
case) in terms of their half-wavenumbers. The inviscid eigenmodes are infinitely
degenerate. Viscosity regularizes this degeneracy, but it also results in all of the
eigenvalues having negative real parts, so in order to observe them in a physical
setting, the system needs to be continuously forced. A number of different forcing
strategies have been considered experimentally. Thorpe (1968) introduced plungers
in the sidewalls of a rectangular cavity which oscillated in and out of the cavity. In
this way, a number of the linear inviscid modes were observed when the plunger
frequency was near to half of the eigenfrequency of the mode; only modes with
the same horizontal parity as that of the forcing were excited. For large-amplitude
forcing, wave breaking and mixing were observed, as well as wave beams emanating
from the edges where the plungers and the sidewalls met.

Motivated to see whether the internal wave breaking could be related to triadic
resonances between linear inviscid eigenmodes, McEwan (1971) constructed an
experiment similar to that of Thorpe (1968), but instead of using plungers, the
sidewalls were made to swing like paddles. Here too, some modes were excited,
but again wave beams were generated, which compromised the comparison with the
linear inviscid modes.

Orlanski (1972) conducted experiments in a rectangular container filled with linearly
stratified fluid that was forced by a pair of paddles flapping on the top surface. The
amplitudes of the paddle oscillations were large so that the response was nonlinear;
the objective of the study was to investigate the breaking of the forced standing waves.
The experiments were compared with theory and numerical simulations assuming that
the flow was inviscid. General agreement between the experiments and the model
results was obtained. However, secondary circulations observed in the experiments
were not captured by the theory or resolved by the numerics, and this raised questions
about the model assumption that the container boundaries are unimportant; the model
used stress-free boundary conditions for the velocity.

The experiments of Benielli & Sommeria (1998) were groundbreaking in that they
parametrically forced linearly stratified fluid in a container without any differential
motion of the container walls, thus avoiding the associated generation of wave beams
and secondary circulations. The forcing used was the harmonic vertical oscillation
of the container, akin to the forcing used in the Faraday wave experiments. In order
to observe a finite response, they needed to use a sizeable oscillation amplitude.
The responses resembled the two-dimensional linear inviscid modes at early times
in the experiment, but as these grew in amplitude, nonlinear effects led to wave
breaking. They focused on parametrically exciting the 1 : 1 mode (eigenmode with
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one half-wavelength in the horizontal and vertical directions). The mode appeared
subharmonically, as expected, within the frequency–amplitude regime theoretically
predicted to be the 1 : 1 resonance horn, but they were unable to determine the
edges of the horn. Since their experiments, attention on the response to parametric
forcing in contained stratified flows has shifted from exciting the container modes
to studying the response to localized forcing, usually driven by a wavemaker in a
corner of the container driving wave beams into the interior flow (see the reviews in
Staquet & Sommeria 2002; Dauxois et al. 2018). This has left many open questions
regarding the parametrically driven internal modes of a contained stratified flow.
In this paper, we consider the linear stability problem, accounting for viscous
and buoyancy diffusion effects with realistic container boundary conditions, and in
particular we quantify how viscous effects (damping of modes and their harmonics,
and thickness and intensity of boundary layers) scale with the ratio of the viscous
time scale to the Archimedean time scale (a non-dimensional Brunt–Väisälä buoyancy
frequency).

2. Governing equations and numerical techniques

We consider a fluid of kinematic viscosity ν, thermal diffusivity κ and coefficient of
volume expansion β contained in a square cavity of sidelength L. The cavity sidewalls
are thermally insulated, whereas the top and bottom endwalls are held at constant
temperatures, TT and TB respectively. Gravity g acts in the downward vertical direction.
In the absence of any other external forcing, the fluid is stationary with a stable
linear thermal stratification. Here, we consider the stability of this system subjected to
vertical harmonic oscillations with angular frequency Ω and amplitude `. The Navier–
Stokes equations under the Boussinesq approximation modelling the system are non-
dimensionalized with length scale L, Archimedean time scale τA = 1/

√
gβ1T/L =

1/N, where N is the Brunt–Väisälä buoyancy frequency, and temperature scale 1T =
TT − TB. The non-dimensional governing equations in a reference frame attached to
the vertically oscillating cavity are

