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We show that, if M is a connected binary matroid of cogirth at least five which does not

have both an F7-minor and an F∗7 -minor, then M has a circuit C such that M − C is

connected and r(M − C) = r(M).

1. Introduction

We shall consider the problem of finding sufficient conditions for the existence of a circuit

in a given matroid M whose deletion leaves the rank or connectivity of M unchanged. The

existence of such a circuit in graphs has been considered by various authors. The most

general result for simple graphs can be deduced from a theorem of Mader [6, Satz 1].

Theorem 1.1. Let k be a positive integer and G be a simple k-connected graph of minimum

degree at least k + 2. Then G has a circuit C such that G− E(C) is k-connected.

Stronger results for the special case when G is simple and k = 2 can be found in

Jackson [4], Thomassen and Toft [11], and Lemos and Oxley [5].

It seems natural to ask if Theorem 1.1 can be extended to graphs which may contain

multiple edges. Sinclair [10] has obtained the following results for small values of k.

Theorem 1.2. Let k ∈ {1, 2} and G be a k-connected graph of minimum degree at least f(k),

where f(1) = 3 and f(2) = 5. Then G has a circuit C such that G− E(C) is k-connected.
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A proof of a slightly stronger result when k = 2 is given in Lemma 2.1 of this paper.

Examples constructed by N. Robertson and later B. Jackson (see [4]), show that the

value of f(2) given in Theorem 1.2 cannot be reduced from five to four. However, this

reduction is valid for graphs which do not contain a vertex of degree four incident with

two edge-disjoint 2-circuits [10], for planar graphs [1], and, more generally, graphs with

no Petersen minor [2].

Oxley asked in [8, Problem 14.4.8] if the following partial extension of Theorem 1.1

when k = 2 is valid for binary matroids: does every connected binary matroid of girth at

least three and cogirth at least four have a circuit C such that M−C is connected? Lemos

and Oxley [5] subsequently constructed a cographic matroid of cogirth four which shows

that the answer to Oxley’s question is no. It remains an open problem, however, to decide

if there exists an integer t > 5 such that all connected binary matroids M of cogirth at

least t have a circuit C such that M − C is connected. We shall show in Theorem 3.1

that this assertion is true with t = 5 for binary matroids M which do not have both

an F7- and an F∗7 -minor. This gives a partial generalization of Theorem 1.2 for the case

when k = 2. Our proof uses the decomposition theory of Seymour in [9], which implies

that a 3-connected, vertically 4-connected binary matroid which does not have both an

F7-minor and an F∗7 -minor is either graphic or cographic, or is isomorphic to R10, F7 or

F∗7 . We shall first show that our result holds for graphic and cographic matroids. We then

proceed by contradiction and show that a smallest counterexample to the result would

be vertically 4-connected. It then only remains to check that the result holds for matroids

obtained from R10, F7 or F∗7 by parallel extensions.

2. Graphs

We shall consider finite graphs which may contain multiple edges, but no loops. We

consider a connected graph G to be 2-connected if G − v is connected for all v ∈ V (G).

We shall use EG(v) to denote the set of edges of G incident with a vertex v and put

dG(v) = |EG(v)|. We will suppress the subscript G when it is clear to which graph we are

referring. Given a circuit C of G, put |C| = |E(C)|.
We first obtain, in Lemma 2.1 below, a slight extension of the case k = 2 of Theorem 1.2.

We need this extension for our inductive proof on matroids. Lemma 2.1 itself follows from

a result of Sinclair [10]. We include a proof in this paper for the sake of completeness.

Lemma 2.1. Let G be a 2-connected graph on n vertices and C0 be a circuit of G such

that |C0| 6 3 and n > |C0|. Suppose that for all v ∈ V (G)−V (C0) we have dG(v) > 5. Then

G− E(C0) has a circuit C such that G− E(C) is 2-connected.

Proof. Suppose the lemma is false and let G be a counterexample. The hypotheses of

the lemma imply that we may choose a circuit C in G − E(C0). Let H = G − E(C), let

B0 be the block of H which contains C0, and B be an end-block of H distinct from B0.

