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Rational solutions and rational-oscillatory solutions of the defocusing nonlinear Schrödinger

equation are expressed in terms of special polynomials associated with rational solutions of

the fourth Painlevé equation. The roots of these special polynomials have a regular, symmetric

structure in the complex plane. The rational solutions verify results of Nakamura and Hirota

[J. Phys. Soc. Japan, 54 (1985) 491–499] whilst the rational-oscillatory solutions appear to be

new solutions of the defocusing nonlinear Schrödinger equation.

1 Introduction

The nonlinear Schrödinger (NLS) equation

iut + uxx + 2σ|u|2u = 0, σ = ±1, (1.1)

where subscripts denote partial derivatives, is one of the most important nonlinear partial

differential equations (PDEs). In 1972, Zakharov & Shabat [91] developed the inverse

scattering method of solution for it. There has been considerable interest in PDEs solvable

by inverse scattering, the soliton equations , since the discovery in 1967 by Gardner et al.

[35] of the method for solving the initial value problem for the Korteweg-de Vries (KdV)

equation

ut + 6uux + uxxx = 0. (1.2)

In fact the NLS equation (1.1) was the second equation to be solved by inverse scattering

after the KdV equation (1.2).

Prior to the discovery that the NLS equation (1.1) was solvable by inverse scattering,

it had been considered by researchers in water waves [14, 15, 90] (see also Ablowitz &

Segur [4, 5]). In 1973, Hasegawa & Tappert [40, 41] discussed the relevance of the NLS

equation (1.1) in optical fibres and their associated solitary wave solutions. They did

computer simulations to demonstrate the stability of these solitary waves and discussed

how the NLS equation (1.1) described the instabilities of wave packets in fibre optics.
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Hasegawa and Tappert showed that optical fibres could sustain envelope solitons – both

bright and dark solitons. Bright solitons, which decay as |x| → ∞, arise with anomalous

(positive) dispersion for (1.1) with σ = 1, the focusing NLS equation. Dark solitons, which

do not decay as |x| → ∞, arise with normal (negative) dispersion for (1.1) with σ = −1, the

defocusing NLS equation. These solitons propagate in the longitudinal dimension having

a single mode guided in the direction perpendicular to the propagation direction. Whilst

Hasegawa and Tappert were working on the subject, Zakharov & Shabat [91] published

their paper on the solution of the initial value problem of the NLS equation (1.1).

Although the Zakharov and Shabat paper was published in 1972, Hasegawa and Tappert

were unaware of it until they had completed their studies. The results of Zakharov &

Shabat [91] actually confirmed the conjecture by Hasegawa & Tappert [40, 41] of stable

bright nonlinear pulse transmission of envelop light waves in optical fibres. In the early

1980s, Mollenauer et al. [60, 61] showed that solitons could be produced in laboratory

experiments. They observed the narrowing of the light wave pulse as the input power was

increased, thereby verifying the soliton phenomenon in the fibre. Optical solitons in fibres

form as the nonlinearity balances the dispersive spreading of a guided wavepacket. See

elsewhere [1, 11, 39, 52] for further details on the application of the NLS equation (1.1)

in optical solitons.

The idea of studying the motion of poles of solutions of the KdV equation (1.2) is due

to Kruskal [53]; see also Thickstun [81]. Airault et al. [10] studied the motion of the poles

of rational solutions of the KdV equation (1.2) and related the motion to an integrable

many-body problem, the Calogero-Moser system with constraints [2, 8, 21]. Studies of

rational solutions of other soliton equations include for the classical Boussinesq system

[74], the Kadomtsev-Petviashvili equation [72, 73] and the NLS equation (1.1) [42, 43, 64].

Ablowitz & Segur [3] demonstrated a close relationship between completely integrable

PDEs solvable by inverse scattering and the Painlevé equations. For example, PII

w′′ = 2w3 + zw + α, (1.3)

where ′ ≡ d/dz, α is an arbitrary constant, arises as a scaling reduction of the KdV

equation (1.2) [3] and PIV

w′′ =

(
w′)2
2w

+
3

2
w3 + 4zw2 + 2(z2 − α)w +

β

w
, (1.4)

where α and β are arbitrary constants, arises as a scaling reduction of the NLS equation

(1.1), see §3.1. Consequently, some special solutions can of the KdV equation (1.2) and

the NLS equation (1.1) can be expressed in terms of solutions of PII and PIV, respectively.

The six Painlevé equations (PI–PVI), were discovered by Painlevé, Gambier and their

colleagues whilst studying which second order ordinary differential equations of the form

w′′ = F
(
z, w, w′), where F is rational in w′ and w and analytic in z, have the property

that the solutions have no movable branch points; now known as the Painlevé property

(cf. [44, Chap. 14]). The general solutions of the Painlevé equations are transcendental

in the sense that they cannot be expressed in terms of known elementary functions

and so require the introduction of new transcendental functions [44, 84]. Indeed, the

Painlevé equations can be thought of as nonlinear analogues of the classical special
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functions [22, 45, 84]. However, it is well known that PII–PVI have rational solutions,

algebraic solutions, and solutions expressed in terms of the classical special functions

[9, 13, 30, 31, 32, 37, 38, 50, 57, 58, 59, 62, 63, 68, 69, 70, 71, 78].

Vorob’ev [87] and Yablonskii [89] expressed the rational solutions of PII (1.3) in terms of

certain special polynomials, which are now known as the Yablonskii–Vorob’ev polynomials.

Okamoto [68] derived analogous special polynomials, which are now known as the

Okamoto polynomials, related to some of the rational solutions of PIV (1.4). Subsequently

these were generalized by Noumi & Yamada [67] so that all rational solutions of PIV can

be expressed in terms of logarithmic derivatives of special polynomials – see § 2.2 and

§ 2.4. Clarkson & Mansfield [27] investigated the locations of the roots of the Yablonskii–

Vorob’ev polynomials in the complex plane and showed that these roots have a very

regular, approximately triangular structure. An earlier study of the distribution of the

roots of the Yablonskii–Vorob’ev polynomials is given by Kametaka et al. [48] – see also

Iwasaki et al. [45, p. 255, p. 339]. The structure of the (complex) roots of the special

polynomials associated with rational solutions of PIV is described in Clarkson [24], which

either have an approximate rectangular structure and or are a combination of approximate

rectangular and triangular structures. The term “approximate” is used since the patterns

are not exact triangles and rectangles as the roots lie on arcs rather than straight lines.

In this paper, our interest is in the special polynomials and associated rational and

rational-oscillatory solutions of the defocusing NLS equation

iut = uxx − 2|u|2u. (1.5)

As already mentioned, PIV arises as a scaling reduction of the defocusing NLS equation,

and so these rational and rational-oscillatory solutions of (1.5) are expressed in terms the

special polynomials associated with rational solutions of PIV (1.4). Specifically, it is shown

that the defocusing NLS equation (1.5) has rational solutions in the form

un(x, t) = ngn(x, t)/fn(x, t), (1.6)

where gn(x, t) and fn(x, t) are monic polynomials in x of degrees n2 −1 and n2, respectively,

and rational-oscillatory solutions in the form

ũn(x, t) =
g̃n(x, t)

6tf̃n(x, t)
exp

(
− ix2

6t

)
, (1.7 a)

ûn(x, t) =
ĝn(x, t)

6tf̂n(x, t)
exp

(
− ix2

6t

)
, (1.7 b)

where g̃n(x, t), f̃n(x, t), ĝn(x, t) and f̂n(x, t) are monic polynomials in x of degrees

3n2 − 2n+ 1, 3n2 − 2n, 3n2 + 2n + 1 and 3n2 + 2n respectively, with coefficients that are

polynomials in t. The polynomials gn(x, t) and fn(x, t) are expressed in terms of the gen-

eralized Hermite polynomials and the polynomials g̃n(x, t), f̃n(x, t), ĝn(x, t) and f̂n(x, t) are

expressed in terms of the generalized Okamoto polynomials. The rational solutions verify

results of Nakamura & Hirota [64] and Hone [43] whilst the rational-oscillatory solutions

appear to be new solutions of (1.5). Plots of the zeroes and poles of the rational solution

(1.6) and the rational-oscillatory solutions (1.7) are given. The polynomials gn(x, t) and
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fn(x, t) are expressed in terms of Wronskians and the polynomials g̃n(x, t), f̃n(x, t), ĝn(x, t)

and f̂n(x, t) in terms of Schur polynomials. Further, we show that the defocusing NLS

equation (1.5) has generalized rational solutions in the form

un(x, t) = nGn(x, t; κ2n−1)/Fn(x, t; κ2n−1), (1.8)

where Gn(x, t; κ2n−1) and Fn(x, t; κ2n−1) are monic polynomials in x of degrees n2 − 1

and n2, respectively, with coefficients that are polynomials in t and the parameters

κ2n−1 = (κ3, κ4, . . . , κ2n−1), which are arbitrary constants. The generalized rational solutions

(1.8) generalize results of Hone [42, 43]. Additionally the Gn(x, t; κ2n−1) and Fn(x, t; κ2n−1)

are expressed in terms of Wronskians.