∂u
∂t
+ u · ∇u=−∇P+

1
RN
∇

2u+ [1+ α cos(ωt)]Tez, ∇ · u= 0,

∂T
∂t
+ u · ∇T =

1
Pr RN

∇
2T,

 (2.1)

where P is the reduced pressure, u = (u, w) is the velocity in the oscillating cavity
frame, T = (T∗ − TB)/1T − 0.5 is the non-dimensional temperature, with T∗ the
dimensional temperature, and (x, z) ∈ [−0.5, 0.5]2 is the Cartesian coordinate system
whose origin is fixed at the centre of the cavity. The system (2.1) is governed by
four independent non-dimensional parameters: the Brunt–Väisälä number RN=NL2/ν,
the forcing frequency ω = Ω/N, the forcing amplitude α = Ω2`/g and the Prandtl
number Pr = ν/κ . It should be noted that Gr = RN

2 is the Grashof number. We fix
the Prandtl number Pr= 1 and consider variations in RN, ω and α.

No-slip boundary conditions, u=w=0, are imposed on all cavity walls. The top and
bottom endwall temperatures are fixed, T|z=±0.5=±0.5, and the sidewalls are insulated,
∂T/∂x|x=±0.5 = 0.

The static linearly stratified state in the cavity frame of reference, i.e. the basic state,

u= 0, T = z and P= 0.5z2
[1+ α cos(ωt)], (2.2a−c)
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is an equilibrium solution of (2.1) for all RN, Pr, ω and α. Linearization of (2.1) about
this equilibrium state yields the system

∂u
∂t
=−∇p+

1
RN
∇

2u+ [1+ α cos(ωt)]θez, ∇ · u= 0,

∂θ

∂t
=

1
Pr RN

∇
2θ −w,

 (2.3)

where p = P − 0.5z2
[1 + α cos(ωt)] is the perturbation pressure, θ = T − z is

the perturbation temperature and u is the velocity perturbation away from zero.
The boundary conditions are no slip for u on all walls, no flux on the sidewalls,
∂θ/∂x|x=±0.5 = 0, and θ = 0 on the top and bottom endwalls.

The governing equations (2.3) are discretized in space using a Chebyshev spectral
collocation method and in time via a fractional-step improved projection scheme,
incorporating the temperature equation as in Mercader, Batiste & Alonso (2010).
Polynomials of degree M in both x and z are used (invariance in y is assumed),
with 32 6 M 6 96, depending on RN, and 1000 time steps per forcing period 2π/ω

are used. The monodromy matrix arising from the Floquet analysis has dimension
3M2 and is constructed by evolving a basis for the perturbations (the corresponding
identity matrix) over one period.

3. Results

We begin by recalling the linear inviscid eigenmodes of the unforced system for the
square cavity (Thorpe 1968),

ψm : n(x, z, t)= Aψ sin[mπ(x+ 0.5)] sin[nπ(z+ 0.5)] sin(σm : nt),
Θm : n(x, z, t)= Aθ cos[mπ(x+ 0.5)] sin[nπ(z+ 0.5)] cos(σm : nt),

}
(3.1)

where ψm : n is the streamfunction, such that (u, w)= (∂ψ/∂z,−∂ψ/∂x), Θm : n is the
perturbation temperature, Aψ and Aθ are the corresponding mode amplitudes, σm : n

is the eigenfrequency, and m > 0 and n > 0 are the integer half-wavenumbers. We
shall refer to these inviscid eigenmodes as Im : n. The linear dispersion relation between
spatial and temporal frequencies is σ 2

m : n = m2/(m2
+ n2). It should be noted that the

degeneracy σm : n= σkm : kn for any positive integer k; the spatial harmonics all have the
same temporal frequency.

We now consider the viscous stability of the static equilibrium to parametric forcing,
as described by (2.3), via Floquet analysis over the frequency range ω ∈ [0.05, 2.44],
amplitudes 0< α 6 1 and 103 6 RN 6 106. For a given RN, there is a critical forcing
amplitude α = αc(ω), which depends on the forcing frequency, below which the
basic state (2.2) is stable. Over the investigated parameter range, Floquet multipliers
were found to leave the unit circle through either −1 (subharmonic bifurcation,
ωr = ω/2) or +1 (synchronous bifurcation, ωr = ω), where ωr is the response
frequency of the viscous Floquet eigenmode. The loci of these bifurcations, for
RN = 2 × 104, are presented in figure 1. It is only in small intervals with ω . 0.3
that the synchronous bifurcation is primary. The red curve in figure 1 is the locus
of synchronous bifurcations, with the tip of the 1 : 1 resonance horn indicated at
ω ≈ 0.7, which is very close to σ1 : 1 = 1/

