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Alongshore variations in coastline curvature or offshore depth profile can create
localised regions of shelf-wave propagation with modes decaying outside these regions.
These modes, termed localised continental shelf waves (`CSWs) here, exist only at
certain discrete frequencies lying below the local maximum frequency, and above
the far-field maximum frequency, for propagating shelf waves. The purpose of this
paper is to obtain these frequencies and construct, both analytically and numerically,
and discuss `CSWs for shelves with arbitrary alongshore variations in offshore depth
profile and coastline curvature. If the shelf curvature changes by a small fraction of its
value over the shelf section of interest or an alongshore perturbation in offshore depth
profile varies slowly over the same length scale then `CSWs can be constructed using
WKBJ theory. Two subcases are described: (i) if the propagating region is sufficiently
long that the offshore structure of the `CSW varies appreciably alongshore then the
frequency and alongshore structure are found from a sequence of local problems; (ii)
if the propagating region is sufficiently short that the alongshore change in offshore
structure of the `CSW is small then the alongshore modal structure is given in an
explicit, uniformly valid form. A separate asymptotic theory is required for curvature
perturbations to shelves that are otherwise straight rather than curved. Comparison
with highly accurately numerically determined `CSWs shows that both theories are
extremely accurate, with the WKBJ theory having a significantly wider range of
applicability. An idealised model for the generation of `CSWs is also suggested. A
localised time-periodic wind stress generates an evanescent continental shelf wave in
the far field of a localised mode where the coast is almost straight and the response on
the shelf is obtained numerically. If the forcing frequency is close to that of an `CSW
then the wind stress excites energetic motions in the region of maximum curvature,
creating a significant localised response possibly far from the forcing region.

Key words: shallow water flows, topographic effects, waves in rotating fluids

1. Introduction

Most theories of continental shelf waves (CSWs) are based on the assumption
that the coast is straight and the offshore depth profile is uniform in the alongshore
direction although in practice there may be significant alongshore variations in

† Email address for correspondence: jrodney@tmruk.com
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offshore depth profile and coastline curvature. The local behaviour of a CSW of fixed
frequency is determined to leading order (in the slowness of alongshore variations)
by the local shelf geometry, and Grimshaw (1977) and Huthnance (1987) discuss the
slow changes in offshore profile and speed of propagating modes as a shelf varies
slowly alongshore (the adiabatic transmission case of Rodney & Johnson (2014)).
Sufficiently large variations in offshore depth profile or coastline curvature, however,
can change any mode from propagating to evanescent (and even small changes
in geometry can do so for waves with frequencies just below ‘cutoff’, as noted
below). Changes in shelf geometry can thus create localised regions of shelf-wave
propagation with modes decaying outside these regions. Shelf-wave disturbances
trapped in such regions will be described here as localised continental shelf waves
(`CSWs). Importantly, `CSWs occur only at certain discrete frequencies, lying below
the local maximum frequency, and above the far-field maximum frequency, for waves
propagating on the shelf and determined, in barotropic flow, solely by the geometry
of the shelf in the region of support of the `CSW. The localization of the modes
is closely related to the behaviour of the group velocity and relies on bi-directional
energy propagation in the localization region. For barotropic flows on straight coasts
with offshore depth profile H(y), Huthnance (1975) shows that provided (1/H) dH/dy
is bounded for all y then the group velocity cg → c = ω/k as k → 0, where ω

and k are the non-dimensional frequency and wavenumber respectively, and cg < 0
for some range of k > 0 (as in figure 2). In general, the dispersion curves have
a local maximum ‘cutoff’ frequency, corresponding to the maximum frequency of
propagation along the shelf. At frequencies below cutoff, modes carry energy in both
directions whereas at frequencies above cutoff, modes are evanescent. Sufficiently
strong variations in offshore depth profile or coastline geometry can locally increase
the local cutoff frequency, thereby creating a region where a mode propagates energy
in both directions but is cut off in the far field. The size of the propagating region
imposes a constraint on the wavenumbers of the propagating waves, and through
the dispersion relation it thus constrains the frequencies of these `CSWs to certain
discrete values below cutoff.

It seems highly likely that `CSWs have already been observed and described.
Gordon & Huthnance (1987) report observations over a three-year period of currents
and winds at two stations on the Scottish continental shelf near the shelf break east
and west of the Shetland Islands. They observed two types of response to severe
winter storms: a ‘quasi-steady response’ of an along-isobath current that flowed so
long as the wind blew and a sub-inertial ‘oscillatory response’ at the ‘resonant’
frequency (or local cutoff frequency here). Both responses were barotropic. They note
that both responses seemed to be lowest-mode CSWs but from different places on
the dispersion curve. They identified the quasi-steady response as a low-frequency,
low-wavenumber CSW and the oscillatory response as a zero-group-velocity (i.e.
maximum frequency) CSW. Gordon & Huthnance (1987) note that the oscillatory
response is in fact at a slightly lower-than-resonant frequency and comment that
this may be due to variable topography and friction. They further observe that the
Wyville-Thomson Ridge and Norwegian Trench provide barriers to the propagation of
CSWs at each end of the observation region and so would increase responsiveness to
local forcing. This lower-than-resonant frequency mode has precisely the form of the
`CSWs described here, having a frequency lying just below the local cutoff frequency
but above the cutoff frequency in the far field. The suggestion here is that Gordon &
Huthnance (1987) have correctly described the essential dynamics of their remarkable
observations but that the resonance they observe is not exactly with the mode drawn
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56 J. T. Rodney and E. R. Johnson

