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Abstract

In this paper, we propose a variant of stable model semantics for disjunctive logic program-

ming and deductive databases. The semantics, called minimal founded, generalizes stable model

semantics for normal (i.e. non-disjunctive) programs, but differs from disjunctive stable model

semantics (the extension of stable model semantics for disjunctive programs). Compared with

disjunctive stable model semantics, minimal founded semantics seems to be more intuitive,

it gives meaning to programs which are meaningless under stable model semantics and is

no harder to compute. More specifically, minimal founded semantics differs from stable

model semantics only for disjunctive programs having constraint rules or rules working as

constraints. We study the expressive power of the semantics, and show that for general

disjunctive datalog programs it has the same power as disjunctive stable model semantics.

KEYWORDS: disjunctive logic programs, disjunctive deductive databases, semantics, minimal

models, stable models

1 Introduction

Several different semantics have been proposed for normal and disjunctive

logic programs. Stable model semantics, first proposed for normal (i.e. disjunction

free) programs, has been subsequently extended to disjunctive programs. For normal

programs, stable model semantics has been widely accepted since it captures the

intuitive meaning of programs and, for stratified programs it coincides with perfect

model semantics which is the standard semantics for this class of programs (Apt

et al., 1988; Przymusinski, 1988; Przymusinska & Przymusinski, 1988; VanGelder

et al., 1991). For positive programs, stable model semantics coincides with minimal

model semantics which is the standard semantics for positive disjunctive programs.

For general disjunctive programs several semantics have been proposed. We

mention here the generalized closed world assumption (GCWA) (Minker, 1982), the

weak generalized closed world assumption (WGCWA) (Rajasekar et al., 1989; Lobo

et al., 1992), the possible model semantics (Sakama & Inoue, 1994), the perfect

model semantics (Przymusinski, 1991), particularly suited to stratified programs,

the disjunctive well-founded semantics (Ross, 1989), the disjunctive stable model

semantics (Gelfond & Lifschitz, 1991; Przymusinski, 1991) and the partial stable

model semantics (Przymusinski, 1991; Eiter et al., 1998).
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Disjunctive stable model semantics is widely accepted since i) it gives a good

intuition of the meaning of programs, ii) for normal programs it coincides with

stable model semantics and for stratified (resp. positive) programs it coincides with

the perfect (resp. minimal) model semantics. However, disjunctive stable model

semantics has some drawbacks. It is defined for a restricted class of programs and

there are several reasonable programs which are meaningless, i.e. they do not have

stable models.

Motivating examples

The following examples present some programs whose intuitive meaning is not

captured by disjunctive stable model semantics.

Example 1

Consider the following simple disjunctive program P1

a ∨ b ∨ c←
← ¬a
← ¬b

where the second and third rules are constraints, i.e. rules which are satisfied only

if the body is false, which can be rewritten into equivalent normal rules.1 P1 has a

unique minimal model M1 = {a, b} but M1 is not stable. �

Thus, under stable model semantics the above program is meaningless. However,

the intuitive meaning is captured by the unique minimal model since the constraints

force more than one atom to be inferred from the disjunctive rule. The next example

presents a real life situation that can be easily modeled by means of a disjunctive

program.

Example 2

Consider the Internet structure where every computer in the network makes use

of a primary DNS (Domain Name Server) for resolving names associated to IP

addresses; moreover if the primary server fails, a secondary (supplementary) DNS

is searched. So, an address cannot be resolved if both primary and secondary DNSs

are not reachable. An interesting task could be the identification of a minimal set

of servers that ensures the connectivity of a set of computers. This task can be

formalized by the following disjunctive program:

active(D1) ∨ active(D2)← dns(C,D1, D2)

where active(D) means that D is a working DNS, dns(C,D1, D2) means that C is a

computer with D1 and D2 as primary and secondary DNSs. Assuming that dns is

a relation of our database, it is easy to see that this program has minimal (stable)

1 A constraint rule of the form ← b1, . . . , bk can be rewritten under total semantics (i.e. a two value
semantics where every atom is either true or false) as p(X) ← b1, . . . , bk,¬p(X) where p is a new
predicate symbol and X is the list of all distinct variables appearing in the source rule.
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models (under the disjunctive stable model semantics) and that each stable model

corresponds to the set of working DNSs.

Now suppose that we are looking for a set of active DNSs containing both d1 and

d2; this situation can be modeled by adding to the program the following constraint:

← ¬active(d1)

← ¬active(d2)

Under this hypothesis, if there is a computer c with d1 and d2 as primary and

secondary DNSs (i.e. there is a fact dns(c, d1, d2) in the database), the program has

a minimal model containing active(d1) and active(d2); but this model is not stable.

Thus, under stable model semantics this program is meaningless, even though its

intuitive meaning is captured by the minimal model. �

For a better understanding of this problem, consider now the formalization in

terms of logic programming of the 3SAT problem.

Example 3

The 3SAT problem in which clauses consist of exactly 3 literals can be expressed by

the following three rules:

val(X, true) ∨ val(X, false)← var(X)

← val(X, true), val(X, false)

val(X,Vx) ∨ val(Y , Vy) ∨ val(Z,Vz)← occur(C,X, Vx), occur(C, Y , Vy),

occur(C,Z, Vz)

The first two rules state that the value of each literal must be either true or false.

