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Abstract

The timed concurrent constraint language (tccp in short) is a concurrent logic language based

on the simple but powerful concurrent constraint paradigm of Saraswat. In this paradigm,

the notion of store-as-value is replaced by the notion of store-as-constraint, which introduces

some differences w.r.t. other approaches to concurrency. In this paper, we provide a general

framework for the debugging of tccp programs. To this end, we first present a new compact,

bottom-up semantics for the language that is well suited for debugging and verification

purposes in the context of reactive systems. We also provide an abstract semantics that

allows us to effectively implement debugging algorithms based on abstract interpretation.

Given a tccp program and a behavior specification, our debugging approach automatically

detects whether the program satisfies the specification. This differs from other semi-automatic

approaches to debugging and avoids the need to provide symptoms in advance. We show

the efficacy of our approach by introducing two illustrative examples. We choose a specific

abstract domain and show how we can detect that a program is erroneous.

KEYWORDS: concurrent constraint paradigm; denotational semantics; abstract diagnosis;

abstract interpretation

1 Introduction

Finding program bugs is a long-standing problem in software construction. In

the concurrent paradigms, the problem is even worse and the traditional tracing

techniques are almost useless. There has been a lot of work on algorithmic debugging

(Shapiro 1982) for declarative languages, which could be a valid proposal for

concurrent paradigms, but little effort has been done for the particular case of the

� This work has been partially supported by the EU (FEDER), the Spanish MICINN under grant
TIN2010-21062-C02-02 and by the Universitat Politècnica de València under grant PAID-00-10.
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concurrent constraint paradigm (ccp in short; Saraswat 1993). The ccp paradigm

is different from other programming paradigms mainly due to the notion of store-

as-constraint that replaces the classical store-as-valuation model. In this way, the

languages from this paradigm can easily deal with partial information: an underlying

constraint system handles constraints on system variables. Within this family de Boer

et al. (2000) introduced the timed concurrent constraint language (tccp in short) by

adding to the original ccp model the notion of time and the ability to capture the

absence of information. With these features, it is possible to specify behaviors typical

of reactive systems such as timeouts or preemption actions, but they also make the

language nonmonotonic.

In this paper, we develop an abstract diagnosis method for tccp using the ideas of

the abstract diagnosis framework for logic programming (Comini et al. 1999). This

framework, parametric w.r.t. an abstract program property, is based on the use of

an abstract immediate consequence operator to identify bugs in logic programs. It

can be considered as an extension of algorithmic debugging since there are instances

of the framework that deliver the same results. The intuition of the approach is

that, given an abstract specification of the expected behavior of the program, one

automatically detects the errors in the program. The framework does not require

the determination of symptoms in advance. To achieve an effective method, abstract

interpretation is used to approximate the semantics, thus results may be less precise

than those obtained by using the concrete semantics.

The approach of abstract diagnosis for logic programming has been applied to

other paradigms (Alpuente et al. 2003; Falaschi et al. 2007; Bacci and Comini 2011).

This research revealed that a key point for the efficacy of the resulting debugging

methodology is the compactness of the concrete semantics. Thus, in this proposal,

much effort has been devoted to the development of a compact concrete semantics

for the tccp language to start with. The already existing denotational semantics

are based on capturing the input–output behavior of the system. However, since

we are in a concurrent (reactive) context, we want to analyze and debug infinite

computations. Our semantics covers this need and is suitable to be used not only

with debugging techniques but also with other verification approaches.

Our new (concrete) compact compositional semantics is correct and fully abstract

w.r.t. the small-step behavior of tccp. It is based on the evaluation of agents over

a denotation for a set of process declarations D, obtained as least fixpoint of a

(continuous, monotone) immediate consequence operator D�D�.
Thanks to the compactness of this semantics, we can formulate an efficacious

debugging methodology based on abstract interpretation which proceeds by ap-

proximating the D�D� operator producing an “abstract immediate consequence

operator” Dα�D�. We show that, given the abstract intended specification Sα of

the semantics of the declarations D, we can check the correctness of D by a single

application of Dα�D� and thus, by a static test, we can determine all the process

declarations d ∈ D which are wrong w.r.t. the considered abstract property.

To our knowledge, in the literature there is only another approach to the debugging

problem of ccp languages (Falaschi et al. 2007), which is also based on the abstract

diagnosis approach of (Comini et al. 1999). However, they consider a quite different
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concurrent constraint language without nonmonotonic features, which we consider

essential to model behaviors of reactive systems.

2 The timed concurrent constraint language

The tccp language is particularly suitable to specify both reactive and time crit-

ical systems. As the other languages of the ccp paradigm (Saraswat 1993), it is

parametric w.r.t. a cylindric constraint system. The constraint system handles the

data information of the program in terms of constraints. In tccp, the computation

progresses as the concurrent and asynchronous activity of several agents that can

(monotonically) accumulate information in a store, or query some information from

that store. In brief, a cylindric constraint system1 C = 〈C,�,⊗,⊕, tt ,ff ,Var, ∃〉 is

composed of a set of finite constraints C ordered by �, where ⊕ and ⊗ are the

glb and lub, respectively. tt is the smallest constraint whereas ff is the largest one.

We often use the inverse order 
 (called entailment) instead of � over constraints.

Var is a denumerable set of variables and ∃ existentially quantifies variables over

constraints (the so called cylindric operator).