This paper is organized as follows. In § 2 we review the special polynomials associated

with rational solutions of PIV (1.4) and discuss some of their properties. In § 3 we use the

special polynomials discussed in § 2 to derive special polynomials and associated rational

solutions of the form (1.6) and rational-oscillatory solutions of the form (1.7) for the

defocusing NLS equation (1.5). In § 4 we discuss the generalized rational solutions of the

form (1.8) for the defocusing NLS equation (1.5). Finally, in § 5 we discuss our results.

2 Special polynomials associated with rational solutions of PIV

2.1 Rational solutions of PIV

Rational solutions of PIV (1.4) are summarized in the following theorem.

Theorem 2.1 PIV has rational solutions if and only if the parameters α and β are given by

either

α = m, β = −2(2n− m+ 1)2, (2.1)

or

α = m, β = −2(2n− m+ 1
3
)2, (2.2)

with m, n ∈ �. Further the rational solutions for these parameters are unique.

Proof See Lukashevich [54], Gromak [36] and Murata [62]; see also [13, 37, 85]. �

Simple rational solutions of PIV are

w1(z; ±2,−2) = ±1/z, w2(z; 0,−2) = −2z, w3(z; 0,− 2
9
) = − 2

3
z. (2.3)

It is known that there are three sets of rational solutions of PIV, which have the solutions

(2.3) as the simplest members. These sets are known as the “−1/z hierarchy”, the “−2z

hierarchy” and the “− 2
3
z hierarchy”, respectively (cf. [13]). The “−1/z hierarchy” and

the “−2z hierarchy” form the set of rational solutions of PIV with parameters given by

(2.1) and the “− 2
3
z hierarchy” forms the set with parameters given by (2.2). The rational
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solutions of PIV with parameters given by (2.1) lie at the vertexes of the “Weyl chambers”

and those with parameters given by (2.2) lie at the centres of the “Weyl chamber” [85].

In a comprehensive study of properties of solutions of PIV, Okamoto [68] introduced

two sets of polynomials associated with rational solutions of PIV, analogous to the

Yablonskii–Vorob’ev polynomials mentioned above. Noumi and Yamada [67] generalized

Okamoto’s results and introduced the generalized Hermite polynomials Hm,n, defined in

Theorem 2.2, and the generalized Okamoto polynomials Qm,n, defined in Theorem 2.4;

see also Clarkson [24]. Noumi & Yamada [67] expressed both the generalized Hermite

polynomials and the generalized Okamoto polynomials in terms of Schur functions related

to the so-called modified Kadomtsev-Petviashvili (mKP) hierarchy. Kajiwara & Ohta [49]

also expressed rational solutions of PIV in terms of Schur functions by expressing the

solutions in the form of determinants; see also §2.3 and 2.5. We note that Noumi &

Yamada [67] obtained their results on rational solutions of PIV by considering the

symmetric representation of PIV given by the symmetric PIV (sPIV) system

ϕ′
1 + ϕ1(ϕ2 − ϕ3) + 2µ1 = 0, (2.4 a)

ϕ′
2 + ϕ2(ϕ3 − ϕ1) + 2µ2 = 0, (2.4 b)

ϕ′
3 + ϕ3(ϕ1 − ϕ2) + 2µ3 = 0, (2.4 c)

where µ1, µ2 and µ3 are constants, with the constraints

µ1 + µ2 + µ3 = 1, ϕ1 + ϕ2 + ϕ3 = −2z. (2.4 d )

Eliminating ϕ2 and ϕ3, then w = ϕ1 satisfies PIV with α = µ3 − µ2 and β = −2µ2
1. We

remark that sPIV (2.4) was derived earlier by Bureau [18, 19]; other studies of the sPIV

system (2.4) include [7, 33, 65, 66, 76, 77, 83, 86, 88].

2.2 Generalized Hermite polynomials

Here we consider the generalized Hermite polynomials Hm,n which are defined in the

following theorem.

Theorem 2.2 Suppose Hm,n satisfies the recurrence relations

2mHm+1,nHm−1,n = Hm,nH
′′
m,n −

(
H ′
m,n

)2
+ 2mH2

m,n, (2.5 a)

2nHm,n+1Hm,n−1 = −Hm,nH
′′
m,n +

(
H ′
m,n

)2
+ 2nH2

m,n, (2.5 b)

with H0,0 = H1,0 = H0,1 = 1 and H1,1 = 2z, then

w[1]
m,n =

d

dz

{
ln

(
Hm+1,n/Hm,n

)}
, (2.6 a)

w[2]
m,n =

d

dz

{
ln

(
Hm,n/Hm,n+1

)}
, (2.6 b)

w[3]
m,n = −2z +

d

dz

{
ln

(
Hm,n+1/Hm+1,n

)}
, (2.6 c)
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where w[j]
m,n = w(z; α[j]

m,n, β
[j]
m,n) for j = 1, 2, 3, are solutions of PIV , respectively for

α[1]
m,n = 2m+ n+ 1, β[1]

m,n = −2n2, (2.7 a)

α[2]
m,n = −(m+ 2n+ 1), β[2]

m,n = −2m2, (2.7 b)

α[3]
m,n = n− m, β[3]

m,n = −2(m+ n+ 1)2. (2.7 c)

Proof See Theorem 4.4 in Noumi & Yamada [67]; also Theorem 3.1 in Clarkson [24].

We remark that, in terms of the rational solutions (2.6), the rational solution of sPIV (2.4)

is given by ϕj = w[j]
m,n, j = 1, 2, 3, with µ1 = n, µ2 = −m− n and µ3 = m+ 1. �

The polynomials Hm,n defined by (2.5) are called the generalized Hermite polynomials

since Hm,1(z) = Hm(z) and H1,m(z) = i−mHm(iz), where Hm(z) is the standard Hermite

polynomial defined by

Hm(z) = (−1)m exp(z2)
dm

dzm
{
exp(−z2)

}
or alternatively through the generating function

∞∑
m=0

Hm(z) ξm

m!
= exp(2ξz − ξ2)

(cf. [6, 12, 80]). The rational solutions of PIV defined by (2.6) include all solutions in the

“−1/z” and “−2z” hierarchies, i.e. the set of rational solutions of PIV with parameters

given by (2.1), and can be expressed in terms of determinants whose entries are Hermite

polynomials [49, 67]; see also § 2.3. These rational solutions of PIV are special cases of the

special function solutions which are expressible in terms of parabolic cylinder functions

Dν(ξ); for further details see, for example, Clarkson [24].

The polynomial Hm,n has degree mn with integer coefficients [67]; in fact Hm,n(
1
2
ζ) is a

monic polynomial in ζ with integer coefficients. Further Hm,n possesses the symmetry

Hn,m(z) = i−mnHm,n(iz). (2.8)

Additional bilinear equations satisfied by of the generalized Hermite polynomials Hm,n

are given in the following theorem.