In the third rule a predicate occur(C,X, Vx) checks if the literal X occurs in the

clause C; the value of Vx is true (resp. false) if X occurs positively (resp. negatively)

in C . The set of clauses is described by means of the database predicate occur. For

instance, the clause c1 = x1 ∨x2 ∨¬x3 is defined by the three facts occur(c1, x1, true),

occur(c1, x2, true) and occur(c1, x3, false). For the sake of simplicity, we are assuming

that all clauses consist of exactly three literals. Thus, the third rule above states that

for each clause, at least one of its literals must be satisfied.

The above program, for an assigned set of input clauses, has a number of models

corresponding to all the truth assignments that satisfy all the clauses; so asking for

one model is equivalent to solving the 3SAT problem.

Now suppose that one wants to find a solution in which two variables x1 and

x2 are both true: this situation is modeled as usual by means of the following two

constraints:

← ¬val(x1, true)

← ¬val(x2, true)

If there is no clause in which both x1 and x2 appear positively, the program still

solves the 3SAT problem with constraint; but if there is such a clause then the

program has no minimal stable model because the constraint forces more than one

atom to be inferred from a disjunctive rule, and the minimal model becomes not

stable. �
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Observe that the first two clauses in the program of the above example can be

rewritten into the following normal rules:

val(X, true)← var(X), ¬val(X, false)

val(X, false)← var(X), ¬val(X, true)

since they are used to define a partition of the relation var and the constraint

defined by the second rule is used to force exclusive disjunction. Observe also that

the constraints ← ¬val(x1, true) and ← ¬val(x2, true) are used to infer, if possible,

the atoms val(x1, true) and val(x2, true). These constraints cannot be replaced by the

two facts val(x1, true) ← and val(x2, true) ← since by doing so we assert that x1

and x2 are true whereas the constraints are used to force the semantics to infer, if

possible, that x1 and x2 are true.

Intuitively, the problem with stable model semantics is that in some cases the

inclusive disjunction is interpreted as exclusive disjunction. This is an old problem

first noticed in (Ross & Topor, 1988) who proposed an alternative rule, called

disjunctive database rule (DDR), to infer negative information. DDR is equivalent to

the weak generalized closed world assumption (Rajasekar et al., 1989), an extension

of the generalized closed world assumption proposed in (Minker, 1982).

In this paper, we try to conjugate minimality of models and inclusive disjunction

by presenting a new semantics, called minimal founded, which overcomes some

drawbacks of disjunctive stable model semantics and gives meaning to a larger class

of programs by interpreting disjunction in a more liberal way.

Contributions

The main contributions of the paper are the following:

• We introduce a semantics for disjunctive programs. The proposed semantics

seems to be more intuitive than stable model semantics and it gives meaning

to programs which are meaningless under disjunctive stable model semantics.

• We show that the new semantics coincides with disjunctive stable model

semantics for normal and positive programs.

• We formally define the expressive power and complexity of the proposed

semantics for datalog programs and we show that it has the same expressive

power and complexity of disjunctive stable model semantics.

As a consequence, the proposed semantics differs from stable model semantics

only for programs containing both disjunctive rules and negation.

Although the full expressive power of disjunctive datalog can be reached by

only considering stratified programs, the natural way to express NP problems and

problems in the second level of the polynomial hierarchy (Σ2
p and Π2

p problems) is

to use the guess-and-check technique, where the guess part is expressed by means

of disjunctive rules and the check part is expressed by means of constraints (i.e.

unstratified rules) (Eiter et al., 1998). However, as shown by the previous examples,

there are several interesting programs whose intuitive semantics is not captured by
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stable models. Thus, the problem of defining an intuitive semantics for disjunctive

datalog is still an interesting topic.

We point out that the aim of this paper is not the introduction of a more powerful

semantics but only the definition of a semantics which gives an intuitive meaning

to a larger class of programs. In the same way, disjunctive stable models do not

increase the expressive power of stratified disjunctive datalog under the perfect

model semantics, but just give semantics to a larger class of programs.

Organization of the paper

The rest of the paper is organized as follows. Section 2 presents preliminaries

on disjunctive datalog, minimal and stable model semantics. Section 3 introduces

the minimal founded semantics. Its relation with minimal model semantics and

stable model semantics is investigated. Section 4 presents results on the expressive

power and complexity of minimal founded semantics. Finally, section 5 presents our

conclusions.

2 Preliminaries

A (disjunctive datalog) rule r is a clause of the form

A1 ∨ · · · ∨ Ak ← B1, . . . , Bm,¬C1, . . . ,¬Cn, k + m + n > 0.

where A1, . . . , Ak, B1, . . . , Bm, C1, . . . , Cn are atoms of the form p(t1, . . . , th), p is a

predicate of arity h and the terms t1, . . . , th are either constants or variables. The

disjunction A1∨· · ·∨Ak is the head of r, while the conjunction B1, . . . , Bm,¬C1, . . . ,¬Cn

is the body of r. Moreover, if k = 1 we say that the rule is normal, i.e. not disjunctive.