Given a cylindric constraint system C and a set of process symbols Π, the syntax

of agents is given by the following grammar:

A ::= skip | tell(c) |
n∑

i=1

ask(ci) → Ai | now c thenA1 elseA2 | A1 ‖ A2 | ∃xA | p(�x),

where c and ci are finite constraints in C, p ∈ Π, x ∈ Var and �x is a list of variables

x1, . . . , xn with 1 � i � n, xi ∈ Var. A tccp program P is an object of the form D.A0,

where A0 is an agent, called initial agent, and D is a set of process declarations of

the form p(�x) :− A (for some agent A).

The notion of time is introduced by defining a discrete and global clock: it

is assumed that the ask and tell agents take one time-unit to be executed. For

the operational semantics of the language, the reader can consult (de Boer et al.

2000). Intuitively, the skip agent represents the successful termination of the agent

computation. The tell(c) agent adds the constraint c to the current store and

stops. It takes one time-unit, thus the constraint c is visible to other agents from

the following time instant. The store is updated by means of the ⊗ operator of

the constraint system. The choice agent
∑n

i=1 ask(ci) → Ai consults the store and

nondeterministically executes (at the following time instant) one of the agents Ai

whose corresponding guard ci holds in the current store; otherwise, if no guard is

satisfied by the store, the agent suspends. The agent now c thenA elseB behaves in

the current time instant like A (respectively B) if c is (respectively is not) satisfied

by the store. The satisfaction is checked by using the 
 operator of the constraint

system. Note that this agent can process negative information: it can capture when

some information is not present in the store since the agent B is executed both

when ¬c is satisfied, but also when neither c nor ¬c are satisfied. A ‖ B models the

parallel composition of A and B in terms of maximal parallelism (in contrast to the

1 See (Saraswat 1993; de Boer et al. 2000) for more details on cylindric constraint systems.
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interleaving approach of ccp), i.e., all the enabled agents of A and B are executed

at the same time. The agent ∃xA is used to make variable x local to A. To this end,

it uses the ∃ operator of the constraint system. Finally, the agent p(�x) takes from

D a declaration of the form p(�x) :− A and executes A at the following time instant.

For the sake of simplicity, we assume that the set D of declarations is closed w.r.t.

parameter names.

3 Modeling the small-step operational behavior of tccp

In this section, we introduce a denotational semantics that models the small-step

behavior of tccp. Due to space limitations, in this paper we show the concrete

semantics and the most relevant aspects of the abstract one. The missing definitions,

as well as the proofs of all the results, can be found in Comini et al. (2011).

Let us formalize the notion of behavior for a set D of process declarations. It

collects all the small-step computations associated to D as the set of (all the prefixes

of) the sequences of computational steps, for all possible initial agents and stores.

Definition 1 (Small-step behavior of declarations)

Let D be a set of declarations, Agent the set of possible agents, and → the transition

relation given by the operational semantics in de Boer et al. (2000). The small-step

behavior of D is defined as follows:

Bss�D� :=
⋃

∀c∈C,∀A∈Agent

B�D.A�c,

where B�D.A�c := {c · c1 · · · · · cn | 〈A, c〉 → 〈A1, c1〉 → . . . → 〈An, cn〉} ∪ {ε}. We

denote by ≈ss the equivalence relation between declarations induced by Bss , namely

D1 ≈ss D2 ⇔ Bss�D1� = Bss�D2�.
The pair 〈Ai, ci〉 denotes a configuration where Ai is the agent to be executed, and

ci the store at that computation step. Thus, the small-step behavior is the set of

sequences of stores that are computed by the operational semantics of the language.

There are many languages where a compact compositional semantics has been

founded on collecting the possible traces for the weakest store, since all traces

relative to any other initial store can be derived by instance of the formers. In tccp,

this does not work since the language is not monotonic: if we have all traces for an

agent A starting from an initial store c and we execute A with a more instantiated

initial store d, then new traces, not instances of the formers, can appear.

Furthermore, note that, since we are interested in a bottom-up approach, we

cannot work assuming that we know the initial store. However, when we define the

semantics of a conditional or choice agent where some guard must be checked, we

should consider different execution branches depending on the guard satisfiability.

To deal with all these particular features, our idea is that of associating conditions

to computation steps, and to collect all possible minimal hypothetical computations.
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3.1 The semantic domain

In de Boer et al. (2000), reactive sequences are used as semantic domain for the

top-down semantics. These sequences are composed of a pair of stores 〈c, c′〉 for

each time instant meaning that, given the store c, the program produces in one time

instant the store c′. The store is monotonic, thus c′ always contains more (or equal)

information than c.

As we have explained before, this information is not enough for a bottom-up

approach.2 Our idea is to enrich the reactive sequence notion so that we keep

information about the essential conditions that the store must satisfy to make the

program proceed. We define a condition η as a pair η = (η+, η−) where η+ ∈ C
(respectively η− ∈ ℘(C)) is called positive (respectively negative) component. A

condition is said to be inconsistent when its positive component is ff or when it

entails any constraint in the negative component. Given a store c ∈ C, we say that

c satisfies η (written c � η) when c entails η+, η+ �= ff and c does not entail any

constraint from η−. An inconsistent condition is satisfied by no store, while the pair

(tt , ∅) is satisfied by any store.

A conditional reactive sequence is a sequence of conditional tuples, which can

be of two forms: (i) a triple η → 〈a, b〉 that is used to represent a computational

step, i.e., the global store a becomes b at the next time instant only if a � η, or

(ii) a construct stutt(C) that models the suspension of the computation due to an

ask agent, i.e., it represents the fact that there is no guard in C (the guards of the

choice agent) entailed by the current store. We need this construct to distinguish a

suspended computation from an infinite loop that does not modify the store.