√
2. This is not the primary bifurcation

for forcing frequency ω = 0.7; the basic state (2.2) loses stability at lower α to
a subharmonic Floquet mode with spatial structure resembling I2 : 5 and a response
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FIGURE 1. Loci of the primary subharmonic (blue curve) and synchronous (red curve)
instabilities for RN = 2 × 104. The tips of some low-order m : n resonance horns are
indicated.

frequency ωr = ω/2≈ 0.35, which is close to σ2 : 5 = 2/
√

4+ 25≈ 0.37. The locus of
subharmonic bifurcations is the blue curve in the figure.

In the unforced and inviscid linear theory, between any two Im : n and Ip:q, there exists
Im+p:n+q, which results in a Farey sequence of eigenmodes. For the forced and viscous
results illustrated by figure 1, along the loci of the synchronous and subharmonic
primary instabilities exist intersecting resonance horns that are associated with a finite
Farey sequence of viscous eigenmodes. The bifurcating modes have m and n cells
of alternating sign in the horizontal and vertical directions, and are very similar in
structure to the linear inviscid unforced modes Im : n; we shall call the viscous Floquet
modes Vm : n. Figure 2 shows the spatial structure of the vorticity for some of the
lower-order unforced inviscid modes, together with some intermediate higher-order
modes that appear in the Farey sequence, and figure 3 shows the same for the viscous
Floquet modes at RN=2×104, α=αc and ω as indicated for subharmonic modes with
the same m : n structure as the inviscid modes in figure 2. The main difference between
the inviscid and viscous modes is the presence of viscous boundary layers. Being
eigenmodes, their magnitudes are arbitrary, so we have scaled the modes to have
their vorticity maxima in the central region equal to 1. It is clear that the boundary
layer vorticity is larger than the interior vorticity for the lower-order modes, and that
the interior cells closest to the walls are distorted. Moreover, for the higher-order
modes (e.g. figure 3h corresponding to a mode V4 : 5), although the boundary layers
are thinner, the viscous distortion of the cells penetrates deeper into the interior.

Within a subharmonic m : n horn, the Floquet mode has half the forcing frequency,
ωr =ω/2, which is close to the corresponding frequency σm : n of Im : n, whereas within
a synchronous m : n horn, the synchronous mode has ωr = ω ≈ σm : n. Within a given
horn, the ratio ωr/ω is either 1 for a synchronous horn or 1/2 for a subharmonic horn,
i.e. the response frequency varies within the horn, but the spatial frequencies, m and
n, remain fixed.

Viscosity regularizes the degeneracy in the dispersion relation of the inviscid
unforced problem. The bifurcating viscous modes are all simple (of multiplicity one),
and the harmonics bifurcate in ascending order as α is increased for a given ω and
RN. That is, for modes Vkm : kn, k = 1 bifurcates first, then k = 2, and so on, as α
is increased. As such, the loci shown in figure 1 correspond to the bifurcations of
low-order modes.

We now focus our attention on the resonance horn associated with the lowest-order
mode V1 : 1 that bifurcates subharmonically. It is the wide horn shown in figure 1 with
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(a) I2:1

I5:3

I3:2 I3:4 I2:5 I1:4

I4:5 I3:7 I2:7

I1:1 I1:2 I1:3

(e) (f) (g) (h)

(i) ( j) (k) (l)

(b) (c) (d)

FIGURE 2. Vorticity of inviscid unforced modes with m : n as indicated.

its tip at ω≈ 1.41. A close-up detail of this horn is shown in figure 4(a), which also
includes the loci of where the Vm :m harmonics bifurcate. Within the horn, the viscous
modes have exactly half the forcing frequency, ω/2, which is close to the frequency
of I1 : 1, σ1 : 1= 1/

√
2. It is the spatial frequency rather than the temporal frequency of

the response that is locked inside the horn. The m : m subharmonic resonance horns
are nested one inside the other with increasing m, as illustrated in figure 4(a), showing
the m= 1 to m= 8 horns. The tips of the horns are at ωmin ≈ 1.41≈ 2/

√
2 and α =

αmin. As shown in figure 4(b), αmin increases with m2. This is an indication of how
viscosity progressively dampens the higher harmonics, thus regulating the degeneracy
in the inviscid idealization.