We denote by Head(r) the set {A1, . . . , Ak} of the head atoms, and by Body(r) the

set {B1, . . . , Bm,¬C1, . . . ,¬Cn} of the body literals. We often use upper-case letters,

for example L, to denote literals. As usual, a literal is an atom A or a negated atom

¬A; in the former case, it is positive, and in the latter negative. Two literals L1 and

L2 are complementary if L1 = A and L2 = ¬A, for some atom A. For a literal L, ¬L
denotes its complementary literal, and for a set S of literals, ¬S = {¬L | L ∈ S}.
Moreover, Body+(r) and Body−(r) denote the set of positive and negative literals

occurring in Body(r), respectively.

A (disjunctive) logic program is a finite set of rules. A ¬-free (resp. ∨-free) program

is called positive (resp. normal). A term, (resp. an atom, a literal, a rule or a program)

is ground if no variables occur in it. In the following we also assume the existence

of rules with empty head, called denials, which define constraints2, i.e. rules which

are satisfied only if the body is false.

The Herbrand Universe UP of a program P is the set of all constants appearing

in P , and its Herbrand Base BP is the set of all ground atoms constructed from

the predicates appearing in P and the constants from UP . A rule r′ is a ground

2 Under total semantics.
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instance of a rule r, if r′ is obtained from r by replacing every variable in r with

some constant in UP . We denote by ground(P ) the set of all ground instances of the

rules in P .

Given a program P and two predicate symbols (resp. ground atoms) p and q, we

write p → q if there exists a rule where q occurs in the head and p in the body or

there exists a predicate (resp. ground atom) s such that p → s and s → q. If p → q

then we say that q depends on p; also we say that q depends on any rule where

p occurs in the head. A predicate (resp. ground atom) p is said to be recursive if

p→ p.

An interpretation of P is any subset of BP . The value of a ground atom L

w.r.t. an interpretation I , valueI (L), is true if L ∈ I and false otherwise. The value

of a ground negated literal ¬L is ¬valueI (L). The truth value of a conjunction

of ground literals C = L1, . . . , Ln is the minimum over the values of the Li, i.e.,

valueI (C) = min({valueI (Li) | 1 � i � n}), while the value valueI (D) of a disjunction

D = L1 ∨ · · · ∨ Ln is their maximum, i.e., valueI (D) = max({valueI (Li) | 1 � i � n});
if n = 0, then valueI (C) = true and valueI (D) = false. Finally, a ground rule r is

satisfied by I if valueI (Head(r)) � valueI (Body(r)). Thus, a rule r with empty body is

satisfied by I if valueI (Head(r)) = true whereas a rule r′ with empty head is satisfied

by I if valueI (Body(r
′)) = false. An interpretation M for P is a model of P if M

satisfies each rule in ground(P ). The set of all models of P will be denoted byM(P ).

Minker (1982) proposed a model-theoretic semantics for a positive program P ,

which assigns to P the set of its minimal models MM(P ), where a model M for P

is minimal, if no proper subset of M is a model for P . Accordingly, the program

P = {a ∨ b←} has the two minimal models {a} and {b}, i.e. MM(P ) = {{a}, {b}}.
The more general disjunctive stable model semantics also applies to programs with

(unstratified) negation (Gelfond & Lifschitz, 1991; Przymusinski, 1991). Disjunctive

stable model semantics generalizes stable model semantics, previously defined for

normal programs (Gelfond & Lifschitz, 1988).

Definition 1

Let P be a logic program and let I be an interpretation for P , P
I

denotes the ground

positive program derived from ground(P )

1. by removing all rules that contain a negative literal ¬a in the body and a ∈ I ,

and

2. by removing all negative literals from the remaining rules.

An interpretation M is a (disjunctive) stable model of P if and only if M ∈
MM( P

M
). �

For general P , the stable model semantics assigns to P the set SM(P ) of

its stable models. It is well known that stable models are minimal models (i.e.

SM(P ) ⊆MM(P )) and that for negation-free programs minimal and stable model

semantics coincide (i.e. SM(P ) =MM(P )).

An extension of the perfect model semantics for stratified datalog programs to

disjunctive programs has been proposed in (Przymusinski, 1991).
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A disjunctive datalog program P is said to be locally stratified if there exists a

decomposition S1, . . . , Sω of the Herbrand base such that for every (ground instance

of a) clause

A1 ∨ · · · ∨ Ak ← B1, . . . , Bm,¬C1, . . . ,¬Cn

in P , there exists an l, called level of the clause, so that:

1. ∀i � k stratum(Ai) = l,

2. ∀i � m stratum(Bi) � l, and

3. ∀i � n stratum(Ci) < l.

where stratum(A) = i iff A ∈ Si.

The set of clauses in ground(P ) having level i (resp. � i) is denoted by Pi (resp.

P ∗i ). Any decomposition of the ground instantiation of a program P is called local

stratification of P .

The preference order on the models of P is defined as follows: M ≺ N iff M �= N

and for each a ∈M−N there exists a b ∈ N−M such that stratum(a) > stratum(b).

Intuitively, stratum(a) > stratum(b) means that a has higher priority than b.