Our denotations are composed of conditional reactive sequences:

Definition 2 (Conditional reactive sequence)

A conditional reactive sequence is a sequence of conditional tuples of the form

t1 . . . tn . . . , maybe ended with �, such that: for each ti = ηi → 〈ai, bi〉, bi 
 ai for

i � 1, and for each tj = ηj → 〈aj , bj〉 such that j > i, aj 
 bi. The empty sequence is

denoted with ε. s1 ·s2 denotes the concatenation of two conditional reactive sequences

s1, s2.

A set of conditional reactive sequences is maximal if none of its sequences is

the prefix of another. By � we denote the domain of sets of maximal conditional

reactive sequences, whose order is induced from its prefix closure, namely R1 �
R2 ⇔ prefix (R1) ⊆ prefix (R2). (�, �,

⊔
,
�
, ⊥, �) is a complete lattice.

3.2 Semantics evaluation function for agents

To associate a denotation to a set of process declarations, we need first to define the

semantics for agents. Let us now introduce the notion of interpretation.

2 In a top-down approach, the (initial) current store is propagated, thus decisions regarding the
satisfaction or not of a given condition can be taken immediately.
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Definition 3 (Interpretations)

Let ��� := {p(�x) | p ∈ Π, �x are distinct variables } be the set of most general

calls. An interpretation is a function ��� → � modulo variance.3 Two functions

I, J : ��� → � are variants, denoted by I ∼= J , if for each π ∈ ��� there exists

a variable renaming ρ such that (Iπ)ρ = J(πρ). The semantic domain � is the set of

all interpretations ordered by the point-wise extension of �.

The application of an interpretation I to a most general call π, denoted by

I(π), is the application I(π) of any representative I of I which is defined exactly

on π. For example, if I = (λϕ(x, y). {(tt , ∅) → 〈tt , x = y〉})/∼= then I(ϕ(u, v)) =

{(tt , ∅) → 〈tt , u = v〉}.
The technical core of our semantics definition is the agent semantics evaluation

function which, given an agent and an interpretation, builds the maximal conditional

reactive sequences of the agent.

Definition 4 (Agents Semantics)

Given an agent A and an interpretation I, the semantics A�A�I is defined by

structural induction:

A�skip�I = {�}
A�tell(c)�I = {(tt , ∅) → 〈tt , c〉 · �} (1)

A�
∑n

i=1 ask(ci) → Ai�I =
⊔n

i=1{(ci, ∅) → 〈ci, ci〉 · (ci � s) | s ∈ A�Ai�I} �⊔
{stutt(∪n

i=1ci) · s | s ∈ A�
∑n

i=1 ask(ci) → Ai�I , ∀i ∈ [1, n].ci �= tt} (2)

A�now(d) then A else B�I = {(d, ∅) → 〈d, d〉 · � | � ∈ A�A�I}�⊔
{(c+ ⊗ d, c−) → 〈c⊗ d, c′ ⊗ d〉 · (d� s) | (c+, c−) → 〈c, c′〉 · s ∈ A�A�I ,

c⊗ d � (c+ ⊗ d, c−)}�⊔
{(d, C) → 〈d, d〉 · (d� s) | stutt(C) · s ∈ A�A�I , d � (d, C)}�

⊔
{(tt , d) → 〈tt , tt〉 · � | � ∈ A�B�I}�⊔
{(c+, c− ∪ {d}) → 〈c, c′〉 · s | (c+, c−) → 〈c, c′〉 · s ∈ A�B�I ,

c � (c+, c− ∪ {d})}�⊔
{(tt , C ∪ {d}) → 〈tt , tt〉 · s | stutt(C) · s ∈ A�B�I} (3)

A�A ‖ B�I =
⊔

{sA‖̇sB | sA ∈ A�A�I , sB ∈ A�B�I} (4)

A�∃xA�I =
⊔

{s ∈ � | ∃s′ ∈ A�A�I such that ∃xs = ∃xs′,
s′ is x-connected, s is x-invariant}

(5)

A�p(z)�I =
⊔

{(tt , ∅) → 〈tt , tt〉 · s | s ∈ I(p(z))}

Let us now illustrate the idea of the semantics. The tell agent works independently

of the current store, thus in (1), the conditional reactive sequence starts with a

conditional tuple composed by the condition (tt , ∅), which is always satisfied, and a

second part that says that the constraint c is added during the first computational

step; afterwards, the computation terminates with �.

3 That is, a family of elements of �, indexed by ���, modulo variance.
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The semantics for the nondeterministic choice (2), collects for each guard ci a

conditional sequence of the form (ci, ∅) → 〈ci, ci〉 · (ci � s). The condition states

that ci has to be satisfied by the current store, whereas the pair 〈ci, ci〉 represents

the fact that the query to the store does not modify the store. The constraint ci is

propagated into the sequence s (the continuation of the computation which belongs

to the semantics of Ai) by means of the propagation operator that (consistently)

adds a given constraint to the stores appearing in a sequence:

h� s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η → 〈a⊗ h, b⊗ h〉 · (h� s′) if s = η → 〈a, b〉 · s′, η+ ⊗ h �= ff ,

b⊗ h �= ff , a⊗ h � η

η → 〈a⊗ h, ff 〉 if s = η → 〈a, b〉 · s′, η+ ⊗ h �= ff ,

b⊗ h = ff , a⊗ h � η

stutt(η−) · (h� s′) if s = stutt(η−) · s′

s if s = ε or s = �

In addition, we have to model the case when the computation suspends, i.e., when

no guard of the agent is satisfied by the current store. Sequences representing this

situation are of the form stutt(∪n
i=1{ci}) · s where s is, recursively, an element of the

semantics of the choice agent. The only case when we do not include the stuttering

sequence is when one of the guards ci is tt . Note that, due to the partial nature

of the constraint system, the fact that the disjunction of the guards is tt is not a

sufficient condition to avoid suspension.