Theorem 2.3 The generalized Hermite polynomials Hm,n satisfy the following relations

D2
zHm,n •Hm,n + 8mnHm+1,n−1Hm−1,n+1 = 0, (2.9 a){
D2
z − 2zDz + 2(m− n+ 1)

}
Hm,n •Hm+1,n−1 = 0, (2.9 b)

where Dz is the Hirota operator defined by

DzF(z) •G(z) =

[(
d

dz1
− d

dz2

)
F(z1)G(z2)

]
z1=z2=z

. (2.10)
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Proof The relation (2.9 a) follows from Proposition 4.2 and Theorem 4.4 in Noumi &

Yamada [67], and (2.9 b) from Lemma 5.7 in Noumi & Yamada [67]. �

Setting m = n in (2.9) yields

D2
zHn,n •Hn,n + 8n2Hn+1,n−1Hn−1,n+1 = 0, (2.11 a)

(D2
z − 2zDz + 2)Hn,n •Hn+1,n−1 = 0. (2.11 b)

Examples of generalized Hermite polynomials and plots of the locations of their roots

in the complex plane are given in Clarkson [24]. Plots of the complex roots of H20,20

and H21,19 are given in Figure 1. These plots, which are invariant under reflections in the

real and imaginary z-axes, take the form of m × n “rectangles”, though these are only

approximate rectangles since the roots lie on arcs rather than straight lines as can be seen

by looking at the actual values of the roots.

2.3 Determinantal representation of the generalized Hermite polynomials

The generalized Hermite polynomials Hm,n can be expressed in determinantal form as

follows:

Hm,n = cm,nW(Hm,Hm+1, . . . , Hm+n−1), cm,n =

n−1∏
j=1

( 1
2
)j

j!
,

where Hn is the Hermite polynomial and W(ϕ1, ϕ2, . . . , ϕn) is the standard Wronskian

defined by

W(ϕ1, ϕ2, . . . , ϕn) =

∣∣∣∣∣∣∣∣∣∣

ϕ1 ϕ2 . . . ϕn

ϕ
(1)
1 ϕ

(1)
2 . . . ϕ(1)

n

...
...

. . .
...

ϕ
(n−1)
1 ϕ

(n−1)
2 . . . ϕ(n−1)

n

∣∣∣∣∣∣∣∣∣∣
, (2.12)

with ϕ(m)
j ≡ dmϕj/dz

m. An alternative representation is

Hm,n = c̃m,n

∣∣∣∣∣∣∣∣∣

Hm Hm+1 . . . Hm+n−1

Hm+1 Hm+2 . . . Hm+n

...
...

. . .
...

Hm+n−1 Hm+n . . . Hm+2n−2

∣∣∣∣∣∣∣∣∣
, c̃m,n =

n−1∏
j=1

(− 1
2
)j

j!
,

since Hn satisfies the recurrence relation Hn+1 = 2zHn − H ′
n [6, 12, 80]. The generalized

Hermite polynomials Hm,n can also be expressed in terms of Schur polynomials which

are defined in Definition 2.7. For further details see Kajiwara & Ohta [49] and Noumi &

Yamada [67].

2.4 Generalized Okamoto polynomials

Here we consider the generalized Okamoto polynomials Qm,n which were introduced by

Noumi & Yamada [67] and are defined in Theorem 2.4 below. Following Clarkson [24],

https://doi.org/10.1017/S0956792506006565 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792506006565


300 P. A. Clarkson

−10

−5

0

5

10

−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10

H21,19

H20,20

Figure 1. Roots of the generalized Hermite polynomials H20,20, H21,19.
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we reindex these polynomials by setting Q[NY]
m,n = Qm−n,n, i.e. Q[NY]

m+n,n = Qm,n, where Q[NY]
m+n,n

is the polynomial defined Noumi & Yamada [67], since we feel that Qm,n is more natural.

Theorem 2.4 Suppose Qm,n satisfies the recurrence relations

Qm+1,nQm−1,n = 9
2

[
Qm,nQ

′′
m,n −

(
Q′
m,n

)2 ]
+

[
2z2 + 3(2m+ n− 1)

]
Q2
m,n, (2.13 a)

Qm,n+1Qm,n−1 = 9
2

[
Qm,nQ

′′
m,n −

(
Q′
m,n

)2]
+

[
2z2 + 3(1 − m− 2n)

]
Q2
m,n, (2.13 b)

with Q0,0 = Q1,0 = Q0,1 = 1 and Q1,1 =
√

2 z, then

w̃[1]
m,n = − 2

3
z +

d

dz

{
ln

(
Qm+1,n/Qm,n

)}
, (2.14 a)

w̃[2]
m,n = − 2

3
z +

d

dz

{
ln

(
Qm,n/Qm,n+1

)}
, (2.14 b)

w̃[3]
m,n = − 2

3
z +

d

dz

{
ln

(
Qm,n+1/Qm+1,n

)}
, (2.14 c)

where w̃[j]
m,n = w(z; α̃[j]

m,n, β̃
[j]
m,n) for j = 1, 2, 3, are solutions of PIV , respectively for

α̃[1]
m,n = 2m+ n, β̃[1]

m,n = −2(n− 1
3
)2, (2.15 a)

α̃[2]
m,n = −(m+ 2n), β̃[2]

m,n = −2(m− 1
3
)2, (2.15 b)

α̃[3]
m,n = n− m, β̃[3]

m,n = −2(m+ n+ 1
3
)2. (2.15 c)

Proof See Theorem 4.3 in Noumi & Yamada [67]; also Theorem 4.1 in Clarkson [24]. We

remark that, in terms of the rational solutions (2.14), the rational solution of sPIV (2.4) is

given by ϕj = w̃[j]
m,n, j = 1, 2, 3, with µ1 = n− 1

3
, µ2 = −m− n+ 2

3
and µ3 = m+ 2

3
. �

The polynomials Qm,n defined by (2.13) are called the generalized Okamoto polynomials

since Okamoto [68] defined the polynomials in the special cases when n = 0 and n = 1.

The rational solutions of PIV defined by (2.14) include all solutions in the “− 2
3
z” hierarchy,

i.e. the set of rational solutions of PIV with parameters given by (2.2), which also can be

expressed in the form of determinants [49, 67]; see also § 2.5.

The polynomial Qm,n has degree dm,n = m2 + n2 + mn − m − n with integer coefficients

[67]; in fact Qm,n(
1
2

√
2 ζ) is a monic polynomial in ζ with integer coefficients. Further Qm,n

possesses the symmetries

Qn,m(z) = exp(− 1
2
πidm,n)Qm,n(iz), (2.16 a)

Q1−m−n,n(z) = exp(− 1
2
πidm,n)Qm,n(iz). (2.16 b)

Note that dm,n = m2 + n2 + mn− m− n satisfies dm,n = dn,m = d1−m−n,n.

Additional bilinear equations satisfied by the generalized Okamoto polynomials Qm,n
are given in the following theorem.
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Theorem 2.5 The generalized Okamoto polynomials Qm,n satisfy the following relations:

{
D2
z + 8

9
z2 − 4

3
(m− n)

}
Qm,n •Qm,n = 4

9
Qm+1,n−1Qm−1,n+1, (2.17 a){

D2
z + 2

3
zDz + 2

3
(m− n+ 1)

}
Qm,n •Qm+1,n−1 = 0, (2.17 b)

Proof The relation (2.17 a) follows from Theorem 4.3 in Noumi & Yamada [67], and

(2.17 b) from Lemma 5.7 in Noumi & Yamada [67]. �

Setting m = n in (2.17) yields

(D2
z + 8

9
z2)Qn,n •Qn,n = 4

9
Qn+1,n−1Qn−1,n+1, (2.18 a)

(D2
z + 2

3
zDz + 2

3
)Qn,n •Qn+1,n−1 = 0. (2.18 b)

Examples of generalized Okamoto polynomials and plots of the locations of their

complex roots are given in Clarkson [24]. Plots of the complex roots of Q10,10 and Q11,9

are given in Figure 2 and plots of the complex roots of Q−8,−8 and Q−9,−7 are given

in Figure 3. The roots of the polynomial Qm,n, with m, n � 1, take the form of m × n

“rectangle” with an “equilateral triangle”, which have either m− 1 or n− 1 roots, on each

of its sides. The roots of the polynomial Q−m,−n, with m, n � 1, take the form of m × n

“rectangle” with an “equilateral triangle”, which now have either m or n roots, on each of

its sides. These are only approximate rectangles and equilateral triangles as can be seen by

looking at the actual values of the roots. We remark that as for the generalized Hermite

polynomials above, the plots are invariant under reflections in the real and imaginary

z-axes.