Definition 2

Let P be a locally stratified disjunctive datalog program. A model M for P is perfect

if there is no model N such that N ≺ M. The collection of all perfect models of P

is denoted by PM(P ).

Consider, for instance, the program consisting of the clause a ∨ b ← ¬ c. The

minimal models are M1 = {a}, M2 = {b} and M3 = {c}. Since stratum(a) > stratum(c)

and stratum(b) > stratum(c), we have that M1 ≺ M3 and M2 ≺ M3. Therefore, only

M1 and M2 are perfect models.

Notice that M ⊂ N implies M ≺ N; thus, for locally stratified P , PM(P ) ⊆
MM(P ). For positive P , MM(P ) = PM(P ) and for stratified P , PM(P ) =

SM(P ) ⊆MM(P ). The computation of the perfect model semantics of a program

P can be done by considering a decomposition (P1, . . . , Pω) of ground(P ) and

computing the minimal models of all subprograms, one at time, following the linear

order (Fernandez & Minker, 1991; Greco, 1998; Greco, 1999). In the decomposition

(P1, . . . , Pω), for each Pi and for each rule r of Pi, if A ∈ Head(r) and B ∈ Body+(r)

(resp. B ∈ Body−(r)) then B does not appear in the head of any rule of Pj with

j > i (resp. j � i).

3 Minimal founded semantics

In this section we introduce a new semantics for disjunctive programs.

Definition 3

Let P be a positive disjunctive program and let M be an interpretation. Then,

SP (M) = {a ∈ BP |∃r ∈ ground(P ) ∧ a ∈ Head(r) ∧ Body(r) ⊆M}

Sω
P (∅) denotes the least fixpoint of the operator SP .
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The operator SP extends the classical immediate consequence operator TP to

disjunctive programs by replacing head disjunctions with conjunctions. It is obvious

that the operator SP , for positive P , is monotonic and continuous and, therefore, it

admits a least fixpoint.

Definition 4 (Minimal Founded Semantics)

Let P be a disjunctive program and let M be a model for P . Then, M is a founded

model if it is contained in Sω
P
M

(∅). M is said to be minimal founded if it is a minimal

model of P and it is also founded. The collection of all minimal founded models of

P is denoted by MF(P ).

For any program P , the set of founded models of P will be denoted by F(P ).

Example 4

The program P1 of Example 1 has a unique minimal model M1 = {a, b} which is also

founded since it is the fixpoint of S P1
M1

. Observe that the interpretation N1 = {a, b, c}
is a founded model for P1 but it is not minimal since M1 ⊂ N1. �

Fact 1

Let P be a disjunctive datalog program. Then, MF(P ) ⊆MM(P ).

Proof

By definition of minimal founded model. �

The following example presents a disjunctive program where stable and minimal

founded semantics coincide.

Example 5

Consider the following simple disjunctive program P5

a ∨ b ∨ c←
a← ¬b,¬c
b← ¬a
c← ¬a

This program has two stable models M5 = {a} and N5 = {b, c} which are also

minimal founded. �

Moreover, for general programs containing both disjunction and negation, stable

and minimal founded semantics do not coincide. The relation between the two

semantics is given by the following result.

Theorem 1

Let P be a disjunctive program. Then, SM(P ) ⊆MF(P ).

Proof

Since stable models are minimal models, we have to show that any stable model M

of P is founded, i.e. M ⊆ Sω
P
M

(∅). Since P
M

is negation-free, every minimal model of

P
M

is contained in Sω
P
M

(∅). Thus, M is founded and, consequently, SM(P ) ⊆MF(P ).

�
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Therefore, for every disjunctive program P , SM(P ) ⊆ MF(P ) ⊆ MM(P ).

Moreover, as shown by the previous examples, there are programs where the

containment is strict, i.e. there are programs, such as the ones presented in the

Introduction, having minimal founded models which are not stable.

Corollary 1

Let P be a positive disjunctive datalog program. Then, MM(P ) =MF(P ).

Proof

From Theorem 1 SM(P ) ⊆ MF(P ). Moreover, by definition MF(P ) ⊆ MM(P ).

Since for positive programs SM(P ) = MM(P ), we conclude that MF(P ) =

MM(P ). �

The following result states that for disjunction-free programs, stable model

semantics and minimal founded semantics coincide.

Proposition 1

Let P be a normal datalog program. Then, SM(P ) =MF(P ).

Proof

Generally, SM(P ) ⊆ MM(P ). Thus we have to show that every minimal founded

model is also stable. Since for every normal program P and any interpretation M of

P , the operators T P
M

and S P
M

coincide, we have that every minimal founded model

M of P is equal to Tω
P
M

(∅). �

The following example presents another case of a program which is meaningless

under stable model semantics but has minimal founded models.

