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In this series of papers, we explore moments of derivatives of L-functions in function
fields using classical analytic techniques such as character sums and approximate
functional equation. The present paper is concerned with the study of mean values
of derivatives of quadratic Dirichlet L-functions over function fields when the
average is taken over monic and irreducible polynomials P in Fq [T ]. When the
cardinality q of the ground field is fixed and the degree of P gets large, we obtain
asymptotic formulas for the first moment of the first and the second derivative of
this family of L-functions at the critical point. We also compute the full polynomial
expansion in the asymptotic formulas for both mean values.
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1. Introduction

This is the third paper of a series of papers devoted to studying the mean values
of derivatives of L-functions in function fields. In the first and second paper in this
series [1,4], we considered the first moment of derivatives of L-functions in function
fields when the average is taken over an ensemble of square-free monic polynomials
in Fq[T ]. In this paper, we venture in compute mean values of derivatives of L-
functions in function fields when the average is taken over monic and irreducible
polynomials in Fq[T ].

Hoffstein and Rosen [9] were the first to study the mean values of L-functions in
function fields. In their beautiful paper, they established several results concerning
the mean values of different families of L-functions in function fields. However, in
their paper, they never considered mean values of L-functions associated with monic
and irreducible polynomials. In this paper, we investigate averages over monic and
irreducible polynomials.

It is well-known that averages taken over primes are much harder to compute
than averages over square-free numbers. The same principle also applies to the
function field setting, where averages over monic irreducible polynomials are more
difficult to handle than averages over square-free polynomials. This is mainly due
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to the fact that the primes (or monic irreducibles) are a thinner set when compared
with the set of square-free numbers (or square-free polynomials).

In [3], Andrade and Keating computed the first and the second moment of
quadratic Dirichlet L-functions in function fields when the average is taken over
monic and irreducible polynomials in Fq[T ]. This paper can be thought as an exten-
sion of the papers [3,9] where we handle the more intricate case of averages of
quadratic Dirichlet L-functions, that is, we handle averages over ‘primes’ in this
setting.

The study of derivatives of L-functions is an important problem in analytic num-
ber theory and has its roots in the work of Ingham [10], who established asymptotic
formulas for the second moment of derivatives of the Riemann zeta function. Devel-
opments in the study of moments of derivatives of the Riemann zeta function were
lead by Conrey [5] and Gonek [8]. In [6], by computing moments of the derivative
of characteristic polynomials in the unitary group U(N), Conrey, Rubinstein and
Snaith formulated a general conjecture for the moments of derivatives of the Rie-
mann zeta function. For a summarized account of the results in this paragraph, we
ask the reader to refer [4, § 1].

The main object of this paper is to study moments of derivatives of L-functions
in the function field setting. In this note, we establish the first moment of the first
and the second derivative of quadratic Dirichlet L-functions associated with monic
irreducible polynomials in Fq[T ]. In future work (part 4 in this series), we establish
more general mean values of derivatives of L-functions associated with monic and
irreducible polynomials.

2. Main theorems

The calculations in this paper will lead to the following theorems.

Theorem 2.1. Let Fq be a fixed finite field with q odd. Then

∑
P∈P2g+1,q

L
′ ( 1

2 , χP

)
= (log q)

|P |
logq |P |

([
g − 1

2

](
1 +

[
g − 1

2

])

− 2g

([
g − 1

2

]
+ 1
)
−
[g
2

] ([g
2

]
+ 1
))

(2.1)

+ O(|P |3/4(logq |P |)).
Where [x] indicates the integer part of x, |P | = q2g+1,

P2g+1,q = {P ∈ Fq[T ], monic and irreducible, and deg(P ) = 2g + 1},
and L(s, χP ) is the quadratic Dirichlet L-function associated with P where χP is
the quadratic character defined by the Legendre symbol in Fq[T ], that is,

χP (f) = (P/f) .

Using that 2g + 1 = logq |P | the next result follows as a simple corollary of
theorem 2.1.
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Corollary 2.2. Let Fq be a fixed finite field of odd cardinality q. Using the same
notation as in the theorem, we have,

∑
P∈P2g+1,q

L
′
( 1
2 , χP ) ∼ −1/4 log(q)|P |(logq |P |), (2.2)

as g → ∞.

The next result is more involving and it is about the second derivative.

Theorem 2.3. Let Fq be a fixed finite field with q odd. Using the same notation as
in the theorem 2.1, we have that

∑
P∈P2g+1,q

L
′′ ( 1

2 , χP

)

=
2
3
(log(q))2

|P |
logq |P |

([g
2

] (
1 +

[g
2

])(
1 + 2

[g
2

])

+

((
1 +

[
g − 1

2

])(
6g2 +

[
g − 1

2

]
− 6g

[
g − 1

2

]
+ 2

[
g − 1

2

]2)))

+ O(|P |3/4(logq |P |)2). (2.3)

As before, we deduce a corollary of theorem 2.3.

Corollary 2.4. Let Fq be a fixed finite field of odd cardinality q. Using the same
notation as in the theorem, we have,

∑
P∈P2g+1,q

L
′′ ( 1

2 , χP

) ∼ 1/6 log2(q)2|P |(logq |P |)2, (2.4)

as g → ∞.