The definition of the conditional agent now is similar to the previous one. However,

since it is instantaneous, we have six cases depending on the three possible heads of

the sequences of the semantics of A (respectively B) and on the fact that the guard

d is satisfied or not in the current time instant.

The semantics for the parallel composition of two agents (4), is defined in terms

of an auxiliary commutative operator ‖̇ which combines the sequences of the two

agents:

sA‖̇sB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(η ⊗c δ) → 〈a⊗ c, b⊗ d〉 · (d� s′A)‖̇(b� s′B) if sA = η → 〈a, b〉 · s′A,
sB = δ → 〈c, d〉 · s′B,
a⊗ c � (η ⊗c δ), b⊗ d �= ff

(η ⊗c δ) → 〈a⊗ c, ff 〉 if sA = η → 〈a, b〉 · s′A,
sB = δ → 〈c, d〉 · s′B,
a⊗ c � (η ⊗c δ), b⊗ d = ff

(η+, η− ∪ δ−) → 〈a, b〉 · s′A‖̇(b� s′B) if sA = η → 〈a, b〉 · s′A,
sB = stutt(δ−) · s′B,
a � (η+, η− ∪ δ−)

stutt(η− ∪ δ−) · s′A‖̇s′B if s′A = stutt(η−) · s′A,
s′B = stutt(δ−) · s′B

sA if sB = ε or sB = �

For the hiding operator (5), we collect the sequences that satisfy the restrictions

regarding the visibility of the hided variables. In particular, a conditional reactive

sequence s = t1 . . . tn . . . is x-connected when (1) if t1 = η1 → 〈a1, b1〉 then ∃xa1 = a1

and (2) for each ti = ηi → 〈ai, bi〉 and ti+1 = ηi+1 → 〈ai+1, bi+1〉, with i > 1,
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Fig. 1. Tree representation of F�D� in the example.

∃xai+1 ⊗ bi = ai+1. A conditional reactive sequence s = t1 . . . tn . . . is x-invariant if for

each computational step ti = ηi → 〈ai, bi〉, it holds that bi = ∃xbi ⊗ ai.

Finally, the semantics of the process call p(�x) collects the sequences in the

interpretation I(p(�x)), delayed by one time unit, as stated in the operational

semantics.

Let us show an illustrative example. Consider the tccp agent A ≡ ask(y � 0) →
tell(z � 0). The semantics is composed of two sequences:

A�A�I ={ (y � 0, ∅) → 〈y � 0, y � 0〉 · (tt , ∅) → 〈y � 0, y � 0 ⊗ z � 0〉 · �}
∪ {stutt(y � 0) · s | s ∈ A�A�I}.

3.3 Fixpoint denotations of declarations

Now we can define the semantics for a set of process declarations D as the fixpoint

of the immediate consequences operator D�D�I := λp(x).
⊔

p(x):−A∈D A�A�I , which

is continuous. Thus, it has a least fixpoint and we can define the semantics of D as

F�D� = lfp (D�D�). As an example, in Figure 1 we represent the (infinite) set of

traces of F�{p(x) :− ∃y ( ask(y > x) → p(x + 1) + ask(y � x) → skip)}�.4
In Comini et al. (2011) we have proven that D1 ≈ss D2 if and only if F�D1� =

F�D2� (correctness and full abstraction of F w.r.t. ≈ss ).

4 Abstract semantics for tccp: the abstraction scheme

In this section, starting from the fixpoint semantics in Section 3, we present an

abstract semantics which approximates the observable behavior of the program.

Program properties that are of interest are Galois Insertions between the concrete

4 For the sake of simplicity, we assume that we can use expressions of the form x + 1 directly in the
arguments of a process call. We can simulate this behavior by writing tell(x′ = x + 1) → p(x′) (but
introducing a delay of one time unit).
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domain and the chosen abstract domain. We assume familiarity with basic results

of abstract interpretation (Cousot and Cousot 1979).

We define an abstraction scheme where we develop the abstraction of computa-

tions, i.e., of maximal sets of conditional reactive sequences, by successive lifting.

We start with a function that abstracts the information component of the program

semantics, i.e., the store; then we build the abstraction of conditional tuples; then

of conditional reactive sequences and, finally, of maximal sets.

We start from an upper-approximating function τ+ : C → Ĉ into an abstract

constraint system Ĉ = 〈Ĉ, �̂, ⊗̂, ⊕̂, t̂t , ff̂ ,Var, ∃̂〉, where t̂t and ff̂ are the smallest and

the greatest abstract constraint, respectively. We often use the inverse relation 
̂ of

�̂. We have also a lower-approximating function τ− : ℘(C) → Č into an abstract

constraint system Č = 〈Č, �̌, ⊗̌, ⊕̌, ťt , ff̌ ,Var, ∃̌〉. This second function is needed to

(correctly) deal with the negative part of conditions.

We have two “external” operations ×̂ : C × Ĉ → Ĉ and ×̌ : C × Č → Č that

update an abstract store with a concrete constraint (coming from the program). In

addition, a “bridge” relation 
̃ ∈ Ĉ × Č decides if an upper-abstract constraint is

consistent with a lower-abstract constraint. Abstract and concrete constraint systems

are related by these conditions:

c ×̂ τ+(a) = τ+(c⊗ a) c ×̌ τ−(C) = τ−({c} ∪ C)

τ+(a⊗ b) = τ+(a) ⊗̂ τ+(b) τ−(C ∪ C ′) = τ−(C) ⊕̌ τ−(C ′)

a 
 b =⇒ τ+(a) 
̂ τ+(b) τ−({a}) 
̌ τ−(C) =⇒ ∃c ∈ C. a 
 c

τ+(∃x a) = ∃̂x τ+(a) τ−({∃x c | c ∈ C}) = ∃̌x τ−(C)

∀c ∈ C. a �
 c =⇒ τ+(a) �
̃ τ−(C).