from the continuous spectrum whose group velocity vanishes at the observation point
(and so would be different at each observation point due to the varying geometry) but
rather with the discrete frequency of a fundamental-mode `CSW whose propagating
section contains the observation point. The response of a resonantly forced `CSW
has the same frequency at each point within its region of support and so spectra
at different stations within the region of support would be expected to show peaks
at the same frequency. This appears consistent with the data for oscillation period
in figure 6 of Gordon & Huthnance (1987) where all current meters at all depths
for both stations are combined. Subsequent numerical modelling (Heaps et al. 1988)
reinforced the interpretation of the observations as wind-forced CSWs but, by taking
a shelf profile that did not vary alongshore, precluded the possibility of `CSWs.

A slightly less clear-cut example may be given by the numerical study of Neetu
et al. (2011), who consider the response of the coastal region off the Makran coast
of Pakistan to an offshore earthquake on the continental shelf. The instantaneous
shift in bottom topography, near a narrow shelf region, forces a localised disturbance,
with maximum amplitude near the region of maximum shelf-slope gradient, which
persists for the duration of their numerical simulations (10 h) with at least 25 % of
the total energy in the computational domain concentrated in the localised disturbance,
suggesting that the instantaneous shift in bottom topography transfers energy into a
lowest-mode `CSW.

Existence proofs, asymptotic expansions and numerical computations for `CSWs are
given in Johnson, Levitin & Parnovski (2006), Postnova & Craster (2008), Kaoullas
& Johnson (2010) and Johnson, Rodney & Kaoullas (2012). All these studies use
an approximate Neumann boundary condition at the shelf–ocean boundary. The
purpose of this paper is to introduce a different asymptotic expansion where the
small parameter is the fractional change in curvature of the coastal boundary over the
section of interest. The offshore profile is also allowed to vary over the same scale and
the shelf–ocean boundary condition is taken to be either of the standard approximate
Dirichlet or Neumann conditions, an accurate mixed condition or the full open-ocean
condition. Accurate explicit `CSW solutions are found for relatively short alongshore
variations. The asymptotic results of Postnova & Craster (2008) and Johnson et al.
(2012) are generalised to arbitrary offshore depth profiles with alongshore variations in
coastline curvature as well as incorporating the full open-ocean boundary condition.
Accurate numerical solutions demonstrate that the expansion based on fractional
curvature change is more accurate in a number of cases than the expansion about
straight coasts, even when the curvature is small. A numerical example of a remotely
wind-forced `CSW is given as a model for the dynamics observed by Gordon &
Huthnance (1987). For simplicity the flow here is taken to be barotropic, in accord
with the observations of Gordon & Huthnance (1987). Rodney & Johnson (2012) show
both analytically using WKBJ theory and numerically using a full three-dimensional
spectral method that localised coastal trapped waves can be found over weakly and
moderately stratified shelves with arbitrary vertical density profiles and alongshore
variations in shelf width or shelf-slope gradient. For sufficiently strong stratification
all coastal trapped waves propagate in the same direction (Huthnance 1978) and so
no localised modes exist. In this regime propagating coastal trapped waves incident
on a region where waves of their frequency are evanescent cannot be reflected and
instead transform into coherent vortices (Rodney & Johnson 2014).

The problem is formulated in § 2 with the two asymptotic techniques for calculating
the frequencies of `CSWs presented in § 3. Modes are described in § 3.1 for slow
changes in shelf geometry of a shelf whose underlying curvature is non-zero using
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classical WKBJ theory. The discussion is subdivided into two separate parameter
regimes: if the propagating region is long (§ 3.1.1) modes are constructed using
traditional WKBJ connection formulae but if the propagating region is sufficiently
short (§ 3.1.2) then modes are obtained explicitly. The two subcases are subsequently
distinguished as the long WKBJ (`WKBJ) and short WKBJ (sWKBJ) approximations.
Section 3.2 analyses the case of slow changes in curvature when the underlying shelf
is straight and of fixed arbitrary offshore profile. In § 3 the offshore modal structure
is of horizontal scale commensurate with the scale of offshore depth variation,
and the slow variation in the WKBJ analysis is alongshore. This differs from the
WKBJ analysis in Shen, Meyer & Keller (1968) for non-rotating free-surface waves
and for rotating, stratified edge waves in Zhevandrov (1991), Smith (2004) and
Adamou, Craster & Llewellyn Smith (2007) where the alongshore profile is fixed
and the waves are short compared to the scale of offshore variations. Topography
varying slowly in both horizontal directions is considered for non-rotating free-surface
waves by Keller (1958), short topographic Rossby waves by Smith (1970), trapped
modes in quantum rings by Gridin, Adamou & Craster (2004) and Bruno-Alfonso
& Latgé (2008), trapped modes in elastic plates by Gridin, Craster & Adamou
(2005) and trapped modes in slowly varying acoustic waveguides by Biggs (2012).
The quantum, elastic plate and acoustic problems are more straightforward than the
shelf-wave problem in that the modal structure across the waveguide for corresponding
forward- and backward-propagating modes is the same whereas in general the long
forward-propagating shelf-wave mode has cross-shelf structure different from the
backward-propagating short shelf wave. Importantly, at the critical station where the
group velocity vanishes, the cross-shelf structures of the forward and backward shelf
modes coincide. As verification for the asymptotic schemes modes are calculated
numerically in § 4 using highly efficient spectral approximations. The numerical
methods allow for arbitrary offshore depth boundary conditions and depth profiles,
including profiles that are discontinuous at the shelf–ocean boundary, such as the
classical exponential depth profile of Buchwald & Adams (1968), and offer an
extension to the numerical methods presented in Postnova & Craster (2008) and
Johnson et al. (2012). The numerical and asymptotic solutions are then used to
discuss the effects of coastline curvature and alongshore variations in offshore depth
profile on `CSWs in § 5. Section 6 considers generation of shelf waves by wind
forcing and shows that a significant response can occur far from the forcing region
when trapped modes are excited. The results are discussed briefly in § 7.