Remark 2.5. Note that the average values are taken over the family of polynomials
in P2g+1, that is, over odd degree monic irreducible polynomials. We could also
consider the case of even degree polynomials, that is, averages over the family
P2g+2. In that case, the calculations are similar to the odd degree case and the only
difference is the form of the approximate functional equation for L(s, χP ) when
P ∈ P2g+2. For simplicity, we only consider the odd degree case since the even
degree case does not present any novelty.

For a more detailed discussion about Dirichlet L-functions and Dirichlet char-
acters in function fields, we suggest the reader to consult [11], [4, § 2] and [2,7].
Throughout this paper, we will let |f | = qdeg(f) be the norm of f .
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The L–function associated with χP is the numerator of the zeta function associ-
ated with the hyperelliptic curve over Fq defined by the affine equation CP : y2 =
P (T ) and, consequently, L(s, χP ) is a polynomial of degree 2 g in the variable
u = q−s given by

L(s, χP ) =
2g∑

n=0

A(n, χP )q−ns

=
2g∑

n=0

∑
f monic
deg(f)=n

χP (f)q−ns. (2.5)

(see [11, propositions 14.6 and 17.7] and [2, § 3]).
It is well-known that this L–function satisfies a functional equation. Namely

L(s, χP ) = (q1−2s)gL(1 − s, χP ), (2.6)

and the Riemann hypothesis for curves, proved by Weil [13], tells us that all the
zeros of L(s, χP ) have real part 1/2.

Before we proceed with the proof of the two main results of this paper, we would
like to point out that there is a different method that would also allow us to obtain
the same results. By differentiating on both sides of the functional equation of
L(s, χP ), it should be possible to obtain the asymptotic formula of L′((1/2), χP )
using the results for the mean value of L((1/2), χP ) from [3]. And with a little
more work and by using the mean value of L((1/2), χP ) and L′((1/2), χP ), we
could derive the mean value of L′′((1/2), χP ).

The approach described in the previous paragraph seems to work for arbitrary
derivatives, although the full expansion as presented in theorem 2.1 and 2.3 are not
easy to derive by the use of this method. Because of that, the proofs of the main
results of this paper are done by taking the derivative of the functional equation
and averaging the character sums over monic irreducibles. In this way, we can keep
track and see more clearly all the lower order terms.

In a forthcoming paper, we consider the second moment of higher derivatives
of this family of L-functions and we also present conjectures for all the integral
moments of derivatives of L-functions in function fields.

3. The first moment of L
′
(1/2, χP )

From now on P ∈ P2g+1,q. Changing D for P in the ‘approximate’ functional
equation [2, lemma 3.3], we have that

L(s, χP ) =
∑

f1 monic
deg(f1)�g

((χP (f1))/(|f1|s)) + (q1−2s)g
∑

f2 monic
deg(f2)�g−1

((χP (f2))/(|f2|1−s)).

(3.1)
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The first derivative of the approximate functional equation (3.1) gives

L
′ ( 1

2 , χP

)
= −(log(q))

g∑
n=0

nq−n/2A(n, χP )

+ (log(q))
g−1∑
m=0

A(m,χP )(m − 2g)q−m/2 (3.2)

= J1 + J2.

To prove theorem 2.1, we need to average (3.2) over P2g+1,q. We will accomplish
this task for each of the sums Ji, i = 1, 2 in (3.2). But before that, we need two
results that will be used in the rest of the paper. The first one is the Polynomial
Prime Theorem [11, theorem 2.2] which states that

#P2g+1,q = q2g+1/2g + 1 + O
(
qg+(1/2)2g + 1

)
. (3.3)

The second result we need is a bound for a non-trivial character sum over function
fields. Assume that f is monic, deg(f) > 0 and that f is not a perfect square.
Rudnick has proved in [12] that∣∣∣∣∣∣∣∣∣

∑
P monic

irreducible
deg(P )=n

(f/P )

∣∣∣∣∣∣∣∣∣
� deg(f)/nqn/2. (3.4)

3.1. Averaging J1 and J2

We now proceed to prove an asymptotic formula for the average of J1 and J2.
From equation (3.2), we split the character sum A(n, χP ) when f is a square of a
polynomial and when f is not a square of a polynomial and this gives us that

∑
P∈P2g+1,q

J1 = −(log q)
g∑

n=0

nq−n/2
∑

P∈P2g+1,q

∑
deg(f)=n

f=�

χP (f)

− (log q)
g∑

n=0

nq−n/2
∑

P∈P2g+1,q

∑
deg(f)=n

f �=�

χP (f). (3.5)

Using the bound for non-trivial character sums (3.4), we have that the above is

∑
P∈P2g+1,q

J1 = −(log q)
g∑

n=0

nq−n/2
∑

P∈P2g+1,q

∑
deg(f)=n

f=�

χP (f)

+ O

⎛
⎝ g∑

n=0

nq−n/2
∑

deg(f)=n

qgn

2g + 1

⎞
⎠ . (3.6)
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We have that the error term above is

g∑
n=0

nq−n/2
∑

deg(f)=n

qgn

2g + 1
=

g∑
n=0

n2qn/2qg 1
2g + 1

� qgg2qg/2 1
2g + 1

(3.7)

� |P |3/4(logq |P |).