An abstract condition is a pair of the form (η̂, η̌) ∈ Ĉ×Č. Similarly to the concrete

case, given an abstract condition η̃ = (η̂, η̌) and an abstract store â ∈ Ĉ, we say

that â satisfies η̃ (written â �̃ η̃) when η̂ �= ff̂ and â 
̂ η̂, but â �
̃ η̌. Given an

abstract condition η̃, â, b̂ ∈ Ĉ and ǎ ∈ Č, an abstract conditional tuple is either

a triple η̃ → 〈â, b̂〉m, such that â �̃ η̃, or a construct of the form stutt(ǎ)m, where

m ∈ {0,+∞} states how many times the corresponding tuples appear consecutively

in the sequence. Given a (concrete) conditional tuple t, we define its abstraction α(t)

as

α((η+, η−) → 〈a, b〉) = (τ+(η+), τ−(η−)) → 〈τ+(a), τ+(b)〉1

α(stutt(C)) = stutt(τ−(C))1.

Now, an abstract conditional reactive sequence is a sequence of different abstract

tuples t̃1 . . . t̃m . . . , maybe ended with �. The natural number associated to each

abstract conditional tuple is needed to keep synchronization among processes due

to the particularly strong synchronization properties of the language, as already

noticed in Alpuente et al. (2005).

The abstraction α(s) of a sequence of conditional tuples s is defined by structural

induction on the form of its tuples. It collapses all the computation steps (conditional
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tuples) that, after abstraction, coincide. Formally, α(ε) = ε, α(�) = � and

α(t · r) :=

⎧⎪⎪⎨
⎪⎪⎩

η̃ → 〈â, b̂〉m+1 · r̃ if α(t) = η̃ → 〈â, b̂〉1, α(r) = η̃ → 〈â, b̂〉m · r̃
stutt(ǎ)m+1 · r̃ if α(t) = stutt(ǎ)1, α(r) = stutt(ǎ)m · r̃
α(t) · α(r) otherwise

We extend this definition to sets of conditional sequences in the natural way.

We denote by � the domain α(�) of the sets of abstract conditional reactive

sequences. By adjunction we derive the concretization function γ such that

(�, �,
⊔

,
�

, ⊥, �) −−→−→←−−−
α

γ
(�, �,

∨
,
∧

, ⊥, �)

where a � a′ ⇐⇒ γ(a) � γ(a′).

This abstraction can be systematically lifted to the domain of interpretations:

� −−→−→←−−−
α

γ
[��� → �] so that we can derive the optimal abstraction of D�D�

simply as Dα�D� := α ◦D�D� ◦ γ. The abstract interpretation theory ensures that

Fα�D� := Dα�D� ↑ ω is the best correct approximation of F�D�.
It turns out that Dα�D�Iα = λp(x).

∨
p(x):−A∈D Aα�A�Iα , where Aα�·�Iα is defined by

structural induction on the syntax in a similar way as the concrete version. Given the

similarity to the concrete case, in the following we describe only two cases to illustrate

the use of the upper- and lower-approximations (for full details consult (Comini

et al. 2011)). The semantics for the tell agent just applies the abstraction to the only

concrete sequence, thus: Aα�tell(c)�Iα = {(t̂t , ff̌ ) → 〈t̂t , τ+(c)〉1 · �}. For the now

semantics, we only show the general case when the condition holds, and the general

case when it does not hold:

Aα�now(d) then A else B�Iα =

{(d ×̂ η̂, η̌) → 〈d ×̂ â, d ×̂ b̂〉n ·(d �̃ s̃) | (η̂, η̌) → 〈â, b̂〉n ·s̃∈Aα�A�Iα , d×̂â�̃ (d×̂η̂, η̌)}
∨ . . .∨

{(η̂, d ×̌ η̌) → 〈â, b̂〉1 ·(η̂, η̌) → 〈â, b̂〉n ·s̃ | (η̂, η̌) → 〈â, b̂〉n+1 ·s̃∈Aα�B�Iα , â�̃ (η̂, d×̌η̌)}
∨ . . .

the �̃ operator is the abstract counterpart of the concrete version.

5 Abstract diagnosis of timed concurrent constraint programs

Now, following the ideas of Comini et al. (1999), we define the abstract diagnosis

of tccp. The framework of abstract diagnosis (Comini et al. 1999) comes from the

idea of considering the abstract versions of Park’s Induction Principle.5 It can be

considered as an extension of declarative debugging since there are instances of

the framework that deliver the same results. In the general case, diagnosing w.r.t.

abstract properties relieves the user from having to specify in excessive detail the

program behavior (which could be more error-prone than the coding itself).

Let us now introduce the workset of abstract diagnosis. Having chosen a property

of the computation α of interest (an instance of the abstraction scheme of Section 4),

5 A concept of formal verification that is undecidable in general.
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given a set of declarations D and Sα ∈ �, which is the specification of the intended

behavior of D w.r.t. the property α, we say that

1. D is (abstractly) partially correct w.r.t. Sα if α(F�D�) � Sα.

2. D is (abstractly) complete w.r.t. Sα if Sα � α(F�D�).
3. D is totally correct w.r.t. Sα, if it is partially correct and complete.