Due to the symmetries (2.16), the roots of the polynomials Q−m,n and Qm,−n, with

m, n � 1 take similar forms as these polynomials they can be expressed in terms of QM,N

and Q−M,−N for suitable M,N � 1. Specifically, the roots of the polynomial Q−m,n, with

m � n � 1, has the form of a n × (m − n + 1) “rectangle” with an “equilateral triangle”,

which have either n − 1 or n − m − 1 roots, on each of its sides. Also the roots of the

polynomial Q−m,n with n > m � 1, has the form of a m× (n− m− 1) “rectangle” with an

“equilateral triangle”, which have either m or n−m−1 roots, on each of its sides. Further,

we note that Q−m,m = Qm,1 and Q1−m,m = Qm,0, for all m ∈ �, where Qm,0 and Qm,0 are the

original polynomials introduced by Okamoto [68]. Analogous results hold for Qm,−n, with

m, n � 1.

2.5 Determinantal representation of the generalized Okamoto polynomials

To describe the determinantal representation of the generalized Okamoto polynomials, we

first recall the definition of the Schur polynomial Sλ(x), where x = (x1, x2, . . . ), associated

with the partition λ = (λ1, λ2, . . . , λn).

Definition 2.6 A partition λ = (λ1, λ2, . . . , λn), or a Young diagram, is a sequence of des-

cending non-negative integers such that

λ1 � λ2 � . . . � λn > 0.
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Figure 2. Roots of the generalized Okamoto polynomials Q10,10 and Q11,9.
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Figure 3. Roots of the generalized Okamoto polynomials Q−8,−8 and Q−9,−7.
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(Some definitions require that a partition is an infinite sequence of descending non-zero

numbers (λ1, λ2, . . . ) with λj = 0 for j sufficiently large.) The numbers λj are called the

parts of λ. The number of non-zero parts λj is called the length, denoted by 
(λ); here


(λ) = n. The sum of the parts is called the weight, denoted by |λ|; here |λ| =
∑n

j=1 λj .

Definition 2.7 The Schur polynomial Sλ(x), with x = (x1, x2, . . . ), for the partition λ =

(λ1, λ2, . . . , λn) is defined by the determinant

Sλ(x) =

∣∣∣∣∣∣∣∣∣

ϕλ1
(x) ϕλ1+1(x) . . . ϕλ1+n−1(x)

ϕλ2−1(x) ϕλ2
(x) . . . ϕλ2+n−2(x)

...
...

. . .
...

ϕλn−n+1(x) ϕλn−n+2(x) . . . ϕλn (x)

∣∣∣∣∣∣∣∣∣
, (2.19)

where the polynomials ϕm(x) are defined by the generating function

∞∑
m=0

ϕm(x) ξm = exp

⎛
⎝ ∞∑

j=1

xjξ
j

⎞
⎠ , (2.20)

with ϕm(x) = 0 for m < 0.

We remark that the entries ϕλ1
, ϕλ2

, . . . , ϕλn on the diagonal of Sλ(x) correspond to the

partition λ. Further, the Schur polynomial Sλ(x) is a τ-function of the KP hierarchy [47].

From the definition (2.20) it follows that

∂jϕm

∂x1
j

= ϕm−j =
∂ϕm
∂xj

,

and so the Schur polynomial defined by (2.19) can be written as the Wronskian

Sλ(x) = W1(ϕλn , ϕλn−1+1, . . . , ϕλ2+n−2, ϕλ1+n−1),

where W1(ϕλn , ϕλn−1+1, . . . , ϕλ2+n−2, ϕλ1+n−1) is the Wronskian with respect to x1.

For the generalized Okamoto polynomials we choose

x = (2
√

2 z, 6, 0, 0, . . . ), (2.21)

i.e. x1 = 2
√

2 z, x2 = 6 and xj = 0, for j � 3, and have representations

Qm,n(z) = cm,nSλ(m,n)(x), Q−m,−n(z) = c−m,−nSλ(−m,−n)(x),

where x is given by (2.21) and the partitions are given by

λ(m, n) = (2m+ n− 2, 2m+ n− 4, . . . , n+ 4, n+ 2, n,

n− 1, n− 1, n− 2, n− 2, . . . , 2, 2, 1, 1), (2.22 a)

λ(−m,−n) = (2m+ n, 2m+ n− 2, . . . , n+ 4, n+ 2, n,

n, n− 1, n− 1, n− 2, n− 2, . . . , 2, 2, 1, 1), (2.22 b)
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with cm,n and c−m,−n constants chosen so that Qm,n(
1
2

√
2 ζ) and Q−m,−n(

1
2

√
2 ζ) are monic

polynomials, respectively; for further details see Kajiwara & Ohta [49] and Noumi &

Yamada [67], also Clarkson [24]. Note that for m, n � 1 then the lengths of the partitions

are


(λ(m, n)) = m+ 2(n− 1), 
(λ(−m,−n)) = m+ 2n,

and also

|λ(m, n)| = dm,n = m2 + n2 + mn− m− n,

|λ(−m,−n)| = d−m,−n = m2 + n2 + mn+ m+ n.

2.6 Rational solutions of the PIV Hamiltonian

Here we express rational solutions of the ordinary differential equation satisfied by the

Hamiltonian for PIV in terms of the generalized Hermite and Okamoto polynomials.

The Hamiltonian for PIV is [68]

HIV(q, p, z; θ0, θ∞) = 2qp2 − (q2 + 2zq + 2θ0)p+ θ∞q,

then from Hamilton’s equation we have

q′ =
∂HIV

∂p
= 4qp− q2 − 2zq − 2θ0, (2.23 a)

p′ = −∂HIV

∂q
= −2p2 + 2pq + 2zp− θ∞. (2.23 b)

Eliminating p in (2.23), then q = w satisfies PIV with α = 1 − θ0 + 2θ∞ and β = −2θ2
0, and

eliminating q in (2.23), then w = −2p satisfies PIV with α = −1+2θ0 − θ∞ and β = −2θ2
∞.

The Hamiltonian function σ(z; θ0, θ∞) = HIV(q, p, z; θ0, θ∞) satisfies(
σ′′)2 = 4

(
zσ′ − σ

)2 − 4σ′ (σ′ + 2θ0

) (
σ′ + 2θ∞

)
, (2.24)

[68, 46]. This is equivalent to equation SD-I.c in the classification of second-order, second-

degree ordinary differential equations with the Painlevé property due to Cosgrove &

Scoufis [28], an equation first derived and solved by Chazy [20] and rederived by Bureau

[17]. Further, equation (2.24) arises in various applications including random matrix

theory [33, 82]. It was shown [25] that rational solutions of (2.24) have the form

σm,n =
d

dz
lnHm,n, θ0 = −n, θ∞ = m, (2.25 a)

σ̃m,n =
4z3

27
− 2

3
(m− n)z +

d

dz
lnQm,n, θ0 = −n+ 1

3
, θ∞ = m− 1

3
. (2.25 b)

where Hm,n and Qm,n are the generalized Hermite and Okamoto polynomials, respectively.

Using this Hamiltonian formalism, it was shown [25] that Hm,n and Qm,n, which are

defined by differential-difference equations (2.5) and (2.13), respectively, also satisfy fourth

order bilinear ordinary differential equations and homogeneous difference equations. It

seems reasonable to expect that these ordinary differential equations will be useful for
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the derivation of properties of Hm,n and Qm,n since there are more methods for studying

properties of ordinary differential equations than differential-difference equations.