Example 6

Consider the program P6

a ∨ b ∨ c←
a← ¬b
b← ¬c
c← ¬a

From the first rule we have that a subset of {a, b, c} must be selected whereas the last

three rules state that at least two atoms among a, b and c must be true. The program

has three minimal founded models, M6 = {a, b}, N6 = {b, c} and H6 = {a, c}, but

none of them is stable. �

It is worth noting that a disjunctive program P may have no, one or several

minimal founded models. In the previous examples, we have presented programs

which are meaningless under the stable model semantics, but have minimal founded

models (those presented in the Introduction), and a program where stable and

minimal founded semantics coincide. The following example presents a program

which has stable models, but the stable and minimal founded semantics do not

coincide.
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Example 7

Consider the program P7

eat ∨ drink ←
eat ←

thirsty ← ¬drink

This program has two minimal founded models M7 = {eat, thirsty} and N7 =

{eat, drink}, but only M7 is stable. �

We now introduce a different characterization of the minimal founded semantics

which permits us to better understand the relationship between stable and minimal

founded semantics.

Definition 5

Let P be a disjunctive program and let M be an interpretation. Then, PM denotes

the program derived from ground(P ) by deleting for each rule

r : A1 ∨ · · · ∨ Ak ← B1, . . . , Bm,¬C1, . . . ,¬Cn

every Ai �∈M.

Proposition 2

Let P be a disjunctive program and let M be an interpretation. Then M ∈ MF(P )

if and only if M ∈ MF(PM).

Proof

M is a minimal founded model of P iff it is a minimal founded model of P ′ =

ground(P ). M is a minimal model for P ′ if and only if it is a minimal model of

PM because PM is obtained by deleting head atoms which are false in M from

P ′. Moreover, if an atom can be inferred in P ′

M
it can also be inferred in PM

M
and

vice-versa, i.e. F(P
′

M
) =F(P

M

M
). Therefore, M is a minimal founded model for P ′ iff

it is a minimal founded model for PM . �

Observe that the program PM consists of standard rules whose head is not empty

and denials (rules with empty head). Thus, in the following we shall denote with PM
S

the set of standard rules of PM whose head is not empty and with PM
D the set of

denial rules of PM .

Theorem 2

Let P be a disjunctive datalog program and M a minimal model for P . Then,

M ∈ MF(P ) if and only M ∈ F(PM
S ) and M |= PM

D .

Proof

Clearly, M is a minimal founded model for P iff it is a minimal founded model for

P ′ = ground(P ).

We first prove that M ∈ MF(P ′) implies that M ∈ F(PM
S ) and M |= PM

D . Let

P ′′ be the subset of rules in P ′ from which the rules in PM
D are derived. Every

denial r : ← B1, . . . , Bm,¬C1, . . . ,¬Cn, derived from a rule r′′ : A1 ∨ · · · ∨ Ak ←
B1, . . . , Bm,¬C1, . . . ,¬Cn, is satisfied in M if and only if r′′ is also satisfied in M
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because all atoms A1, . . . , Ak are false in M. As PM
S = P ′ − P ′′, if M is a (minimal)

founded model for P ′ it is also a founded model for PM
S since from the rules in P ′′

it is not possible to infer any atom.

We now prove that if M is a minimal model of P such that M ∈ F(PM
S ), then

M ∈ MF(P ′). As PM
S ⊆ P ′, if M is a founded model for PM

S and is a minimal

model for P ′ it will be a minimal founded model for P ′. It is obvious that if M is a

minimal model of P ′ every rule of P ′ is satisfied. �

It is important to note that in the ground program there are rules which with

respect to a given model act as constraints forcing atoms to be true or false. In

the following example we reconsider the program P6 of Example 6 containing rules

which force the selection of two atoms from the disjunctive rule.

Example 8

The program P6 of Example 6 admits three minimal founded models: M6 = {a, b},
H6 = {a, c} and N6 = {b, c}. The program PM6 = (PM6

S , PM6

D ) is

a ∨ b←
b←
← ¬a

where PM6

S consists of the first two rules and PM6

D contains the last rule. The only

minimal model for PM6 is M6; this model satisfies PM6

D and is a founded model of

PM6

S .

As the program P6 is symmetric, we have that also H6 and N6 are minimal

founded model of P6. �

Theorem 2 shows the difference between minimal founded and stable model

semantics. In particular, given a program P and a minimal model M for P , M is

stable if M is a minimal model of
PM
S

M
and M satisfies PM

D whereas M is a minimal

founded model if M is a model of
PM
S

M
and M satisfies PM

D . Thus, the main difference

between the two semantics is that the stable model semantics asks for minimal

models of ground(P ) which satisfy the constraints PM
D and are also minimal for the

subset of standard rules PM
S , whereas the minimal founded model asks for minimal

models of ground(P ) which satisfy the constraints PM
D and are founded, i.e. their

atoms are derivable from the rules in PM
S .

It is worth noting that the above result can be very useful in the computation of

the semantics of programs. Indeed, during the computation of a model, from the

assumption of the falsity of atoms we derive constraints which further restrict the

search strategy (Leone et al., 1997; Eiter et al., 1998).

4 Expressive power and complexity

In this section we present some results about the expressive power and the data

complexity of minimal founded semantics for disjunctive datalog programs (Eiter

et al., 1997; Eiter et al., 1998; Saccà, 1997). We first introduce some preliminary

definitions and notation, and then present our results.
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Predicate symbols are partitioned into the two sets of base (EDB) and derived

(IDB) predicates. Base predicate symbols correspond to database relations on a

countable domain U and do not occur in the rule heads. Derived predicate symbols

appear in the head of rules. Possible constants in a program are taken from the

domain U.