2. Formulation

Barotropic CSWs are governed by the topographic Rossby wave equation (Rhines
1969a)

∇ · (H−1
∇Ψt)+ f ẑ · ∇Ψ ×∇H−1 = 0, (2.1)

where Ψ is a volume flux stream function, H(x, y) is the undisturbed local fluid depth,
∇ is the horizontal gradient operator, f is the Coriolis parameter (assumed constant)
and ẑ is a unit vertical vector. The boundary condition at the impermeable coast is

Ψ = 0, y= 0. (2.2a,b)

Let ∂D denote the shelf–ocean boundary. Various approaches have been used to
reduce the problem to consideration of the shelf alone by applying an approximate

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

58
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.588


58 J. T. Rodney and E. R. Johnson

boundary condition on ∂D . Requiring the normal component of velocity to vanish,
accurate in the short-wave limit, gives the Dirichlet boundary condition

Ψ = 0, on ∂D, (case I). (2.3)

Requiring the tangential component of velocity to vanish, accurate in the long-wave
limit, gives the Neumann boundary condition, the vanishing of the normal derivative,

Ψn = 0, on ∂D, (case II). (2.4)

Boundary conditions (2.3) and (2.4) give lower and upper bounds, respectively, for
the frequencies of trapped oscillations in open domains (Johnson 1989) and have
the advantage that the corresponding frequencies can often be obtained as explicit
formulae for simple topography. They are extensively used in numerical computations
as they are straightforward to implement, with Heaps et al. (1988) using (2.3). Since
`CSWs have frequencies near cutoff an accurate (as shown in § 5.1) approximate
boundary condition is the mixed boundary condition

Ψn + kcΨ = 0, on ∂D, (case III), (2.5)

where kc, the wavenumber at cutoff for an approximating straight coast, determines the
offshore decay scale. The unapproximated open-ocean boundary condition is simply
that disturbances vanish at large offshore distances, i.e.

Ψ → 0, y→∞, (case IV). (2.6a,b)

The analysis below applies for all boundary conditions (2.2)–(2.6), combined as

Ψ = 0 on y= 0, BΨ = 0 on ∂D, (2.7a,b)

with ∂D referring to the coastal waveguide, for boundary conditions (2.3)–(2.5), or
the semi-infinite ocean, for (2.6), where it is understood that all calculations are
performed on the interval y ∈ [0, ∞) with disturbances vanishing exponentially at
infinity. All solutions below, at all orders in the expansion parameters, satisfy the
homogeneous boundary conditions (2.7) and so for brevity these are not repeated,
with the understanding that Ψ in (2.7) is replaced by the function under discussion.

Consider temporally periodic solutions of the form

Ψ (x, y, t)=Re{Φ(x, y)exp(−iωft)}, (2.8)

where ω is the non-dimensional frequency. Substituting (2.8) into (2.1) then gives

ω∇ · (H−1
∇Φ)+ i ẑ · ∇Φ ×∇(H−1)= 0, (2.9)

subject to (2.7).
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FIGURE 1. The curvilinear coordinate system (σ , η). The solid line denotes the coast
(Dirichlet boundary condition) and the dashed line represents the shelf–ocean boundary.