3 Rational and rational-oscillatory solutions of the nonlinear Schrödinger equation

3.1 Scaling reduction of the defocusing NLS equation

The defocusing NLS equation (1.5) has the scaling reduction

u(x, t) = t−1/2U(ζ), ζ = xt−1/2, (3.1)

where U(ζ) satisfies

d2U

dζ2
+ 1

2
i

(
U + ζ

dU

dζ

)
= 2|U|2U. (3.2)

Setting U(ζ) = R(ζ) exp{iΘ(ζ)} in (3.2) and formally equating real and imaginary parts

yields

d2R

dζ2
− R

(
dΘ

dζ

)2

= 1
2
Rζ

dΘ

dζ
+ 2R3, (3.3 a)

2
dR

dζ

dΘ

dζ
+ R

d2Θ

dζ2
+ 1

2
ζ
dR

dζ
+ 1

2
R = 0 (3.3 b)

(see [16, 34] for further details). Multiplying (3.3 b) by R and integrating yields

dΘ

dζ
= − 1

4
ζ − 1

4R2

∫ ζ

R2(s) ds,

where the constant of integration is set to zero, without loss of generality. Substituting

this into (3.3 a) and setting V (ζ) =
∫ ζ
R2(s) ds, yields

2
dV

dζ

d3V

dζ3
=

(
d2V

dζ2

)2

− ( 1
4
ζ2)

(
dV

dζ

)2

+ 1
4
V 2 + 8

(
dV

dζ

)3

.

which has first integral

(
d2V

dζ2

)2

= − 1
4

(
V − ζ

dV

dζ

)2

+ 4

(
dV

dζ

)3

+K
dV

dζ
, (3.4)

with K an arbitrary constant. Making the transformation V (ζ) = − 1
2
e−πi/4W (z), with

ζ = 2eπi/4z, in (3.4) yields

(
W ′′)2

= 4
(
zW ′ −W

)2 − 4
(
W ′)3

+ 4κ2W ′, (3.5)

with κ2 = 4K = 4
9
(α+ 1)2, is the special case of (2.24) with θ0 = ± 1

2
κ and θ∞ = ∓ 1

2
κ, and

so can be solved in terms of PIV, as shown in §2.6. Hence (3.4) is solvable in terms of PIV

provided that K = 1
9
(α + 1)2 and β = − 2

9
(α + 1 + 2iµ)2. Therefore, from (2.25), rational
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solutions of (3.5) have the form

Wn =
d

dz
lnHn,n, κ = ±2n (3.6 a)

W̃n =
4z3

27
+

d

dz
lnQn,n, κ = ±2

(
n− 1

3

)
, (3.6 b)

and so rational solutions of (3.4) have the form

Vn(ζ) = − d

dζ
lnHn,n(

1
2
e−πi/4ζ), (3.7 a)

Ṽn(ζ) =
ζ3

108
− d

dζ
lnQn,n(

1
2
e−πi/4ζ). (3.7 b)

Hence the rational solutions of (3.4) and (3.5) have a “square pattern”, i.e. m = n.

The first few rational solutions Vn(ζ) given by (3.7 a) are

V1(ζ) = −1

ζ
, V2(ζ) = − 4ζ3

ζ4 − 12
, V3(ζ) = − 9(ζ8 − 40ζ4 − 240)

ζ(ζ8 − 72ζ4 − 2160)
,

V4(ζ) = − 16ζ3(ζ12 − 180ζ8 − 3600ζ4 − 504000)

ζ16 − 240ζ12 − 7200ζ8 − 2016000ζ4 + 6048000
,

and so the associated solutions of (3.3) are

R1(ζ) = 1/ζ, Θ1(ζ) = 0,

R2(ζ) =
2ζ

√
ζ4 + 36

ζ4 − 12
, Θ2(ζ) = 1

2
i ln

(
ζ2 − 6i

ζ2 + 6i

)
,

R3(ζ) =
3
√
ζ16 + 16ζ12 + 15840ζ8 − 172800ζ4 + 518400

ζ(ζ8 − 72ζ4 − 2160)
,

Θ3(ζ) = 1
2
i ln

(
ζ8 − 16iζ6 − 120ζ4 + 720

ζ8 + 16iζ6 − 120ζ4 + 720

)
,

R4(ζ) =
4ζ

√
ρ4(ζ)

ζ16 − 240ζ12 − 7200ζ8 − 2016000ζ4 + 6048000
,

Θ4(ζ) = 1
2
i ln

[
ϕ4(ζ)/ϕ

∗
4(ζ)

]
,

with

ϕ4(ζ) = ζ14 + 30iζ12 − 540ζ10 − 4200iζ8 + 10800ζ6 + 151200iζ4 + 504000ζ2 + 3024000i,

ϕ∗
4(ζ) = ζ14 − 30iζ12 − 540ζ10 + 4200iζ8 + 10800ζ6 − 151200iζ4 + 504000ζ2 − 3024000i,

ρ4(ζ) = ζ28 − 180ζ24 + 61200ζ20 + 16056000ζ16 − 1516320000ζ12 + 8346240000ζ8

+ 1168473600000ζ4 + 9144576000000 ≡ ϕ4(ζ)ϕ
∗
4(ζ),
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Hence we obtain the solutions of (3.6 b) given by

U1(ζ) = 1/ζ, (3.9 a)

U2(ζ) = 2ζ(ζ2 + 6i)/(ζ4 − 12), (3.9 b)

U3(ζ) = 3
ζ8 + 16iζ6 − 120ζ4 + 720

ζ(ζ8 − 72ζ4 − 2160)
, (3.9 c)

U4(ζ) =
4ζϕ4(ζ)

ζ16 − 240ζ12 − 7200ζ8 − 2016000ζ4 + 6048000
, (3.9 d )

with ϕ4(ζ) as given above. Substituting these into the scaling reduction (3.1) yields rational

solutions of the defocusing NLS equation (1.5) – see (3.15) for examples.

Similarly, the first few rational solutions Ṽn(ζ) given by (3.7 b) are

Ṽ0(ζ) =
ζ3

108
, Ṽ1(ζ) =

ζ3

108
− 1

ζ
, Ṽ2(ζ) =

ζ3

108
− 8ζ3(ζ4 + 252)

ζ8 + 504ζ4 − 9072
,

Ṽ3(ζ) =
ζ3

108
− 1

ζ
− 20ζ3(ζ16 + 3024ζ12 + 1905120ζ8 + 594397440ζ4 − 37447038720)

η̃3(ζ)
,

where

η̃3(ζ) = ζ20 + 3780ζ16 + 3175200ζ12 + 1485993600ζ8

− 187235193600ζ4 − 6740466969600,

and so the associated solutions of (3.3) are

R̃0(ζ) = 1
6
ζ, Θ̃0(ζ) = − 1

6
iζ2,

R̃1(ζ) =

√
ζ4 + 36

6ζ
, Θ̃1(ζ) = − 1

6
iζ2 − 1

2
i ln

(
ζ2 − 6i

ζ2 + 6i

)
,

R̃2(ζ) =
ζ
√
ζ16 + 1296ζ12 + 163296ζ8 + 45722880ζ4 + 2057529600

ζ8 + 504ζ4 − 9072
,

Θ̃2(ζ) = − 1
6
iζ2 − 1

2
i ln

(
ζ8 − 48iζ6 − 504ζ4 − 45360

ζ8 + 48iζ6 − 504ζ4 − 45360

)
,

R̃3(ζ) =

√
ρ̃3(ζ)

6ζη̃3(ζ)
, Θ̃3(ζ) = − 1

6
iζ2 − 1

2
i ln

[
ϕ̃3(ζ)/ϕ̃

∗
3(ζ)