A program P has associated a relational database scheme DSP = {r| r is an EDB

predicate symbol of P }, thus EDB predicate symbols are seen as relation symbols.

A database D on DSP is a set of finite relations, one for each r in DSP , denoted by

D(r). The set of all databases on DSP is denoted by DP .

Given a database D ∈ DP , PD denotes the following logic program:

PD = P ∪ {r(t)← | r ∈ DSP ∧ t ∈ D(r)}.

The Herbrand universe UPD
is a finite subset of U and consists of all constants

occurring in P or in D (active domain). If D is empty and no constant occurs in P ,

then UPD
is assumed to be equal to {a}, where a is an arbitrary constant in U.

Definition 6

A bound query Q is a pair 〈P , g〉, where P is a disjunctive program and g is a ground

literal (the query goal).

We use XF as generic notation for a generic semantics. The result of a query

Q = 〈P , g〉 on an input database D is defined in terms of the XF models of PD ,

by taking either the union of all models (brave or possible inference, ∃XF ) or the

intersection (cautious or certain inference, ∀XF ).

Definition 7

Given a program P and a database D, a ground atom g is true, under the brave

version of the XF semantics, if there exists an XF model M for PD such that g ∈M.

Analogously, g is true, under the cautious version of the XF semantics, if g is true

in every XF model. The set of all queries is denoted by Q.

Definition 8

Let Q = 〈P , g〉 be a bound query. Then the database collection of Q w.r.t. the set of

XF models is:

(a) under the brave version of semantics, the set of all databases D in DP such that

g is true in PD under the brave version of the XF semantics; this set is denoted

by EXP ∃XF (Q);

(b) under the cautious version of semantics, the set of all databases D in DP such

that g is true in PD under the cautious version of the XF semantics; this set is

denoted by EXP ∀XF (Q).

The expressive power of a given version (either brave or cautious) of the XF

semantics is given by the family of the database collections of all possible queries,

i.e. EXP ∃XF [Q] = {EXP ∃XF (Q)|Q ∈ Q} and EXP ∀XF [Q] = {EXP ∀XF (Q)|Q ∈ Q}. �

The database collection of every query is indeed a generic set of databases. A set

D of databases on a database scheme DS with domain U is (W -)generic if there

exists a finite subset W of U such that for any D in D and for any isomorphism
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θ on relations extending a permutation on U −W , θ(D) is in D as well (Chandra

& Harel, 1982; Abiteboul et al., 1994) – informally, all constants not in W are not

interpreted, and relationships among them are only those explicitly provided by the

databases. Note that for a query Q = 〈P , g〉, W consists of all constants occurring

in P and in g. From now on, any generic set of databases will be called a database

collection.

Following the data complexity approach of Chandra and Harel (1982) and Vardi

(1982), for which the query is assumed to be a constant while the database is the input

variable, the expressive power coincides with the complexity class of the problem

of recognizing the database collection of each query. The expressive power of each

semantics will be compared with database complexity classes, defined as follows.

Given a Turing machine complexity class C (for instance P or NP), a relational

database scheme DS , and a database collection D on DS , D is C-recognizable if the

problem of deciding whether D is in D is in C . The database complexity class DB-C

is the family of all C-recognizable database collections (for instance, DB-P is the

family of all database collections that are recognizable in polynomial time). If the

expressive power of a given semantics coincides with a complexity class DB-C , we

say that the given semantics captures (or expresses all queries in) DB-C .

Recall that the classes ΣP
k , ΠP

k of the polynomial hierarchy (Stockmeyer, 1976)

are defined by ΣP
0 = P, ΣP

i+1 = NPΣP
i , and ΠP

i = co-ΣP
i , for all i � 0. In particular,

ΠP
0 = P, ΣP

1 = NP, and ΠP
1 = co-NP. Using Fagin’s Theorem (Fagin, 1974) and its

generalization in Stockmeyer (1976), complexity and second-order definability are

linked as follows.

Fact 2

(Fagin, 1974; Stockmeyer, 1976) A database collection D over a scheme DS

is in DB-ΣP
k (resp. DB-ΠP

k ), k � 1, iff it is definable by a second-order formula

(∃A1)(∀A2) · · · (QkAk)Φ (resp. (∀A1)(∃A2) · · · (QkAk)Φ) on DS , where the Ai are lists

of predicate variables preceded by alternating quantifiers and Φ is first-order.

The following example shows how a NP problem can be expressed by means of

a second order formula and how the formula can be translated into a disjunctive

datalog program under minimal founded or stable model semantics.

Example 9

Consider the graph kernel problem defined as: given a directed graph G = 〈V , E〉,
does there exist a kernel for G, i.e. is there a set S ⊆ V of vertices such that both

(i) for each i in V − S , there exists j in S for which the edge (j, i) is in E, and (ii) for

each i, j in S , (i, j) is not in E?

We denote the set of all (finite) directed graphs with DG, the set of all graphs in

DG for which a kernel exists with DK
G , and D

K

G = DG−DK
G . Any graph is represented

by a database on the database scheme BD = {V , E}, where V and E store its vertices

and edges, respectively.