3. Slowly varying shelf geometry and coastline curvature
3.1. An underlying curved coast

Consider a smoothly curving shelf and follow Johnson et al. (2006) by introducing
curvilinear coordinates (σ , η), as in figure 1, with σ the arclength along the coast, η
the coordinate offshore and γ (σ ) the signed curvature of the coast. Let L be a typical
cross-shelf length scale associated with each position σ = constant along the coast. Let
`∗ be the alongshore length scale of any localised mode. The small parameter in the
expansion below is then taken to be

ε = `
∗

γ

∂γ

∂σ
. (3.1)

This does not require the shelf to be narrow compared to `∗: small ε means that
the curvature changes by only a small fraction of its value along the section of
shelf supporting the `CSW. In the limit ε → 0 the geometry reduces to an island
of fixed radius, 1/γ . In this limit, provided the shelf profile does not vary too
strongly, modes propagate freely around the entire island (Rhines 1969b). Trapped
modes in the asymptotic limit 0 < ε � 1 require a section of increased curvature
(or increased slope or coast–shelf-break displacement (Johnson & Kaoullas 2011))
where the local frequency ω is only of order ε above the cutoff frequency ωc. Then at
some distance of order `∗ from the propagating region the wave becomes cut off and
evanescent, permitting a trapped `CSW. The geometry outside the region of support
of the `CSW is immaterial to the trapping (except for the possibility of tunnelling
(Stocker & Johnson 1991), discussed below): once the wave becomes evanescent at
cutoff its energy flux falls to zero and energy is reflected, giving a trapped mode.
There are two distinct cases. Firstly, ε could fall to zero outside the trapping region.
The two arms of the shelf outside the trapping region would then rejoin, giving an
`CSW trapped on a section of the coast of an island. Alternatively, the shelf arms
could straighten, corresponding to γ → 0 and ε →∞. Since the `CSW is already
evanescent, with zero energy flux, in this region the effect on the trapped mode is
negligible. Other variations in shelf geometry lie between these two and thus give
trapping with significant tunnelling only in the unlikely possibility that the shelf after
cutoff rapidly returns to a geometry that allows propagating waves at the `CSW
frequency.

Introduce ξ = εσ and let ξ ′ = ξ/L and η′ = η/L, where L is the shelf width, then,
allowing also for depth profiles varying alongshelf over the length scale of ε−1, the
non-dimensional governing equations (dropping the primes) are

ω[ε2κ2Φξξ +Φηη − ε2(κ3ηγξ + κ2βξ )Φξ − (βη − κγ )Φη] + iεκ(βξΦη − βηΦξ )= 0,
(3.2)

subject to (2.7). Here β(ξ, η)= ln H(ξ , η) and κ = (1+ ηγ )−1.
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3.1.1. The long WKBJ approximation
For typical rectilinear depth profiles on a straight coast, such as the exponential

profile of Buchwald & Adams (1968), there is a maximum frequency of propagation
ωmax so that for ω < ωmax there are two roots for the wavenumber corresponding to
two waves with unidirectional phase propagation and bi-directional energy propagation.
The energy propagation associated with the long waves propagates with the phase
whereas the energy associated with the short waves propagates in the opposite
direction. Once the frequency exceeds ωmax the two solutions for the wavenumber
form a complex conjugate pair and the modes are evanescent. Alongshore variations
in shelf geometry or coastline curvature mean that a CSW mode can propagate, as a
superposition of two waves carrying energy in opposite directions, within some finite
region of the coast but be evanescent outside this region. This prompts the ansatz

Φ(ξ, η)= φ+(ξ , η) exp[iS+(ξ)/ε] + φ−(ξ , η) exp[iS−(ξ)/ε], (3.3)

where each term in (3.3) is an independent solution of (3.2). Expanding the amplitudes
in powers of ε, i.e.

φ± =
j=∞∑
j=0

ε jφj
±(ξ , η), (3.4)

and substituting (3.3) and (3.4) into (3.2) leads to a hierarchy of equations. The
leading order, of order ε0, gives

ω[φ±0ηη − (βη − κγ )φ±0η] + [βηκS±ξ −ωS±ξ
2
κ2]φ±0 = 0, (3.5)

and the next order, of order ε, gives

ω[φ±1ηη − (βη − κγ )φ±1η] + [βηκS±ξ −ωS±ξ
2
κ2]φ±1 =−ωi2κ2S±ξ φ

±
0ξ − iωκ2S±ξξφ

±
0

+ iωκ3ηγξφ
±
0 S±ξ + iωκ2βξS±ξ φ

±
0 + iκβηφ±0ξ − iκβξφ±0η. (3.6)

System (3.5), (2.7) is precisely the system that determines the local dispersion relation
at each station γ = constant along the coast.

Let ψ(ξ, η)± be the two local eigenmodes, with corresponding eigenvalues k±
(k+ > k−), of the problem in the cross section D(ξ) = {(ξ , η) : 0 6 η 6 ∂D} of the
waveguide:

ω[ψ±ηη − (βη − κγ )ψ±η ] + [βηκk± −ωk±2
κ2]ψ± = 0, (3.7)

subject to (2.7), where the ψ± are normalised so that∫ ∂D

0
H−1κψ±2 dη= 1. (3.8)

Then φ±0 can be expressed as an undetermined multiple of the local eigenmodes ψ±,
i.e.