We may suppose that C has been chosen such that |E(B)| is minimal. Let e be an edge

of B chosen such that, if B contains a cut-vertex x of H , then e is incident with x. Since

dG(v) > 5 for all v ∈ V (G)− V (C0), at most one vertex of B − e has degree less than two.
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Thus we may choose a circuit C ′ contained in B − e. Using the minimality of |E(B)| and

the fact that G is 2-connected, we see that each end-block of H − E(C ′) is incident with

C and each component of H − E(C ′) is incident with at least two vertices of C . Thus

G − E(C ′) = (H − E(C ′)) ∪ E(C) is 2-connected. This contradicts the choice of G as a

counterexample to the theorem.

Given a graph G and U ⊆ V (G), we use NG(U) to denote the set of vertices of V (G)−U
adjacent to a vertex of U and G[U] to denote the subgraph of G induced by U. For

S ⊆ E(G), let G/S be the graph obtained from G by contracting the edges in S , and V (S)

the set of vertices of G incident with S .

We next show, in Lemma 2.2 below, that the case k = 2 of Theorem 1.2 can be extended

to cographic matroids.

Lemma 2.2. Let G be a 2-connected graph on n vertices and X0 be a cocircuit of G such

that |X0| 6 3 and |E(G)| > n+ |X0| − 1. Suppose that G−X0 has girth at least five. Then

there exists v ∈ V (G)− V (X0) such that G/E(v) is 2-connected.

Proof. Suppose the lemma is false and let G be a counterexample. The hypotheses of

the lemma imply that we may choose a vertex v in V (G) − V (X0). Let H = G/E(v)

and x be the vertex of H corresponding to NG(v) ∪ {v}. Then x is the unique cut-vertex

of H . Since X0 ∩ E(v) = ∅, X0 is a cocircuit of H and hence is contained in a block

B of H . Let U = V (B) − x. We may suppose that v has been chosen such that |U| is

maximal. Note that NG(U) ⊆ NG(v). Furthermore, since G is 2-connected, |NG(U)| > 2

and G[U∪NG(U)∪{v}] is 2-connected. Choose v′ ∈ V (H)−V (B). Then v′ ∈ V (G)−V (X0).

Let H ′ = G/E(v′) and x′ be the vertex of H corresponding to NG(v′) ∪ {v′}. Let B′ be the

block of H ′ containing X0 and U ′ = V (B′) − x′. Then U ∪ (NG(U) − NG(v′)) is properly

contained in V (B′). By the maximality of |U| we must have NG(U) ⊆ NG(v′). Now the

facts that NG(U) ⊆ {v} ∪NG(v) and |NG(U)| > 2 imply that E(v)∪E(v′) contains a circuit

of G of length at most four. This contradicts the fact that G − X0 has girth at least

five.

3. Binary matroids

We shall use the following operation on binary matroids from Seymour [9]. Given binary

matroids M1 and M2, let M14M2 be the binary matroid with E(M) = E(M1)4E(M2)

and circuits all minimal non-empty subsets of E(M) of the form C14C2, where Ci is a

circuit of Mi. We refer the reader to [8] for other definitions on matroids. Our main result

is as follows.

Theorem 3.1. Let M be a connected binary matroid which does not have both an F7-minor

and an F∗7 -minor. Let C0 be a circuit of M such that |C0| 6 3 and r(M) > r(C0). Suppose

|X| > 5 for all cocircuits X of M such that X ∩C0 = ∅. Then M −C0 has a circuit C such

that M − C is connected and r(M − C) = r(M).
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Proof. We proceed by contradiction. Suppose the theorem is false and let M be a

counterexample chosen such that r(M) is as small as possible.

Claim 1. M is vertically 3-connected.

Proof. Suppose that M has a vertical 2-separation (S1, S2). Choose (S1, S2) such that

|S1 ∩C0| is minimal. Since r(Si) > 2 we have |Si| > 2. By [9, 2.6], M = M ′14M ′2 for minors

M ′1 and M ′2 of M such that 2 6 r(M ′i ) < r(M) and E(M ′1) ∩ E(M ′2) = {f}. Let Mi be the

parallel extension of M ′i at f by a new element g, for 1 6 i 6 2. Then C ′0 = {f, g} is a

2-circuit of Mi and E(Mi) − C ′0 = Si. Since M is connected, each Mi is connected. Since

M ′i is a minor of M, Mi is binary and does not have both an F7-minor and an F∗7 -minor.