For the sum when f is a perfect square, we have that

− (log q)
g∑

n=0

nq−n/2
∑

P∈P2g+1,q

∑
deg(f)=n

f=�

χP (f)

= −(log q)
g∑

n=0

nq−n/2
∑

deg(l)=n/2

∑
P∈P2g+1,q

χP (l2) (3.8)

= −(log q)
g∑

n=0

nq−n/2
∑

deg(l)=n/2

∑
P∈P2g+1,q

P �l

1.

Using the Polynomial Prime theorem (3.3), the fact that

∑
P∈P2g+1,q

P �l

1 =
∑

P∈P2g+1,q

1, (3.9)

since deg(P ) > deg(l), and after a few arithmetic manipulations and performing
the sum over n, we obtain

− (log q)
g∑

n=0

nq−n/2
∑

P∈P2g+1,q

∑
deg(f)=n

f=�

χP (f)

= −(log q)
|P |

logq |P |
[g
2

] ([g
2

]
+ 1
)

+ O(|P |1/2(logq |P |)). (3.10)

Combining (3.6) with the equation 3.10, we obtain

∑
P∈P2g+1,q

J1 = −(log q)
|P |

logq |P |
[g
2

] ([g
2

]
+ 1
)

+ O(|P |3/4(logq |P |)). (3.11)
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Since the average over J2 is similar, we shall not repeat the details. In the end,
we obtain that

∑
P∈P2g+1,q

J2 = −2(log q)
|P |

logq |P |g
([

g − 1
2

]
+ 1
)

+ (log q)
|P |

logq |P |
[
g − 1

2
+ 1
]([

g − 1
2

]
+ 1
)

+ O(|P |3/4(logq |P |)). (3.12)

Putting together the average of the quantities J1 and J2 over P ∈ P2g+1,q allows
us to deduce theorem 2.1. �

4. The first moment of L
′′
(1/2, χP )

In this section, we prove theorem 2.3. The second derivative of the approximate
functional equation (3.1) at s = 1/2 gives

L
′′
( 1
2 , χP ) = (log(q))2

g∑
n=0

n2q−n/2A(n, χP )

+ (log(q))2
g−1∑
m=0

A(m,χP )(m − 2g)2q−m/2 (4.1)

= S1 + S2,

where

A(n, χP ) =
∑

f monic
deg(f)=n

χP (f). (4.2)

4.1. Averaging S1 and S2

From equation (4.1), we have that

∑
P∈P2g+1,q

S1 =
∑

P∈P2g+1,q

(log(q))2
g∑

n=0

n2q−n/2A(n, χP )

=
∑

P∈P2g+1,q

(log(q))2
g∑

n=0

n2q−n/2
∑

deg(f)=n
f=�

χP (f) (4.3)

+
∑

P∈P2g+1,q

(log(q))2
g∑

n=0

n2q−n/2
∑

deg(f)=n
f �=�

χP (f).
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For f not a perfect square, we use the bound given in equation (3.4) and the
same reasoning used in 3.7 to write

∑
P∈P2g+1,q

(log(q))2
g∑

n=0

n2q−n/2
∑

deg(f)=n
f �=�

χP (f)

�
g∑

n=0

∑
deg(f)=n

n2q−n/2 qgn

2g + 1
(4.4)

� |P |3/4(logq |P |)2.

When f is a perfect square, we use the Prime Polynomial theorem (3.3) to write

∑
P∈P2g+1,q

(log(q))2
g∑

n=0

n2q−n/2
∑

deg(f)=n
f=�

χP (f)

= (log(q))2
g∑

n=0

n2q−n/2
∑

deg(f)=n

f=l2

∑
P∈P2g+1,q

χP (l2)

= (log(q))2
[g/2]∑
n=0

4m2q−m
∑

deg(l)=m

(
q2g+1

2g + 1
+ O

(
qg

g

))
(4.5)

=
2
3
(log q)2

|P |
logq |P |

[g
2

] ([g
2

]
+ 1
)(

2
[g
2

]
+ 1
)

+ O(qgg2).

Invoking equations (4.4) and (4.5), we proved that

∑
P∈P2g+1,q

S1 =
2
3
(log q)2

|P |
logq |P |

[g
2

] ([g
2

]
+ 1
)(

2
[g
2

]
+ 1
)

+ O(|P |3/4(logq |P |)2). (4.6)

Using the Prime Polynomial theorem (3.3), the bound for non-trivial character
sums (3.4) and equation (4.1) a similar argument can be used to establish

∑
P∈P2g+1,q

S2 =
2
3
(log q)2

|P |
logq |P |

(([
g − 1

2

]
+ 1
)

×
(

6g2 +
[
g − 1

2

]
− 6g

[
g − 1

2

]
+ 2

[
g − 1

2

]2))
(4.7)

+ O(|P |3/4(logq |P |)2).

Combining equations (4.6) and (4.7), we establish theorem 2.3. �
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