]
,

with

ϕ̃3(ζ) = ζ22 − 126iζ20 − 3780ζ18 − 98280iζ16 − 7711200ζ14 + 148599360iζ12

+ 891596160ζ10 + 8915961600iζ8 − 187235193600ζ6 + 5617055808000iζ4

+ 6740466969600ζ2 − 40442801817600i,

ϕ̃∗
3(ζ) = ζ22 + 126iζ20 − 3780ζ18 + 98280iζ16 − 7711200ζ14 − 148599360iζ12

+ 891596160ζ10 − 8915961600iζ8 − 187235193600ζ6 − 5617055808000iζ4

+ 6740466969600ζ2 + 40442801817600i,

ρ̃3(ζ) = ζ44 + 8316ζ40 + 23632560ζ36 + 32291784000ζ32 + 20892155558400ζ28

+ 6592176696268800ζ24 + 5187517303539916800ζ20

+ 1318995067630915584000ζ16 + 135219925500799426560000ζ12

+ 28306037738167346626560000ζ8 − 408905054714417465917440000ζ4

+ 1635620218857669863669760000 ≡ ϕ̃3(ζ)ϕ̃
∗
3(ζ).
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Hence we obtain the solutions of (3.2) given by

Ũ0(ζ) = 1
6
ζ exp

(
− 1

6
iζ2

)
, (3.10 a)

Ũ1(ζ) =
ζ2 − 6i

6ζ
exp

(
− 1

6
iζ2

)
, (3.10 b)

Ũ2(ζ) =
ζ(ζ8 − 48iζ6 − 504ζ4 − 45360)

6(ζ8 + 504ζ4 − 9072)
exp

(
− 1

6
iζ2

)
, (3.10 c)

Ũ3(ζ) =
ϕ̃3(ζ)

6ζη̃3(ζ)
exp

(
− 1

6
iζ2

)
, (3.10 d )

with ϕ̃3(ζ) and η̃3(ζ) as given above. Substituting these into the scaling reduction (3.1)

yields rational-oscillatory solutions of the defocusing NLS equation (1.5) – see (3.21) for

examples.

3.2 Rational solutions of the defocusing NLS equation

Nakamura & Hirota [64] (see also Hone [43] and Boiti & Pempinelli [16]) state that the

defocusing NLS equation (1.5) has rational solutions, which decay as |x| → ∞, in the

form

un(x, t) = ngn(x, t)/fn(x, t), (3.11)

where gn(x, t) and fn(x, t) are monic polynomials in x of degrees n2 −1 and n2, respectively,

for n � 1. Further fn(x, t) is real for x, t ∈ �. Actually, Nakamura and Hirota only show

that the defocusing NLS equation (1.5) has solutions of the form (3.11) for n = 1, 2, . . . , 5.

Rational solutions of the defocusing NLS equation (1.5) are classified in the following

theorem which verifies the results of Nakamura & Hirota [64] and Hone [43].

Theorem 3.1 The defocusing NLS equation (1.5) has rational solutions of the form (3.11)

where

gn(x, t) = exp
{

1
2
(n2 − 1)(ln t− 1

2
πi)

}
Hn+1,n−1(z),

fn(x, t) = exp
{

1
2
n2(ln t− 1

2
πi)

}
Hn,n(z),

z =
x eπi/4

2t1/2
, (3.12)

and so

un(x, t) =
n eπi/4

t1/2
Hn+1,n−1(z)

Hn,n(z)
, z =

x eπi/4

2t1/2
. (3.13)

Proof Setting U(ζ) = ng(ζ)/f(ζ) in (3.2) yields the bilinear representation

D2
ζf •f + 2n2gg∗ = µf2, (3.14 a)(

D2
ζ − 1

2
iζDζ + 1

2
i
)
f •g = µfg, (3.14 b)

where µ is arbitrary. Then making the change of variables

g(ζ) = ψn(z), g∗(ζ) = ψ∗
n(z), f(ζ) = e−πi/4φn(z),

https://doi.org/10.1017/S0956792506006565 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792506006565


Rational solutions of the NLS equation and PIV 311

with ζ = 2ze−πi/4 and letting µ = 0 yields

D2
zφn •φn + 8n2ψnψ

∗
n = 0,

(D2
z − 2zDz + 2)φn •ψn = 0.

which are equations (2.11), and so they have the solutions

φn(z) = cnHn,n(z), ψn(z) = cnHn+1,n−1(z), ψ∗
n(z) = cnHn−1,n+1(z),

with cn an arbitrary constant. Setting gn(x, t) = ψn(z) and fn(x, t) = t1/2 e−πi/4φn(z), with

z = 1
2
xt−1/2 eπi/4 and cn = exp

{
1
2
(n2 − 1)(ln t− 1

2
πi)

}
, so that gn(x, t) and fn(x, t) are monic

polynomials in x with coefficients that are polynomials in t, yields gn(x, t) and fn(x, t) as

given in (3.12). Hence we obtain the rational solution of defocusing NLS equation (1.5)

given by (3.13), as required. �

An alternative method of deriving the bilinear representation (3.14) is to make the

scaling reduction

F(x, t) = t1/2f(ζ), G(x, t) = ng(ζ), ζ = x/t1/2, λ = µ/t,

in the bilinear representation of the defocusing NLS equation (1.5)

D2
xF •F + 2GG∗ = λF2,

(iDt − D2
x)F •G = λFG,

which are obtained by making the transformation u = G/F in (1.5).

The first few rational solutions given by (3.13) are

u1(x, t) = 1/x, (3.15 a)

u2(x, t) =
2x(x2 + 6it)

x4 − 12t2
, (3.15 b)

u3(x, t) =
3(x8 + 16itx6 − 120t2x4 + 720t4)

x(x8 − 72t2x4 − 2160t4)
, (3.15 c)

u4(x, t) =
4g4(x, t)

x16 − 240t2x12 − 7200t4x8 − 2016000t6x4 + 6048000t8
, (3.15 d )

where

g4(x, t) = x15 + 30itx13 − 540t2x11 − 4200it3x9 + 10800t4x7 + 151200it5x5

+ 504000t6x3 + 3024000it7x.

Plots of the zeroes (+) and poles (◦) of u15(x, t), for fixed t, are given in Figure 4. We

remark that un(x, t) has n poles on the real x-axis for all t.

The polynomials gn(x, t), fn(x, t) can be expressed in terms of Wronskians using the

determinantal representation of the generalized Hermite polynomials given in § 2.3. If we
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Figure 4. The zeroes (+) and poles (◦) of the rational solutions u15(x, t).

define the polynomials ϕn(x, t) through

∞∑
n=0

ϕn(x, t)ζ
n = exp(xζ − itζ2), (3.16)

then it is straightforward to show that

gn(x, t) = anW(ϕn−1, ϕn, . . . , ϕ2n−1),

fn(x, t) = an−1W(ϕn, ϕn+1, . . . , ϕ2n−1),
an =

n∏
m=1

1

m!
, (3.17)

where the constants an have been chosen so that gn(x, t) and fn(x, t) are monic polynomials

in x with coefficients that are polynomials in t.

3.3 Rational-oscillatory solutions of the defocusing NLS equation

Analogously, using the rational solutions of (3.5) that are expressed in terms of the

generalized Okamoto polynomials Qm,n, i.e. (3.2), we obtain rational-oscillatory solutions

of the defocusing NLS equation (1.5) in the form

ũn(x, t) =
g̃n(x, t)

6tf̃n(x, t)
exp

(
− ix2

6t

)
, (3.18)

where g̃n(x, t) and f̃n(x, t) are monic polynomials in x of degrees 3n2 −2n+1 and 3n2 −2n,

respectively, with coefficients that are polynomials in t for n � 0. Further f̃n(x, t) is real

for x, t ∈ �.
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Theorem 3.2 The defocusing NLS equation (1.5) has rational-oscillatory solutions of the

form (3.18) where

g̃n(x, t) = exp
{

1
2
(3n2 − 2n+ 1)[ln(2t) − 1

2
πi]

}
Qn+1,n−1(z),

f̃n(x, t) = exp
{

1
2
(3n− 2)n[ln(2t) − 1

2
πi]

}
Qn,n(z),

z =
x eiπ/4

2t1/2
, (3.19)

and so

ũn(x, t) =
e−πi/4

3
√

2t

Qn+1,n−1(z)

Qn,n(z)
exp

(
− ix2

6t

)
, z =

x eπi/4

2t1/2
. (3.20)