Consider the following second-order formula over BD:

∃S ∀x {[¬S(x) ∧ ∃y(S(y) ∧ E(y, x))] ∨ [S(x) ∧ ∀y(S(y)⇒ ¬E(y, x))]}
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Note that V supplies the interpretation domain of the formula. It is easy to see

that a graph G is in DK
G iff the formula is satisfied by G. The above formula can

be rewritten in the following equivalent Skolem normal format for existential second

order formulas:

∃S ∀x1, x2 ∃y{[¬S(x1) ∧ S(y) ∧ E(y, x1)] ∨ [S(x1) ∧ ¬S(x2)]∨
[S(x1) ∧ S(x2) ∧ ¬E(x2, x1)]}

This formula is then used to construct the following datalog program:

r1 : s(W) ∨ ŝ(W)←
r2 : ← s(W), ŝ(W).

r3 : q(X1, X2)← ŝ(X1), s(Y), e(Y, X1).

r4 : q(X1, X2)← s(X1), ŝ(X2).

r5 : q(X1, X2)← s(X1), s(X2), ¬e(X2, X1).
r6 : g← ¬q(X1, X2).

where v and e are EDB predicate symbols and s and ŝ are used to define a partition of

the database domain (the Herbrand universe). Note that the rules (r3)-(r5) implement

the three conjunctions in the above Skolem normal form formula.

Let G = 〈V , E〉 be a directed graph. A minimal founded (or stable model) is

constructed as follows. The first two rules non-deterministically select two disjoint

subsets of V , say S and Ŝ , respectively. For each x1 in Ŝ , if there exists a vertex y

in S for which (y, x1) is in G (i.e. x1 is connected to some vertex in S) then the third

rule makes q(x1, x2) true for every x2 in V . The fourth rule makes q(x1, x2) true for

each x1 in S and for each x2 in Ŝ , and the fifth rule makes q(x1, x2) true if both x1

and x2 are in S and the edge from x2 to x1 is not in G. Note that q(x1, x2) is derived

to be true for every x1, x2 in V iff S and Ŝ cover V and S is a kernel. But g is false

iff for every x1, x2 in V , q(x1, x2) is true; so g is false iff S and Ŝ cover V and S is a

kernel.

For a graph for which a kernel exists, g may be either true or false. Moreover

there exists at least one stable model which selects a kernel and, therefore, makes g

false. For a graph without kernels, g is always true in every stable model. �

It is well known that, under total stable model semantics, disjunctive datalog

captures the complexity classes ΣP
2 and ΠP

2 , respectively, under brave and cautious

semantics (Eiter et al., 1997), whereas plain datalog (i.e. datalog with negation and

without disjunction) captures the complexity classes NP and coNP, respectively,

under brave and cautious semantics (Marek & Truszczyński, 1991; Schlipf, 1995).

We now present some results on the expressive power and data complexity of the

minimal founded semantics.

Theorem 3

Given a disjunctive program P , a database D on DSP , and an interpretation M for

PD , deciding whether M is a minimal founded model for PD is coNP-complete.

Proof

Let M be an interpretation and consider the complementary problem Π: is it

true that M is not a strongly founded model? Π is in NP since we can guess an
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interpretation N and verify in polynomial time that either (i) M is not a founded

model for PD or (ii) N is a model for PD and N ⊂ M. Hence the problem Π is in

coNP.

Moreover, deciding whether an interpretation M for a positive disjunctive program

PD is a minimal model is coNP-complete. Since for positive programs minimal

models are also founded, then, deciding whether M is minimal founded is coNP-

hard. Therefore, deciding whether M is a minimal founded model for PD is coNP-

complete. �

Observe that, deciding whether an interpretation M is a stable model for PD is

also coNP-complete.

Theorem 4

EXP ∀MF[Q] = DB-ΠP
2 .

Proof

We first prove that for any query Q = 〈P , g〉 in Q, recognizing whether a database

D is in EXP ∀MF(Q) is in ΠP
2 . To this end, we consider the complementary problem:

is it true that D is not in EXP ∀MF(Q)? Now, D is not in EXP ∀MF(Q) iff there exists a

minimal founded model M of PD such that g �∈ M. Following the line of the proof

of Theorem 5, we can easily see that the latter problem is in ΣP
2 . Hence, recognizing

whether a database D is in EXP ∀MF(Q) is in ΠP
2 .