Since C ′0 ∩ E(M) = ∅ we have C ′0 ∩ C0 = ∅. Since |C0| 6 3, |C0 ∩ E(M1)| 6 1.

Suppose C0 ∩ E(M1) = {e}. Then C0 = C14C2 for some circuits Ci of Mi, 1 6 i 6 2.

Thus |C1| = 2 and e is parallel to f and g in M1. Let h ∈ S1 − e and Y be a circuit

of M which meets both S1 and S2. Then Y = Y14Y2 for some circuits Yi of Mi such

that |Yi ∩ C ′0| = 1, 1 6 i 6 2. Thus Y1 − C ′0 + e is a circuit of both M1 and M, and

r(S1 − e) = r(S1) > 2. Similarly, since e ∈ C0 ⊆ S2 + e, we have r(S2 + e) = r(S2) > 2. Thus

(S1− e, S2 + e) is a vertical 2-separation of M. This contradicts the minimality of |S1 ∩C0|.
Hence we must have C0 ∩ S1 = ∅.

Let X1 be a cocircuit of M1 such that X1 ∩ C ′0 = ∅. Then X1 is a cocircuit of M

such that X1 ∩ C0 = ∅ so, by a hypothesis of the theorem, we have |X1| > 5. Using the

minimality of r(M) we deduce that M1−C ′0 has a circuit C such that M1−C is connected

and r(M1 − C) = r(M1). Since M − C = (M1 − C)4M2, we have that C is a circuit of

M − C0 such that M − C is connected and r(M − C) = r(M). This contradicts the choice

of M. Thus M has no vertical 2-separation and hence M is vertically 3-connected.

Claim 2. M is vertically 4-connected.

Proof. Suppose that M has a vertical 3-separation (S1, S2). Choose (S1, S2) such that

|S1 ∩C0| is minimal. Since |C0| 6 3, |C0 ∩ S1| 6 1. We first show that |Si| > 4 for 1 6 i 6 2.

Suppose |Si| = 3 for some i ∈ {1, 2}. Since r(Si) > 3 we must have r(Si) = 3. Since

r(S1) + r(S2) − r(M) = 2 we have r(Sj) = r(M) − 1, for j = 3 − i. Thus the closure of Sj
is a hyperplane of M. The complement of this hyperplane will be a cocircuit X0 of M

contained in Si. Since |X0| 6 |Si| = 3, it follows from a hypothesis of the theorem that

X0 ∩ C0 6= ∅. Since M is binary we must have |X0 ∩ C0| = 2. Since Si is independent

we must have |C0| = 3 and |Sj ∩ C0| = 1. By the minimality of |S1 ∩ C0|, we must have

i = 2. Choosing e0 ∈ S1 ∩ C0 we have r(S1 − e) 6 r(S1) and, since e0 ∈ C0 ⊆ S2 + e0,

r(S2 + e0) = r(S2) = 3. Thus (S1 − e0, S2 + e0) is either a vertical 2-separation of M,

contradicting Claim 1, or it is a vertical 3-separation of M, contradicting the minimality

of |S1 ∩ C0|. Thus |Si| > 4 for i ∈ {1, 2}.
By [9, 2.9], M = M14M2 for minors M1 and M2 of M such that 3 6 r(Mi) < r(M),

E(M1) ∩ E(M2) = C ′0 for some 3-circuit C ′0 = {f, g, h} of Mi, and E(Mi) − C ′0 = Si for

1 6 i 6 2. Since M is connected, each Mi is connected. Since Mi is a minor of M, Mi is
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binary and does not have both an F7- and an F∗7 -minor. Since C ′0 ∩ E(M) = ∅ we have

C ′0 ∩ C0 = ∅.
Suppose C0 ∩ S1 = {e}. Since e ∈ C0 ⊆ S2 + e we have r(S2 + e) = r(S2). Thus

r(S1 − e) + r(S2 + e) 6 r(S1) + r(S2) = r(M) + 2.