In this setting, the user can only reason in terms of the properties of the expected

concrete semantics without being concerned with (approximate) abstract compu-

tations. The diagnosis determines the “originating” symptoms and, in the case of

incorrectness, the relevant process declaration in the program. This is captured

by the definitions of abstractly incorrect process declaration and abstract uncovered

element:

Definition 5

Let D be a set of declarations, R a process declaration and {e},Sα ∈ �.

R is abstractly incorrect w.r.t. Sα if Dα�{R}�Sα �� Sα.

e is an uncovered element w.r.t. Sα if {e} � Sα and {e} ∧ Dα�D�Sα = ⊥.

Informally, R is abstractly incorrect if it derives a wrong abstract element from the

intended semantics. e is uncovered if the process declarations cannot derive it from

the intended semantics.

It is worth noting that the notions of correctness and completeness are defined in

terms of α(F�D�), i.e., in terms of abstraction of the concrete semantics. The abstract

version of algorithmic debugging (Shapiro 1982), which is based on symptoms (i.e.,

deviations between α(F�D�) and Sα), requires the construction of α(F�D�) and

therefore a fixpoint computation. In contrast, the notions of abstractly incorrect

process declarations and abstract uncovered elements are defined in terms of just

one application of Dα�D� to Sα. The issue of the precision of the abstract semantics

is specially relevant in establishing the relation between the two concepts (i.e., the

relation between abstractly incorrect process declarations and abstract uncovered

elements on one side, and abstract partial correctness and completeness, on the other

side).6

Theorem 1

1. If there are no abstractly incorrect process declarations in D, then D is partially

correct w.r.t. Sα.

2. Let D be partially correct w.r.t. Sα. If D has abstract uncovered elements then

D is not complete.

When applying the diagnosis w.r.t. approximate properties, the results may be

weaker than those that can be achieved on concrete domains just because of

approximation. Abstract incorrect process declarations are in general just a warning

about a possible source of errors. Because of the approximation, it can happen

that a (concretely) correct declaration is abstractly incorrect. However, as shown by

the following theorem, all concrete errors are detected, as they lead to an abstract

incorrectness or abstract uncovered.

6 Proofs are available at http://www.dimi.uniud.it/comini/Papers.
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Theorem 2

Let r be a process declaration and S a concrete specification.

1. If D�{r}�S��S and α(D�{r}�S)��α(S) then r is abstractly incorrect w.r.t. α(S).

2. If there exists an abstract uncovered element a w.r.t. α(S), such that γ(a) � S
and γ(⊥) = ⊥, then there exists a concrete uncovered element e w.r.t. S (i.e.,

e � S and e $D�D�S = ⊥).

It is particularly useful for applications the fact that our proposal can be used with

partial specifications and also with partial programs. Obviously, one cannot detect

errors in process declarations involving processes which have not been specified,

but for the process declarations that involve processes that have a specification,

the check can be made, even if the whole program has not been written yet. This

includes the possibility of applying our “local” method to all parts of a program not

involving constructs which we cannot handle (yet). With other “global” approaches

such programs could not be checked at all.

It is worthy to note that, even for a noetherian abstract constraint system Ĉ,

the domain of abstract sequences defined above is not—in general—noetherian,

due to the use of the index in each tuple (we cannot get rid of it since it is

needed to keep synchronization among parallel processes). This means that our

current proposal cannot be used for static program analysis, unless we resort to

use widening operators. However (for noetherian abstract constraint systems) our

abstract diagnosis is effective since specifications have to be abstractions of some

concrete semantics and, since the store evolves monotonically, it holds that the

number of conditional tuples that can appear in an abstract sequence is, thus, finite.

5.1 Examples of application of the framework

Let us now show two illustrative examples of the approach. The first example shows

the new ability of our approach: that of dealing with the constructors that introduce

the nonmonotonic behavior of the system, in particular the now agent.

Example 1

We model a (simplified) time-out(n) process that checks for, at most, n times units

if the system emits a signal telling that the process evolves normally (system = ok ).

When the signal arrives, the system emits the fact that there is no alert (alert = no).7

Let d0, dn, daction be the following declarations:

time-out(0):− now(system = ok ) then action else (ask(tt) → time-out(0))

time-out(n):− now(system = ok ) then action else (ask(tt) → time-out(n− 1))

action:− tell(alert = no)

When the time limit is reached (declaration d0), the system should set the signal

alert to yes (tell(alert = no)). However, we have introduced an error in the program,

calling the process recursively instead: time-out(0).

7 The classical timeout would restart the countdown by recursively calling time-out(n).
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Due to the simplicity of the constraint system, the abstract domain coincide with

the concrete one, and the two external functions are the ⊕̂ and ⊕̌ operators.

Let us now consider the following specification. For d0 we expect that, if the ok

signal is present, then it ends with an alert = no signal, otherwise an alert should be

emitted. This is represented by two possible sequences, one with a condition where

system = ok , and a second one when system = ok is absent (this is a sequence that

reasons with the absence of information).

Sα(time-out(0)) = { (system = ok , ff̌ ) → 〈system = ok , system = ok〉1·

(t̂t , ff̌ ) → 〈system = ok , system = ok ⊗̂ alert = no〉1 · �}

∪ {(t̂t , {system = ok}) → 〈t̂t , t̂t〉1 · (t̂t , ff̌ ) → 〈t̂t , alert = yes〉1 · �}

The specification for dn is similar, but we add n sequences, since we have the

possibility that the signal arrives at each time instant before n.