φ±0 (ξ , η)= f±0 (ξ)ψ
±(ξ , η), (3.9)

with the functions S±ξ given by the two roots k±(ξ) for the wavenumber. It is
convenient to introduce P(ξ), Q(ξ) defined as

P(ξ)= 1
2
[S+(ξ)+ S−(ξ)] = 1

2

∫ ξ

[k+(τ )+ k−(τ )] dτ , (3.10)

Q(ξ , ξ0)= 1
2
[S+(ξ)− S−(ξ)] = 1

2

∫ ξ

ξ0

[k+(τ )− k−(τ )] dτ . (3.11)
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Then P gives the unidirectional (fast) phase and Q is proportional to the (slow) group
velocity (which vanishes at the turning points defined by k+ = k−). The lower limit
of integration in (3.11), the phase reference level (Heading 1962; Berry & Mount
1972), is determined by the location of the transition points where the group velocity
cg = 0. Since the phase P is unidirectional and continuous over the whole domain
the matching of P across the singular regions requires only multiplication by an
arbitrary complex constant of modulus one. Therefore the lower limit of integration
has been omitted from (3.10) and the localised CSW can be regarded as a mode
with a unidirectional phase propagating through a slowly varying envelope defined by
the direction of energy propagation. An expression for the group velocities c±g of the
propagating waves follows from multiplying (3.7) by (κH)−1ψ± and integrating over
the region 0 6 η6 ∂D , to give

A± − 2ωk± = c±g I±, (3.12)

where

A± =
∫ ∂D

0
βηH−1ψ±2 dη, (3.13a)

I± = k±2 +
∫ ∂D

0
(κH)−1(ψ±η )

2 dη. (3.13b)

The inhomogeneous eigenvalue problem (3.6), (2.7) is solvable if the right-hand side
of (3.6) is orthogonal to the eigenfunctions of the corresponding homogeneous adjoint
operator (Nayfeh 1993). Instead of constructing the adjoint problem, the operator on
the left-hand side can be transformed into self-adjoint form by multiplying by (κH)−1.
The eigenfunctions of the transformed self-adjoint operator are then ψ±. Multiplying
(3.6) by (κH)−1ψ± and integrating across the shelf gives the solvability condition

2(A± − 2ωS±ξ )f0ξ + (A± − 2ωS±ξ )ξ f0 = 0, (3.14)

which for the propagating modes gives the conservation of the alongshore kinetic
energy flux,

2c±g I±f0ξ + (c±g I±)ξ f0 = 0, (3.15)
with solution, to within an arbitrary multiplicative constant,

f±0 = |c±g I±|−1/2. (3.16)

For the evanescent modes f0 is given by

f±0 = [A± − 2ωS±ξ ]−1/2, (3.17)

so that f0 remains on the same branch of its complex square root (since A and S are
complex in the evanescent regions).

Equation (3.15) shows that the WKBJ solutions break down in the neighbourhood of
the transition points c±g = 0, denoted here by ±ξc. Therefore in the interval (−ξc, ξc),
excluding the width of order ε2/3 near the endpoints (Bender & Orszag 1978), the
first-order WKBJ solution is a superposition of the forward and propagating waves
given by

Φ(ξ, η) =
{
α1f−0 ψ

−(ξ , η)exp
[
− i
ε

Q(ξ ,−ξc)

]
+α2f+0 ψ

+(ξ , η)exp
[

i
ε

Q(ξ ,−ξc)

]}
exp

[
i
ε

P(ξ)
]
, (3.18)
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where P and Q are given by (3.10) and (3.11) respectively. The solution decaying in
ξ <−ξc is

Φ(ξ, η)=C1f−0 ψ
−(ξ , η)exp

[
i
ε

P(ξ)− 1
ε
|Q(−ξc, ξ)|

]
. (3.19)

For ξ > −ξc, the WKBJ connection formula (e.g. (3.24) of Berry & Mount (1972))
gives

Φ(ξ, η)= 2C1f−0 ψ
−(ξ , η)exp

[
i
ε

P(ξ)
]

cos
[

1
ε

Q(ξ ,−ξc)− π

4

]
. (3.20)

Note that (3.20) is not of the form (3.18) for the entire interval (−ξc, ξc). To satisfy
both the connection formula and governing equations consider the overlap region
defined by −ξc + ε2/3 < ξ < −ξc + εδ where δ < 2/3. In this region |ξ − (−ξc)| is
small so [k+(ξ) − k−(ξ)]2 ∼ a(ξ − (−ξc)), where a is a positive constant. Therefore
S±ξ ∼ k(ξc)± a1/2(ξ − (−ξc))

1/2, and

c±g I± ∼∓ωa1/2(ξ − (−ξc))
1/2. (3.21)

Thus
f±0 ∼ |ωa1/2(ξ − (−ξc))

1/2|−1/2. (3.22)

Then matching (3.18) and (3.20) in the overlap region determines the constants α1 and
α2 as (Rodney & Johnson 2012)

α1 =C1exp(iπ/4), α2 =C1exp(−iπ/4). (3.23a,b)

The solution decaying in ξ > ξc is given by

Φ(ξ, η)=C2f+0 ψ
+(ξ , η)exp

[
i
ε

P(ξ)− 1
ε
|Q(ξ , ξc)|

]
. (3.24)

For ξ < ξc, the WKBJ connection formula gives

Φ(ξ, η)= 2C2f+0 ψ
+(ξ , η)exp

[
i
ε

P(ξ)
]

cos
[

1
ε

Q(ξc, ξ)− π

4

]
. (3.25)

Matching (3.18) and (3.25) in the overlap region ξc − εδ < ξ < ξc − ε2/3 gives the
constraint