Figure 5 shows the vorticity of I1 : 1 and its first seven harmonics, and the vorticity
of subharmonic Vm :m, with m ∈ [1, 8], at RN = 2 × 104, ω = 1.41, and α slightly
greater than αc for each. Again, the most striking difference between the two sets
is the presence of viscous boundary layers. For the low-m modes, the difference
between the interior of the viscous mode (away from the boundary layers) and the
interior of the corresponding inviscid mode is minimal, whereas, for large m, there
are noticeable variations in the local vorticity maxima, indicative of viscous effects
permeating deep into the interior for the higher-order modes, so that not only is their
instability more viscously damped (larger αmin for larger m), but their structure is
more viscously distorted as well.

The variations in the thicknesses of the boundary layers with m are small.
Figure 4(c) shows that these decrease linearly with m, where the boundary layer
thickness δ is taken to be the distance normal from the wall to the first zero in
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) ( j) (k) (l)

V2:1 (1.81, 0.06) V1:1 (1.41, 0.07) V1:2 (0.91, 0.16) V1:3 (0.64, 0.19)

V5:3 (1.72, 0.12) V4:5 (1.25, 0.20) V3:7 (0.79, 0.39) V2:7 (0.53, 0.49)

V3:2 (1.69, 0.10) V3:4 (1.21, 0.17) V2:5 (0.75, 0.26) V1:4 (0.48, 0.25)

FIGURE 3. Vorticity of the leading viscous subharmonic modes along the primary
instability locus for RN = 2× 104 and (ω, α) as indicated.

the vorticity. The sidewall layers are thicker than the top and bottom wall layers,
but they decrease faster with increasing m. Figure 4(d) shows that the ratio ηm of
maximum vorticity in the boundary layer to maximum vorticity in the interior for
Vm :m diminishes with increasing m as ηm = η1/m. Figure 6 shows the profiles of the
vorticity in the bottom (z = −0.5) and sidewall (x = −0.5) boundary layers for the
subharmonic Vkm : km. Using the boundary layer scalings with m described in figure 4,
these profiles collapse to a self-similar profile.

We now turn our attention to how reduction of viscous effects (by increase of
RN) acts on the subharmonic V1 : 1 mode. The 1 : 1 subharmonic resonance horns for
various values of RN are shown in figure 7(a). With increasing RN, the tip of the horn
(ωmin, αmin)→ (2σ1 : 1, 0), with the shape of the horn approaching the V-shape that is
expected for this horn in the limit RN→∞. Figure 7(b) shows that αmin ∝ 1/

√
RN.

Figure 8 shows the vorticity of V1 : 1 for RN ∈ [103, 106
]. The interior structure of

V1 : 1 is essentially equivalent to that of I1 : 1, with the overall difference due to the
viscous boundary layers. These boundary layers diminish in thickness as δ ∝ 1/

√
RN,

but their intensity increases as η1 ∝
√

RN, as indicated in figure 7(c,d). Using these
scalings, the profiles of the vorticity in the endwall and sidewall boundary layers can
be collapsed onto self-similar profiles in RN, as shown in figure 9. The RN = 103

profile deviates somewhat from this, indicating that for this RN, the response is too
viscous, but for RN > 104, the response is in the asymptotic regime.
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0.1

0 1.37 1.41 1.45
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0.3
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0.4
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(d)

0 1 4 9 16 25 36 49 64

0.25
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1
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0

0 0.50
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1 2 3 4 5 6 7 8

0.02

0.04
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Side
End

0.50

1.00

Side
End

FIGURE 4. (a) Loci of the m : m resonance horns for RN = 2 × 104, with m increasing
sequentially from m= 1 to m= 8 with increasing α; (b–d) the variations of αmin, δ and
ηm with m.