Claim 1 implies that equality must hold and hence r(S1−e) = r(S1) > 3. Thus (S1−e, S2+e)

is a vertical 3-separation of M. This contradicts the minimality of |S1 ∩C0| and hence we

must have C0 ∩ E(M1) = ∅.
Let X1 be a cocircuit of M1 such that X1 ∩ C ′0 = ∅. Then X1 intersects all circuits

of M1 in an even number of elements. Since M = M14M2 and E(M1) ∩ E(M2) = C ′0,

it follows that X1 intersects all circuits of M in an even number of elements. Thus X1

contains a cocircuit of M. Since X1 ∩C0 = ∅, it follows from a hypothesis of the theorem

that |X1| > 5. Using the minimality of r(M) we deduce that M1 − C ′0 has a circuit C

such that M1 − C is connected and r(M1 − C) = r(M1). Since M − C = (M1 − C)4M2

it follows that C is a circuit of M such that M − C is connected and r(M − C) = r(M).

This contradicts the choice of M. Thus M has no vertical 3-separation and hence M is

vertically 4-connected.

We are now ready to complete the proof of the theorem. Let M ′ be the simple matroid

obtained by replacing all parallel classes of M by single elements. By Claims 1 and 2, M ′
is a 3-connected vertically 4-connected binary matroid. By [9, 7.6 and 14.3], M ′ is either

graphic or cographic, or is isomorphic to R10, F7 or F∗7 . Thus M is either graphic or

cographic, or can be obtained from R10, F7 or F∗7 by a sequence of parallel extensions. If

the latter alternative holds, then, since R10, F7 and F∗7 have many cocircuits of size four,

M − C0 must contain a circuit C of size two. The 3-connectivity of M ′ now implies that

M−C is connected and r(M−C) = r(M). Hence M is graphic or cographic. Lemmas 2.1

and 2.2 now give a contradiction to the choice of M as a counterexample to the theorem.

4. Closing remarks

Remark 1. It follows from Theorem 1.2 that every connected graph G of minimum

degree at least three has a circuit C such that G− E(C) is connected. Thus every graphic

matroid M of cogirth at least three has a circuit C such that r(M) = r(M −C). The same

result holds for a cographic matroid M of cogirth at least three. (This can be seen by

considering the graph G for which M is the cographic matroid. Then G has girth at least

three and the set of edges incident with any non-cut-vertex of G will give the required

circuit C of M.) The result does not extend to regular matroids of cogirth at least three

since it does not hold for R10 (which has cogirth four). However, if M is a binary matroid

which does not have both an F7- and an F∗7 -minor, and has cogirth at least five, then we

may apply Theorem 3.1 to a component of M to deduce that M has a circuit C such that

r(M) = r(M − C).
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One may hope that all binary matroids M of sufficiently high girth have a circuit C

such that r(M) = r(M−C). This is not the case. To see this note that r(M) = r(M−C) if

and only if C does not contain any cocircuit of M. Thus, if M is identically self-dual then

no such circuit can exist. The assertion now follows since there exist identically self-dual

binary matroids of arbitrarily high cogirth. The column matroid of the parity check matrix

of the binary Reed–Muller code R(s, 2s+ 1), for example, is identically self-dual and has

cogirth 2s+1.

Remark 2. It is not true that there exists an integer t such that every connected matroid

M of cogirth at least t has a circuit C such that M − C is connected. This can be seen

by considering the uniform matroid Um,2m. It is still conceivable, however, that this may

hold for binary matroids.

Problem 1. Does there exist an integer t such that every connected binary matroid M of

cogirth at least t has a circuit C such that M − C is connected?

A related result for arbitrary matroids has been obtained by Lemos and Oxley [5,

Theorem 4.1].

Theorem 4.1. Let M be a connected matroid satisfying |E(M)| > 3r(M) > 3. Then M has

a circuit C such that M − C is connected.

Remark 3. We could also ask for sufficient conditions for the existence of a cocircuit in

a matroid M the deletion of which preserves the connectivity of M. The following result

of Seymour (see [7, Lemma 6]) is in the spirit of this paper. It is a matroid analogue of

an earlier graph-theoretic result of Kaugars (see [3, p. 31]).

Lemma 4.2. Let M be a connected binary matroid of girth and cogirth at least three. Then

M has a cocircuit X such that M −X is connected.
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