Let us now prove that every Πp
2 recognizable database collection D on a database

scheme DS is in EXP ∀MF[Q]. By Fact 2, D is defined by a second order formula

of the form ∀R1∃R2Φ(R1,R2). Using the usual transformation technique, the above

formula is equivalent to a second order Skolem form formula (∀S1)(∃S2)Γ(S1, S2),

where

Γ(S1, S2) = (∀X)(∃Y)(Θ1(S
1, S2,X,Y) ∨ . . . ∨Θk(S

1, S2,X,Y)),

S1 and S2 are two lists of, respectively, m1 and m2 predicate symbols, containing all

symbols in R1 and R2, respectively. Consider the following program P :

r1 : s1j
(
W1

j

)
∨ ŝ1j

(
W1

j

)
← (1 � j � m1)

r2 : s2j
(
W2

j

)
∨ ŝ2j

(
W2

j

)
← (1 � j � m2)

r3 : q(X) ← Θi(S
1, S2,X,Y) (1 � i � k)

r4 : g ← ¬q(X).

r5 : g ← s2j
(
W2

j

)
, ŝ2j

(
W2

j

)
(1 � j � m2)

r6 : ŝ2j
(
W2

j

)
← g. (1 � j � m2)

r7 : s2j
(
W2

j

)
← g (1 � j � m2)

where, intuitively, ŝ1j (W
1
j ) corresponds to ¬s1j (W1

j ), ŝ2j (W
2
j ) corresponds to ¬s2j (W2

j )

and the rules of group r3 defining q are used to implement the disjunction of the

above second order formula. Observe that the guesses defined by the rules in the

groups r1 and r2 are used in the rules in the group r3 defining the predicate q and

that the rules in the groups r5, r6 and r7 force g to be false. Now it is easy to

show that the formula (∀S1)(∃S2)Γ(S1, S2) is valid if g is false in all minimal founded
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models of P (if g is true the last two sets of rules make the second group of rules

false). �

Theorem 5

EXP ∃MF[Q] = DB-ΣP
2 .

Proof

We first prove that for any query Q = 〈P , g〉 in Q, recognizing whether a database

D is in EXP ∃MF(Q) is in ΣP
2 . D is in EXP ∃MF(Q) iff there exists a minimal founded

model M of PD such that g ∈ M. To check this, we may guess an interpretation

M of PD and verify that M is a minimal founded model of PD . The guess of the

interpretation M is polynomial time. To check that M is minimal founded we can

ask an NP oracle. Therefore, recognizing whether a database D is in EXP ∃MF(Q) is

in ΣP
2 .

Let us now prove that every Σp
2 recognizable database collection D′ on a database

scheme BD is in EXP ∃MF[Q]. We have that D′ is defined by a second order formula

of the form ∃R1∀R2Φ′(R1,R2). By setting Φ(R1,R2) = ¬Φ′(R1,R2), we have that the

formula ∀R1∃R2Φ(R1,R2) defines the database collection D, where D = DBD − D′

and DBD is the set of all databases on BD. Consider the program P and the query

Q = 〈P ,¬g〉 in the proof of Theorem 4. In it we have shown that a database D in

DBD is in D iff D is in EXP ∀MF(Q); hence a database D in DBD is in D′ iff D is not

in EXP ∀MF(Q). But D is not in EXP ∀MF(Q) iff there exists some stable model M for

which g is in M. It follows that D′ = EXP ∃MF(Q′) where Q′ = 〈P , g〉. �

Therefore, the expressive power of disjunctive datalog under minimal founded

and stable model semantics is the same.

Data complexity is usually closely tied to expressive power and, in particular, it

provides an upper bound for the expressive power (Eiter & Gottlob, 1993).

In this section we have shown that minimal founded semantics is complete for the

second level of the polynomial hierarchy. For the stable model semantics it has been

shown that for the class of head-cycle-free (hcf) the computation of a model selected

nondeterministically can be done in polynomial time and checking if a ground atom

belongs to a minimal model (resp. all minimal models) is complete for the first level

of the polynomial hierarchy, i.e. NP-complete (resp. coNP-complete) (Ben-Eliyahu

and Dechter, 1994). This result does not immediately apply to the minimal founded

semantics since there could be rules which could force the selection of more than one

atom appearing in the head of a rule. We conjecture that we have the same results

for the class of head-cycle-free programs where constraints do not force the selection

of more than one atom from the head of disjunctive rules. It is possible to identify a

syntactic class consisting of hcf programs where after the rewriting of every ground

constraint ← B(X) in P with a rule p(X) ← B(X),¬p(X), there is no recursive

atom A in ground(P ) depending on itself through an odd number of negations. The

formal proof of this is outside the scope of this paper, and it could be investigated

in some future work. Another interesting problem to be investigated in the future

could be the syntactic characterization of programs for which stable and strongly
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founded models coincide. Clearly, this class contains positive and normal programs

and programs where head disjunctions are forced to be exclusive by constraints.

5 Conclusion

The semantics proposed in this paper is essentially a variant of stable model

semantics for normal programs. The aim of our proposal is the solution of some

drawbacks of disjunctive stable model semantics which, in some cases, interprets

inclusive disjunction as exclusive disjunction.

As disjunction is not interpreted as exclusive, the proposed semantics is not

invariant if rules which are subsumed by other rules (under stable model semantics)

are removed from the program; for instance, the first rule in the program of

Example 7 can be deleted under stable model semantics as it is subsumed by the

second rule, whereas under the minimal founded model semantics it cannot be

deleted.

Several questions which need further investigation have been left open. For

instance, further research could be devoted to (i) the identification of fragments

of disjunctive datalog for which one minimal founded model can be computed in

polynomial time; (ii) the use of two different types of disjunctive rule (inclusive dis-

junction and exclusive disjunction), and (iii) the investigation of abstract properties

for disjunctive datalog under minimal founded semantics (Brass & Dix, 1992).
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