1
ε

Q(ξc,−ξc)∼
(

n+ 1
2

)
π+O(ε), n= 0, 1, 2, . . . , (3.26)

and C2 = (−1)nC1, for n from (3.26). Since Q and ξc depend on the frequency ω,
(3.26) determines the frequency of the localised continental shelf wave of alongshore
mode number n, as required. The integral in (3.26) increases as ξc→∞, giving an
upper bound on the total number of trapped modes

n 6
1
πε

lim
|ξc|→∞

Q(ξc,−ξc)− 1
2
. (3.27)
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Localised continental shelf waves 63

3.1.2. The short WKBJ approximation
Within regions of thickness ε2/3 about ξ =±ξc the evanescent waves (3.19), (3.24)

are matched to the propagating modes (3.18) smoothly by Airy functions (Bender &
Orszag 1978; Rodney & Johnson 2012), giving solutions with enhanced amplitudes
near ξ =±ξc (as in figure 5b below). If the alongshore region where modes propagate
is sufficiently short (of order ε1/2, still long compared to the shelf width of order ε)
then both turning points lie within the matching region and waves propagate only
within this region. For smoothly varying shelves with propagating modes only near
ξ = 0, the integrand in (3.11) takes its maximum value at the origin. Thus define

∆= 1
2 [k+(0)− k−(0)], (3.28)

so 2∆ gives the maximum difference between the left and right propagating waves
(and is of order ε1/2). Since the integrand vanishes at ξ =±ξc,

Q(ξc,−ξc)=
∫ −ξc

ξc

∆[1− (ξ/ξc)
2]1/2 dξ =1ξcπ/2ε, (3.29)

and so the eigenrelation (3.26) for the nth alongshore mode becomes, to leading order,

1ξc = (2n+ 1)ε, (3.30)

determining the frequencies of the trapped modes as both ξc and ∆ are functions of ω.
For this parameter regime the leading-order trapped wave has the explicit expression

Φ(ξ, η)=C3ψ
±(0, η) exp

[
− i
ε

P(ξ)
]

X(ξ), (3.31)

where the envelope X(ξ) satisfies

ε2Xξξ +∆2[1− (ξ/ξc)
2]X = 0, (3.32)

with solutions bounded as ξ →∞ only for frequencies satisfying (3.30) and given
explicitly by the parabolic cylinder functions

X(ξ)=Hn[(2n+ 1)1/2(ξ/ξc)] exp[−(n+ 1
2)(ξ/ξc)

2], (3.33)

where the Hn are the Hermite polynomials of order n.

3.2. An underlying straight shelf
The analysis in § 3.1 applies to small variations in the curvature of a coast whose
underlying local curvature is non-zero. If the underlying shelf is straight then γ = 0
in (3.1) and so local curvature changes are no longer small compared to the underlying
curvature. Trapped modes may still be obtained by expanding about the structure and
frequency of the maximum-frequency propagating mode on the shelf but the analysis
differs. The small parameter ε, which for the underlying curved shelf gives the non-
dimensional alongshelf length scale ε−1 for both the curvature changes and the cross-
shelf profile changes, must be taken to determine only the magnitude of the alongshore
variations in bend angle, with ε= 0 giving a straight coast. Follow Postnova & Craster
(2008) and Johnson et al. (2012) by initially taking the scale for γ to be ε and
introducing the expansions

Φ(ξ, η)∼ exp (iξµ/2ωε)(f0(ξ)ψ
c(η)+ εψ1(ξ , η)+ ε2ψ2(ξ , η)+ · · ·), (3.34)

ω−2 =ω−2
c + ελ1 + ε2λ2 + · · · , (3.35)
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64 J. T. Rodney and E. R. Johnson

where

µ=
∫ ∂D

0
βηH−1ψ c2 dη= 2ωckc, (3.36)

and ψ c is the cutoff streamfunction, satisfying

ψ c
ηη − βηψ c

η + (βηkc/ωc − kc
2)ψ c = 0, (3.37)

the boundary conditions (2.7), and normalised so∫ ∂D

0
H−1ψ c2 dη= 1, (3.38)

with ωc and kc the cutoff frequency and cutoff wavenumber for a straight coast.
Substituting (3.34) and (3.35) into (3.2) leads to a hierarchy of equations. The
leading-order system is satisfied automatically. The next order, of order ε, gives

ψ1ηη − βηψ1η + (βηkc/ωc − kc
2)ψ1 =−γψ c

η − βηλ1ψ
c/2+ iF f0ξψ

c, (3.39)

subject to (2.7), with F (η)=ω−1
c (βη −µ).