Proof Making the change of variables

g(ζ) = ψ̃n(z) exp(− 1
6
iζ2), g∗(ζ) = ψ̃∗

n(z) exp( 1
6
iζ2), f(ζ) = eπi/4φ̃n(z),

with ζ = 2ze−πi/4, and setting µ = ζ2/36 in the bilinear equations (3.14) yields

(D2
z + 8

9
z2)φ̃n • φ̃n = 4

9
ψ̃nψ̃

∗
n ,

(D2
z + 2zDz + 2

3
)φ̃n • ψ̃n = 0,

which are equations (2.18), and so they have the solutions

φ̃n(z) = c̃nQn,n(z), ψ̃n(z) = c̃nQn+1,n−1(z), ψ̃∗
n(z) = c̃nQn−1,n+1(z),

with c̃n an arbitrary constant. Setting g̃n(x, t) = ψ̃n(z) and f̃n(x, t) = (2t)1/2 e−πi/4φ̃n(z), with

z = 1
2
xt−1/2 eπi/4 and c̃n = exp

{
1
2
(3n2 − 2n+ 1)

[
ln(2t) − 1

2
πi

]}
, so that g̃n(x, t) and f̃n(x, t)

are monic polynomials in x with coefficients that are polynomials in t, yields g̃n(x, t) and

f̃n(x, t) as given in (3.19) and hence we obtain the rational solution of defocusing NLS

equation (1.5) given by (3.20), as required. �

The first few rational-oscillatory solutions of the defocusing NLS equation (1.5) given

in Theorem 3.2 are

ũ0(x, t) =
x

6t
exp

(
− ix2

6t

)
, (3.21 a)

ũ1(x, t) =
x2 − 6it

6xt
exp

(
− ix2

6t

)
, (3.21 b)

ũ2(x, t) =
x(x8 − 48itx6 − 504t2x4 − 45360t4)

6t(x8 + 504t2x4 − 9072t4)
exp

(
− ix2

6t

)
, (3.21 c)

ũ3(x, t) =
g̃3(x, t)

6tf̃3(x, t)
exp

(
− ix2

6t

)
, (3.21 d )
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Figure 5. The zeroes (+) and poles (◦) of the rational solutions ũ10(x, t).

with

g̃3(x, t) = x22 − 126itx20 − 3780t2x18 − 98280it3x16 − 7711200t4x14 + 148599360it5x12

+ 891596160t6x10 + 8915961600it7x8 − 187235193600t8x6

+ 5617055808000it9x4 + 6740466969600t10x2 − 40442801817600it11,

f̃3(x, t) = x(x20 + 3780t2x16 + 3175200t4x12 + 1485993600t6x8 − 187235193600t8x4

− 6740466969600t10).

The solution (3.21 a) is given by Hone [42, p. 123], otherwise we believe that these are new

rational-oscillatory solutions of the defocusing NLS equation (1.5). Plots of the zeroes (+)

and poles (◦) of ũ10(x, t), for fixed t, are given in Figure 5. We remark that ũn(x, t) has n

poles on the real x-axis for all t.

Similarly, using the rational solutions that are expressed in terms of the generalized

Okamoto polynomials Q−m,−n, with m, n > 0, we obtain further rational-oscillatory solu-

tions in the form

ûn(x, t) =
ĝn(x, t)

6tf̂n(x, t)
exp

(
− ix2

6t

)
, (3.22)

where ĝn(x, t) and f̂n(x, t) are monic polynomials in x of degrees 3n2 +2n+1 and 3n2 +2n,

respectively, with coefficients that are polynomials in t, for n � 1. Further f̂n(x, t) is real

for x, t ∈ �.
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Theorem 3.3 The defocusing NLS equation (1.5) has rational-oscillatory solutions of the

form (3.22) where

ĝn(x, t) = exp
{

1
2
(3n2 + 2n+ 1)[ln(2t) − 1

2
πi]

}
Q−n−1,−n+1(z),

f̂n(x, t) = exp
{

1
2
(3n+ 2)n[ln(2t) − 1

2
πi]

}
Q−n,−n(z),

z =
x eiπ/4

2t1/2
,

and so

ûn(x, t) =
e−πi/4

3
√

2t

Q−n−1,−n+1(z)

Q−n,−n(z)
exp

(
− ix2

6t

)
, z =

x eπi/4

2t1/2
, (3.23)

where n � 1.

Proof The proof is analogous to that of Theorem 3.2 and so is left to the reader. �

The first few rational-oscillatory solutions defined by (3.23) are

û1(x, t) =
x6 − 30itx4 − 180t2x2 + 1080it3

6xt(x4 + 180t2)
exp

(
− ix2

6t

)
, (3.24 a)

û2(x, t) =
ĝ2(x, t)

6tf̂2(x, t)
exp

(
− ix2

6t

)
, (3.24 b)

where

ĝ2(x, t) = x(x16 − 96itx14 − 2160t2x12 − 34560it3x10 − 2138400t4x8

+ 34214400it5x6 + 359251200t6x4 + 16166304000t8),

f̂2(x, t) = x16 + 2160t2x12 + 712800t4x8 + 256608000t6x4 − 2309472000t8.

Again, we believe that the rational-oscillatory solutions given in Theorem 3.3 are also

new solutions of the defocusing NLS equation (1.5). Plots of the zeroes (+) and poles (◦)

of û8(x, t), for fixed t, are given in Figure 6. We remark that ûun(x, t) has n poles on the

real x-axis for all t.

The polynomials g̃n(x, t), f̃n(x, t), ĝn(x, t) and f̂n(x, t) can be expressed in terms of the

Schur polynomial Sλ(x) defined by (2.19). If we define the polynomials ϕn(x, t) through

∞∑
n=0

ϕn(x, t)ζ
n = exp

(
xζ − 3itζ2

)
, (3.25)

then it is straightforward to show that

g̃n(x, t) = ãnSλ(n+1,n−1)(x), f̃n(x, t) = b̃nSλ(n,n)(x), (3.26)

ĝn(x, t) = ânSλ(−n−1,−n+1)(x), f̂n(x, t) = b̂nSλ(−n,−n)(x), (3.27)

where x = (x,−3it2, 0, 0, . . . ) and the partitions are given by (2.22), for some constants ãn,

b̃n, ân and b̂n such that g̃n(x, t), f̃n(x, t), ĝn(x, t) and f̂n(x, t) are monic polynomials in x

with coefficients that are polynomials in t.
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Figure 6. The zeroes (+) and poles (◦) of the rational solutions û8(x, t).

We remark that the defocusing NLS equation (1.5) has the rational-oscillatory solution

u(x, t) = 1
2
ρei(κx−ωt)

{
1 − 4(1 − iρ2t)

1 − ρ2(x− 2κt)2 + ρ4t2

}
, ω = κ2 + 1

2
ρ2,

with ρ and κ arbitrary constants, which is not of the form (3.20); for further details see

Tajiri & Watanabe [79].

4 Generalized rational solutions of the nonlinear Schrödinger equation

Hone [42, 43] generalized the rational solution (3.13) showed that the defocusing NLS

equation (1.5) has more general rational solutions of the form

un(x, t) = nGn(x, t; κ2n−1)/Fn(x, t; κ2n−1), (4.1)

where Gn(x, t; κ2n−1) and Fn(x, t; κ2n−1) are monic polynomials in x of degrees n2 − 1

and n2, respectively, with coefficients that are polynomials in t and the parameters

κ2n−1 = (κ3, κ4, . . . , κ2n−1), with (κ3, κ4, . . . , κ2n−1) arbitrary constants. We remark that
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Fn(x, t; κ2n−1) is real for x, t ∈ �. The first few polynomials are

G2(x, t; κ3) = x3 + 6ixt− κ3,

F2(x, t; κ3) = x4 + 2κ3x− 12t2,

G3(x, t; κ5) = x8 + 16ix6t+ 4κ3x
5 − 10(12t2 − iκ4)x

4 − 4(20iκ3t+ κ5)x
3

+ 40κ2
3x

2 − 4(60κ3t
2 + 6iκ5t− 5iκ4κ3)x

+ 720t4 + 120iκ4t
2 − 80iκ2

3t+ 4κ5κ3 − 5κ2
4,

F3(x, t; κ5) = x9 + 12κ3x
6 − 72t2x5 + 6κ5x

4 − 120κ4tx
3 + 720κ3t

2x2

+ 3(720t4 − 4κ5κ3 + 5κ2
4)x− 72κ5t

2 + 120κ3κ4t− 40κ3
3.