Sα(time-out(n)) = { (t̂t , {system = ok}) → 〈t̂t , t̂t〉m·

(system = ok , ff̌ ) → 〈system = ok , system = ok〉1·

(t̂t , ff̌ ) → 〈system = ok , system = ok ⊗̂ alert = no〉1 · � | 0 � m < n}

∪ {(t̂t , {system = ok}) → 〈t̂t , t̂t〉n+1 · (t̂t , ff̌ ) → 〈t̂t , alert = yes〉1 · �}

Sα(action) = {(t̂t , ff̌ ) → 〈t̂t , alert = no〉1 · �}

Now, when we compute Dα�{d0}�Sα we have:

{(system = ok , ff̌ ) → 〈system = ok , system = ok〉1·

(t̂t , ff̌ ) → 〈system = ok , system = ok ⊗̂ alert = no〉1 · �}

∪ {(t̂t , {system = ok}) → 〈t̂t , t̂t〉1 · (system = ok , ff̌ ) → 〈system = ok , system = ok〉1·

(t̂t , ff̌ ) → 〈system = ok , system = ok ⊗̂ alert = no〉1 · �}

∪ {(t̂t , {system = ok}) → 〈t̂t , t̂t〉2 · (t̂t , ff̌ ) → 〈t̂t , alert = no〉1 · �}

Due to the last sequence, Dα�{d0}�Sα ��Sα, so we conclude that d0 is (abstractly)

incorrect. This is due to the recursive call in the else branch of the declaration.

If we fix the program replacing d0 by d′0 where the recursive call is replaced by

tell(alert = yes), then Dα�{d′0}�Sα � Sα, thus d′0 is abstractly correct.

In Falaschi et al. (2007) it was studied an example where a control process checks

whether a failure signal arrives to the system. The most important point that differs

from the timeout example is that, in the control case, someone has to explicitly tell

the system that an error has occurred. Instead, in the timeout example, the system

is able to act (and maybe recover) when it detects that something that should have

happened, had not happened. In other words, the control example does not handle

absence of information, since nonmonotonic operators are not considered there. We

have implemented the example in tccp and we have checked that the same results

can be achieved in our framework if we apply the same abstraction they use (a

depth(k) abstraction).

The second example we show illustrates how one can work with the abstraction of

the constraint system, and also how we can take advantage of our abstract domain.
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Example 2

Let us consider a system with a single declaration and the abstraction of the

constraint system that abstracts integer variables to a (simplified) interval-based

domain with abstract values {�, posx, negx, x>10, x�10,⊥}.

p(x) :− now(x>̇0) then ∃x′ (tell(x = [ |x′]) ‖ tell(x′ = [x + 1| ]) ‖ p(x′))

else ∃x′′ (tell(x = [ |x′′]) ‖ tell(x′′ = [x− 1| ]) ‖ p(x′′))

Due to the monotonicity of the store, we have to use streams (written in a list-

fashion way) to model the imperative-style variables (de Boer et al. 2000). In this

way, variable x in the program above is a stream that is updated with different values

during the execution. Following this idea, the abstraction for concrete streams is

defined as the (abstracted) last instantiated value in the stream. The concretization of

one stream is defined as all the concrete streams whose last value is a concretization

of the abstract one. We write a dot on a predicate symbol (e.g. =̇) to denote that

we want to check it for the last instantiated value of a stream.

We define the following intended specification to specify that, (a) if the parameter

is greater than 10, then the last value of the stream (written ẋ) will always be greater

than 10; (b) if the parameter is negative, then the value is always negative

Sα(p(x1) = {(x1>̇10, ff̌ ) → 〈x>̇10, x>̇10〉+∞} ∪ {(negẋ, ff̌ ) → 〈negẋ, negẋ〉
+∞}

The two abstract sequences represent infinite computations thanks to the +∞
index in the last tuple. In other words, finite specifications that represent infinite

computations can be considered and effectively handled. In fact, we can compute

Dα�{d}�Sα :

{ {(negẋ, ff̌ ) → 〈posẋ, posẋ〉
1 · (posẋ �̃ (ẋ>10, ff̌ ) → 〈ẋ>10, ẋ>10〉+∞

)}

∪ {(negẋ, ff̌ ) → 〈negẋ, negẋ〉
1 · (negẋ, ff̌ ) → 〈negẋ, negẋ〉

+∞}}
=

{ {(negẋ, ff̌ ) → 〈posẋ, posẋ〉
1 · (

posẋ︷ ︸︸ ︷
posẋ ⊗̂ ẋ>10, ff̌ ) → 〈posẋ ⊗̂ ẋ>10, posẋ ⊗̂ ẋ>10〉+∞

)}

∪ {(negẋ, ff̌ ) → 〈negẋ, negẋ〉
1 · (negẋ, ff̌ ) → 〈negẋ, negẋ〉

+∞}}
=

{ {(posẋ, ff̌ ) → 〈posẋ, posẋ〉
+∞} ∪ {(negẋ, ff̌ ) → 〈negẋ, negẋ〉

+∞}}

The third equality holds because posẋ entails x>̇10, so the merge of the two

constraints will be equal to posẋ.

Since Dα�{d}�Sα �� Sα we can conclude that d is an incorrect declaration w.r.t.

Sα. In addition, we can notice that Sα contain an uncovered element that is a

sequence that cannot be derived by the semantics operator.

6 Related work

A top-down (big-step) denotational semantics for tccp is defined in de Boer

et al. (2000) for terminating computations. In that work, a terminating computation

is both, a computation that reaches a point in which no agents are pending to

be executed, and also a computation that suspends since there is no enough

information in the store to make the choice agents evolve. Our semantics is a

https://doi.org/10.1017/S1471068411000135 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000135


Abstract diagnosis for tccp 501

bottom-up (small-step) denotational semantics that models infinite computations,

and also distinguishes the two kinds of terminating computations aforementioned.