Multiplying (3.39) by H−1ψ c and integrating over the domain 06 η6 ∂D gives the
solvability condition

2γ
∫ ∂D

0
H−1ψ cψ c

η dη+ λ1µ= 0. (3.40)

Since the integrand in (3.40) is non-zero and γ varies with ξ , no choice of the
number λ1 can satisfy (3.40) for all ξ and the curvature must be weakened by
introducing γ = εγ̂ . This determines the alongshelf length scale for changes in the
curvature as one order higher in ε when the underlying shelf is straight compared
with the curvature when the underlying shelf is curved. The leading-order equation
is unchanged. However, equating terms of order ε now gives

ψ1ηη − βηψ1η + (βηkc/ωc − kc
2)ψ1 =−βηλ1ψ

c/2+ iF f0ξψ
c, (3.41)

and the equivalent solvability condition to (3.40) gives λ1 = 0 with the first-order
system becoming

ψ1ηη − βηψ1η + (βηkc/ωc − kc
2)ψ1 = iF f0ξψ

c, (3.42)

subject to (2.7). This system can be solved using variation of parameters by
introducing a solution ψ̃0 of (3.37) independent of ψ c so that

ψ c
ηψ̃0 − ψ̃0ηψ

c =H. (3.43)

The solution to (3.42) is then

ψ1 = f1(ξ)ψ
c + if0ξψ

c
∫ η

0
H−1Fψ cψ̃0 dη− if0ξ ψ̃0

∫ η

0
H−1Fψ c2 dη, (3.44)

where f1 gives an O(ε) correction to the leading-order solution. The ray paths of
low-frequency topographic Rossby waves are determined by the geostrophic vector
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G = h∇(f /h) (Smith 1970). Thus for depth profiles satisfying F ≡ 0 ray paths are
parallel to the coast and the imaginary terms in (3.44) vanish. For non-zero F the
imaginary terms on the right-hand side of (3.44) can be regarded as an O(ε) phase
shift to the wave (since the ray paths are no longer parallel to the coast). The next
order, of order ε2, gives

ψ2ηη − βηψ2η + (βηkc/ωc − kc
2)ψ2 =−ψ cf0ξξ − γ̂ ψ c

η f0 − βηλ2ψ
cf0/2+ iFψ1ξ . (3.45)

In deriving (3.45), f1 in (3.44) has been absorbed into f0 with the extra terms on
the right side of (3.45) generated by this modification appearing only at higher order.
Multiplying (3.45) by H−1ψ c and integrating over the domain 0 6 η6 ∂D gives

(1+I1)f0ξξ + (γ̂I2 +µλ2/2)f0 = 0, (3.46)

where

I1 =
∫ ∂D

0
H−1Fψ cψ̃0

(∫ η

0
H−1Fψ c2 dη

)
dη

−
∫ ∂D

0
H−1Fψ c2

(∫ η

0
H−1Fψ cψ̃0 dη

)
dη. (3.47)

and

I2 =
∫ ∂D

0
H−1ψ c

ηψ
c dη. (3.48)

Solutions of (3.46) decaying exponentially at infinity determine the leading-order wave
envelope f0(ξ) and eigenvalue correction λ2.

3.2.1. An explicit example
For the exponential topography

H(η)=
{

e2b(η−1) 0 6 η6 1,
1 η > 1,

(3.49)

the function F ≡0 and the leading-order eigenfunctions, ψ c, can be found analytically.
For cases I, II and III

ψ c = 2[α/(2α − sin 2α)]1/2eb(η−1) sin αη, (3.50)

where

case I: α = nπ, n= 1, 2, 3, . . . , (3.51)
case II: b tan α =−α, (3.52)
case III: (b+ kc) tan α = α. (3.53)

For the full open-ocean boundary condition (2.6)

case IV: ψ c =
{

A eb(η−1) sin αη if 0 6 η6 1,
A sin2 α e−kc(η−1) if η > 1,

(3.54)

where A= 2α1/2 sin α/(2− 2 sin 2α + 2α sin2 α/kc)
1/2 and α =√2bkc/ω− (k2

c + b2).
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FIGURE 2. Dispersion curves for the first propagating mode over the depth profile (5.1)
with g ≡ 1 and the full open-ocean boundary condition (2.6) applied at infinity for (a)
different values of γ with b= 2, (b) different values of b with γ = 0.

For curvature
γ̂ = (π/4) sech2 ξ, (3.55)

giving a total bend angle of επ/2, the solution of (3.46) is given by

f0 = coshm−s F(−m, 2s+ 1−m, s+ 1−m, (1− tanh(ξ)/2)), (3.56a)
λ2 =−2(s−m)2/µ, (3.56b)

where s = (
√

1+πβ − 1)/2, m is a non-negative integer, F is the confluent
hypergeometric function of degree m and β is given by

case I: β = b+ nπ(1− cos 2nπ)/(2nπ− sin 2nπ) (3.57)
case II: β = b+ α(1− cos 2α)/(2α − sin 2α), α tan α =−b, (3.58)
case III: β = b+ α(1− cos 2α)/(2α − sin 2α), (α + kc) tan α =−b, (3.59)

case IV: β = b(2α − sin 2α)
2α(1+ sin2 α/kc)− sin α

, α =
√

2bkc/ω− (k2
c + b2). (3.60)

Here (3.58) is the result in Johnson et al. (2012).