Note that when κ2n−1 = 0 then Fn(x, t; 0) = fn(x, t) and Gn(x, t; 0) = gn(x, t), where fn(x, t)

and gn(x, t) are given by (3.12). Hone [42, 43] showed that the polynomials Gn(x, t; κ2n−1)

and Fn(x, t; κ2n−1) can be derived recursively using Crum transformations analogous to the

procedure used by Adler & Moser [8] to construct rational solutions of the KdV equation

(1.2). Alternatively, the polynomials Gn(x, t; κ2n−1) and Fn(x, t; κ2n−1) can be expressed

in terms of Wronskians by generalizing (3.16) and (3.17). If we define the polynomials

Φn(x, t; κn), with κn = (κ3, κ4, . . . , κn), through

∞∑
n=0

Φn(x, t; κn)ζ
n = exp

⎛
⎝xζ − itζ2 + i

∞∑
j=3

κj(−iζ)j

j!

⎞
⎠ , (4.2)

where κj , for j � 3, are arbitrary constants, then

Gn(x, t; κ2n−1) = anW(Φn−1,Φn, . . . ,Φ2n−1),

Fn(x, t; κ2n−1) = an−1W(Φn,Φn+1, . . . ,Φ2n−1),
an =

n∏
m=1

1

m!
, (4.3)

where the constants an have been chosen so that Gn(x, t; κ2n−1) and Fn(x, t; κ2n−1) are

monic polynomials in x with coefficients that are polynomials in t.

We write the generalized rational solution (4.1) in the form

un(x, t) = n
Gn(x, t; κ2n−1)

Fn(x, t; κ2n−1)
≡

n2∑
j=1

ψj(t; κ2n−1)

x− ϕj(t; κ2n−1)
,

to study the motion of the residues ψj(t; κ2n−1) and the poles ϕj(t; κ2n−1), for j = 1, 2, . . . , n2.

Preliminary numerical simulations suggest the following conjecture, which it is anticipated

can be verified by developing the ideas in Hone [42, 43], though we shall not pursue this

further here.

Conjecture 4.1 Generalized rational solutions of the defocusing NLS equation (1.5) have the

form

u(x, t) =

n∑
j=1

αj(t)

x− aj(t)
+

n(n−1)/2∑
k=1

{
βk(t)

x− bk(t)
+

γk(t)

x− b∗
k(t)

}
,
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where aj(t) are real, b∗
k(t) is the complex conjugate of bk(t) and

|αj(t)| = 1, j = 1, 2, . . . , n, βk(t)γ
∗
k (t) = 1, k = 1, 2, . . . , 1

2
n(n− 1),

with γ∗
k (t) the complex conjugate of γk(t).

It is an open question whether, analogous to the generalized rational solutions (4.1),

there are generalizations of the rational-oscillatory solutions (3.18) and (3.22) of the

defocusing NLS equation (1.5) in the form

ũn(x, t) =
G̃n(x, t; κn)

6tF̃n(x, t; κn)
exp

(
− ix2

6t

)
, (4.4)

ûn(x, t) =
Ĝn(x, t; κn)

6tF̂n(x, t; κn)
exp

(
− ix2

6t

)
, (4.5)

where G̃n(x, t; κn), F̃n(x, t; κn), Ĝn(x, t; κn) and F̂n(x, t; κn) are monic polynomials in x of

degrees 3n2 −2n+1, 3n2 −2n, 3n2 +2n+1 and 3n2 +2n, respectively, with coefficients that

are polynomials in t and the parameters κn = (κ3, κ4, . . . , κn), such that G̃n(x, t; 0) = g̃n(x, t),

F̃n(x, t; 0) = f̃n(x, t), Ĝn(x, t; 0) = ĝn(x, t) and F̂n(x, t; 0) = f̂n(x, t). It is shown above that

the generalized rational solutions given by (4.2) and (4.3) are generalizations of (3.16) and

(3.17). Hence it seems reasonable to expect that generalized rational-oscillatory solutions

might be obtained by generalizing (3.25), (3.26) and (3.27). However if we define the

polynomials Ψn(x, t; κn), with κn = (κ3, κ4, . . . , κn), through

∞∑
n=0

Ψn(x, t; κn)ζ
n = exp

⎛
⎝xζ − 3itζ2 + i

∞∑
j=3

κj(−iζ)j

⎞
⎠ , (4.6)

and consider the polynomials

G̃n(x, t; κn) = ãnSλ(n+1,n−1)(x), F̃n(x, t; κn) = b̃nSλ(n,n)(x), (4.7)

Ĝn(x, t; κn) = ânSλ(−n−1,−n+1)(x), F̂n(x, t; κn) = b̂nSλ(−n,−n)(x), (4.8)

where x = (x,−3it2,−κ3, iκ4, . . . , (−i)j−1κj, . . . ) and the partitions are given by (2.22), which

is the “natural” generalization, then it seems that (4.4) and (4.5) are only solutions of the

defocusing NLS equation (1.5) provided that κn = 0.

5 Discussion

In this paper we have studied special polynomials associated with rational and rational-

oscillatory solutions of the defocusing NLS equation (1.5) through special polynomials

associated with rational solutions of PIV; the rational-oscillatory solutions seem to be

new solutions of the defocusing NLS equation. The roots of these special polynomials are

shown numerically to have a very symmetric structure in the complex plane.

The poles of rational solutions of the KdV equation (1.2) satisfy a dynamical system,

a constrained Calogero-Moser system [8, 10, 21]. The zeroes and poles of the rational

solutions of the defocusing NLS equation (1.5) given by (4.1) satisfy an dynamical system
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[42, 43] which warrants further investigation, though we shall not pursue this further here.

It is anticipated that zeroes and poles of the rational-oscillatory solutions of the defocusing

NLS equation (1.5) given by (3.20) will also satisfy an interesting dynamical system, again

we shall not pursue this further here. The motion of the poles of elliptic solutions of

the KdV equation (1.2), which reduce to rational solutions in the limit, are discussed in

Airault et al. [10] and Deconinck & Segur [29]. A study of the pole dynamics of elliptic

solutions of the defocusing NLS equation (1.5) is another interesting open problem.

An explanation and interpretation of the numerical results for these special polynomials

is an interesting open problem, as is whether they have applications, e.g. in numerical

analysis? The classical orthogonal polynomials, such as Hermite, Laguerre, Legendre and

Tchebychev polynomials which are associated with rational solutions classical special

functions, play an important role in a variety of applications [6, 12, 80]. Hence it seems

probable that the polynomials discussed here which are associated with rational solutions

of nonlinear special functions, i.e. the Painlevé equations, and soliton equations will also

arise in variety of applications.
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Rev. Lett. 38, 1103–1106.

[4] Ablowitz, M. J. & Segur, H. (1977) On the evolution of packets of water waves. J. Fluid

Mech. 92, 691–715.

[5] Ablowitz, M. J. & Segur, H. (1981) Solitons and the Inverse Scattering Transform. SIAM,

Philadelphia.

[6] Abramowitz, M. & Stegun, I. A. (1972) Handbook of Mathematical Functions. 10th edition,

Dover, New York.

[7] Adler, V. E. (1994) Nonlinear chains and Painlevé equations. Physica D73, 335–351.
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85–88.

[56] Matsuda, K. (2005) Special polynomials associated with the Noumi-Yamada system of type

A
(1)
4 . Funckcial Ekvac. 48, 231–246.

[57] Mazzocco, M. (2001) Rational solutions of the Painlevé VI equation. J. Phys. A: Math. Gen.
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