Conceptually, a suspended computation has not completely finished its execution,

and, in some cases, it could be a symptom of a system error. Thus, the new

semantics is well suited to handle, not only functional systems (where an input–

output semantics makes sense), but also reactive systems.

In Falaschi et al. (2007), a first approach to the declarative debugging of a ccp

language is presented. However, it does not cover the particular extra difficulty of

the nonmonotonicity, common to all timed concurrent constraint languages. As we

have said, this ability is crucial to model specific behaviors of reactive systems, such

as timeouts or preemption actions. This is the main reason why our abstract (and

concrete) semantics are significantly different from Falaschi et al. (2007) and from

formalizations for other declarative languages.

The idea of using two different mechanisms for dealing with positive and negative

information in our abstraction scheme is inspired by Alpuente et al. (2005). There, a

framework for the abstract model checking of tccp programs based on a source-to-

source transformation is defined. In particular, it is defined a transformation from

a tccp program P into a tccp program P̄ that represents a correct abstraction of

the original one (in the sense that the semantics of P are included in the semantics

of P̄ ). Instead, we define an abstract semantics for the language. The upper- and

lower-approximated versions of the entailment relation are used to keep P̄ correct,

but also precise enough.

7 Conclusion and future work

We have presented a new compact, bottom-up semantics for the tccp language which

is correct and fully abstract w.r.t. the behavior of the language. This semantics is well

suited for debugging and verification purposes in the context of reactive systems.

The idea of using conditions to have a correct bottom-up semantics can be also

applied to other nonmonotonic languages such as, for example, ntcc in the ccp

paradigm (Palamidessi and Valencia 2001) or Linda in the imperative (coordination)

paradigm (Gelernter 1985).

Then, an abstract semantics that is able to specify (a kind of) infinite computations

is presented. It is based on the abstraction of computation sequences by using two

functions that satisfy some properties in order to guarantee correctness. All our

examples satisfy those conditions. The abstract semantics keeps the synchronization

among parallel computations, which is a particular difficulty of the tccp language.

As already noticed in Alpuente et al. (2005), the loss of synchronization in other

ccp languages just implies a loss of precision, but in the case of tccp, due to the

maximal parallelism, it would imply a loss of correctness.

Finally, we have adapted the abstract diagnosis approach to the tccp language

employing the new semantics as basis. We have presented two illustrative examples

to show the new features of our approach w.r.t. other paradigms.

As future work, we intend to work on abstractions of our semantics to domains

of temporal logic formulas, to be able to specify safety and/or liveness properties,
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and to compare its models w.r.t. the program semantics. Another interesting aspect

is to study if a general framework for the proposed methodology can be defined to

apply it to other languages.

References

Alpuente, M., Comini, M., Escobar, S., Falaschi, M. and Lucas, S. 2003. Abstract Diagnosis

of Functional Programs. In Logic Based Program Synthesis and Transformation—12th

International Workshop, LOPSTR 2002, Revised Selected Papers, M. Leuschel, Ed. Lecture

Notes in Computer Science, vol. 2664. Springer-Verlag, Berlin, 1–16.

Alpuente, M., Gallardo, M., Pimentel, E. and Villanueva, A. 2005. A semantic framework

for the abstract model checking of tccp programs. Theoretical Computer Science 346(1), 58–

95.

Bacci, G. and Comini, M. 2011. Abstract diagnosis of first order functional logic programs.

In Logic-based Program Synthesis and Transformation, 20th International Symposium,

M. Alpuente, Ed. Lecture Notes in Computer Science, vol. 6564. Springer-Verlag, Berlin,

208–226.

Comini, M., Levi, G., Meo, M. C. and Vitiello, G. 1999. Abstract diagnosis. Journal of Logic

Programming 39(1–3), 43–93.

Comini, M., Titolo, L. and Villanueva, A. 2011. A Compact Goal-Independent Bottom-Up

Fixpoint Modeling the Behavior of tccp. Tech. Rep. DIMI-UD/01/2011/RR, Dipartimento

di Matematica e Informatica, U. di Udine. http://www.dimi.uniud.it/comini/Papers/.

Cousot, P. and Cousot, R. 1979. Systematic Design of Program Analysis Frameworks. In

Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, San Antonio, Texas, January 29–31. ACM Press, New York, NY, USA, 269–282.

de Boer, F. S., Gabbrielli, M. and Meo, M. C. 2000. A timed concurrent constraint language.

Information and Computation 161(1), 45–83.

Falaschi, M., Olarte, C., Palamidessi, C. and Valencia, F. 2007. Declarative diagnosis

of temporal concurrent constraint programs. In Proceedings of the 23rd International

Conference on Logic Programming (ICLP’07). Lecture Notes in Computer Science,

vol. 4670. Springer-Verlag, 271–285.

Gelernter, D. 1985. Generative Communication in Linda. ACM Transactions on

Programming Languages and Systems (TOPLAS) 7(1), 80–113.

Palamidessi, C. and Valencia, F. D. 2001. A Temporal Concurrent Constraint Programming

Calculus. In Proceedings of the 7th International Conference on Principles and Practice of

Constraint Programming (CP’01). Lecture Notes in Computer Science, vol. 2239. Springer,

302–316.

Saraswat, V. A. 1993. Concurrent Constraint Programming. The MIT, Cambridge, MA.

Shapiro, E. Y. 1982. Algorithmic Program Debugging. In Proceedings of Ninth Annual ACM

Symp. on Principles of Programming Languages. ACM Press, New York, NY, USA, 412–531.

https://doi.org/10.1017/S1471068411000135 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000135