4. Conclusions

The linear stability of the static linearly stratified equilibrium in a square cavity
subjected to harmonic vertical oscillations has been studied using Floquet analysis
on the Navier–Stokes–Boussinesq equations with no-slip boundary conditions and
zero-flux temperature conditions on the sidewalls and constant temperature conditions
on the top and bottom walls. The analysis considered a large range of forcing
frequencies and amplitudes, together with several decades of variation in the
non-dimensional parameter RN (the ratio of viscous to Archimedean time scales).
Onset of instability was found to occur when a Floquet multiplier attained modulus
greater than one as a critical forcing amplitude was exceeded at a given forcing
frequency. Almost all such primary instabilities were subharmonic, with the multiplier
exiting the unit circle through −1, but for a few low frequencies, the primary
instability was synchronous, with the multiplier exiting through +1. The spatial
structure of the bifurcating modes very closely resembles that of the linear inviscid
modes of the unforced square cavity, differing primarily due to the presence of
viscous boundary layers. As in the experiments of Benielli & Sommeria (1998), we
have focused on the subharmonic 1 : 1 modal response and its harmonics, at forcing
frequencies in the neighbourhood of ω =

√
2. We have quantified the impact of

viscosity, and in particular obtained scaling laws for the critical forcing amplitude at
which the harmonics become unstable, as well as scaling laws for the thickness and
intensity of the boundary layers. The critical forced oscillation amplitude depends
quadratically on the mode number m of the harmonic, while the boundary layer
thickness and the intensity of vorticity in the boundary layer vary as 1/

√
RN and

√
RN

respectively, so that their product remains constant independent of RN as RN →∞.
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(a) (b) (c) (d)

(e) (f) (g) (h)

I1:1 I2:2 I3:3 I4:4

I5:5 I6:6 I7:7 I8:8

(i) ( j) (k) (l)V1:1, å = 0.07 

V5:5, å = 0.20 V6:6, å = 0.25 V7:7, å = 0.33 V8:8, å = 0.42 

V2:2, å = 0.09 V3:3, å = 0.12 V4:4, å = 0.15 

(m) (n) (o) (p)

FIGURE 5. Vorticity of the first eight (a–h) Im :m and (i–p) subharmonic Vm :m at RN =

2× 104, ω= 1.41 and α ≈ αmin as indicated.

0

103 (∂1 + (m - 1) d∂z/dz)(z + 0.5) 103 (∂1 + (m - 1) d∂x/dx)(x + 0.5)
1

−26

0

26

m˙

30
-12

0

12(a) (b)

FIGURE 6. Scaled vorticity profiles at their extrema over one period of Vm :m (m∈ [1, 8])
at RN = 2× 104, ω= 1.41 and α ≈ αmin in (a) endwall and (b) sidewall boundary layers.

This self-similar regime is found to be attained for RN ∼ 104. This is consistent
with the inviscid idealization being a singular limit as viscosity vanishes, with the
lower-order viscous and inviscid modes essentially being identical in the interior
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FIGURE 7. (a) Critical (ω, α) for subharmonic V1 : 1 for RN as indicated. The yellow
diamonds are at (ωmin, αmin). (b–d) Variations with RN of (b) αmin, (c) boundary layer
thickness on the top/bottom walls (green diamonds) and on the sidewalls (red circles),
and (d) ratio of interior to boundary layer maximum vorticity.
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FIGURE 8. Vorticity of subharmonic V1 : 1 for RN as indicated, near (ωmin, αmin).

of the container. Of course, there is a major difference between the zero-viscosity
approximation, which has zero vorticity at the walls, and the limit of vanishing
viscosity, for which the wall vorticity is a delta distribution. At small RN, boundary
layer effects are localized near the boundaries of the container for lower modes
but permeate significantly into the interior for higher-order modes, whose spatial
variations in the interior are comparable in size to the boundary layer thicknesses.

It is unlikely that very-high-order modes will be observed in full nonlinear
simulations or physical experiments, as low-order modes are likely to have already
reached an amplitude where nonlinear effects cannot be neglected at the level of
forced oscillation amplitudes needed for the high-order modes to be excited. In
their experiment, Benielli & Sommeria (1998) observed low-order two-dimensional
mode structures as early transients, but as their amplitudes grew, wave breaking and
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FIGURE 9. Scaled vorticity profiles in (a) the endwall boundary layers and (b) the
sidewall boundary layers at their extrema over one period of subharmonic V1 : 1 at the same
(RN, ω, α) as in figure 8, with RN = 103 (grey), 104 (red), 105 (green) and 106 (blue).

other instabilities became dominant. The study of nonlinear mode interactions and
competition beyond onset is currently being addressed.
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