4. The numerical method
To assess the accuracy of the approximations in § 3 the various asymptotic solutions

are compared to numerical solutions of the differential eigenvalue problem (3.2)
based on highly accurate spectral discretisations. For the depth profile (3.49) and
curvature (3.55) with boundary conditions given by cases I, II and III the fast carrier
wave with exponent ibσ/ω can be factored out of the problem, which can then be
reduced to a finite rectangular domain by applying an exponentially accurate nonlinear
boundary condition at some finite position along the shelf (Johnson et al. 2012). This
nonlinear problem is solved by the Newton–Kantorovich method (Boyd 2001) using
Chebyshev interpolation in both horizontal directions with rows in the discretised
matrix eigenvalue problem corresponding to the boundary nodes replaced by the
appropriate discretised boundary operator. In the similar acoustic waveguide problem
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ε n m ω`WKBJ
n,m ωSWKBJ

n,m ωN
n,m ω`WKBJ

n,m Error (%) ωSWKBJ
n,m Error (%)

1 0 1 0.6223209 0.6238417 0.6245099 0.35 0.11
1 1 1 0.5996494 0.6045072 0.6005319 0.09 0.66
0.5 0 1 0.6150118 0.6154626 0.6157768 0.12 0.05
0.5 1 1 0.6022400 0.6046173 0.6028139 0.10 0.30
0.1 0 1 0.6040366 0.6040576 0.6040894 0.009 0.005
0.1 1 1 0.6021330 0.6022942 0.6021764 0.007 0.020
0.05 0 1 0.6019275 0.6019329 0.6019421 0.0024 0.001
0.05 1 1 0.6011838 0.6012276 0.6011963 0.0021 0.052

TABLE 1. Numerical eigenfrequencies, ωN
0,1, and `WKBJ and sWKBJ eigenfrequencies,

ω`WKBJ
0,1 , ωsWKBJ

0,1 , calculated using (3.26), for the curvature function (5.2) with γ̄ = επ/2,
giving a total bend angle of π/2, and depth profile (5.1) with b = 2 and g ≡ 1, for
varying ε, with the full open-ocean boundary condition (2.6) applied at infinity.

Biggs (2012) follows Gridin et al. (2005), using symmetry and Laguerre interpolation
to treat the semi-infinite along-waveguide direction directly. Both treatments are
accurate and efficient although for the present problem the discretization in Johnson
et al. (2012) seems to require smaller matrices.

The full open-ocean boundary condition requires different treatment. The first
difficulty arises from the inability to factor out the fast carrier wave and the non-trivial
symmetry condition even for symmetric waveguides. It is therefore more efficient to
use a Hermite interpolant in the alongshore direction, automatically incorporating
exponential decay and increasing resolution in the neighbourhood of the origin, as in
Rodney & Johnson (2012) and similar to the Laguerre interpolant of Biggs (2012).
A further difficulty comes from the discontinuity in the cross-waveguide depth profile
at η= 1 which, untreated, would significantly reduce spectral accuracy. This difficulty
is overcome by separately discretising the outer ocean (where βη = 0) and the shelf
and then requiring that the local interpolant and its normal derivative are continuous
across the topographic discontinuity. Since the open-ocean decay scale of `CSWs
is fast, of the order of the shelf width, Laguerre interpolation is used in the open
ocean, automatically incorporating exponential decay as in Adamou et al. (2007) and
Johnson & Rodney (2011). Points on the shelf are resolved using Chebyshev functions
in the offshore direction. The boundary conditions at the coast and shelf–ocean
boundary are incorporated into the discretised field equation by replacing rows in
the discretised matrix problem corresponding to boundary points with the appropriate
boundary operator. The number of Chebyshev and Laguerre points need not be
the same, especially if the function has significantly different behaviour in each
region, i.e. highly oscillatory on the shelf and slowly decaying offshore. For higher
offshore modes or steep shelves more resolution would be required in the shelf
region. However, for the low offshore modes and depth profile described below it
remains efficient to keep the number of interpolation points the same. Discretising
equation (3.2) using a hybrid N-Laguerre, M-Hermite and N-Chebyshev scheme gives
a 2NM× 2NM generalised eigenvalue problem that can be solved by standard means.

For more general depth profiles (e.g. depth profile (5.1)) with the boundary
conditions (2.3)–(2.5) where no analytic expression for the fast carrier wave can
be factored out, the shelf is discretised using an N-point Chebyshev grid in the
offshore direction with an M-point Hermite grid in the alongshore direction. Again,
the shelf–ocean boundary conditions are implemented by replacing boundary points
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FIGURE 3. Eigenfunctions |Φ0,1| and |Φ1,1| (normalised to give maximum amplitude one
at the shelf–ocean boundary) for the curvature function (5.2) with γ̄ = επ/2, giving a
total bend angle of π/2, and ε = 0.1 (a,b) and ε = 1 (c,d) with the full open boundary
condition (2.6) applied at infinity. Darker shading corresponds to larger values of |Φ|.

with the appropriate discretised boundary operator with the Dirichlet condition at
the coast incorporated by removing the last row of the Chebyshev differentiation
matrix, giving an (N − 1)M× (N − 1)M generalised eigenvalue problem. When using
Hermite or Laguerre basis functions the accuracy of the solution can be significantly
improved by choosing the largest collocation point to lie where the solution is
smaller than some tolerance value. More detail on the scaling is given in Johnson &
Rodney (2011). In all results presented below the domain has been chosen so that
for sufficiently high resolution the solutions are resolution-independent.

5. Geometric effects on localised modes
5.1. Alongshore variations in coastline curvature

As a CSW mode of fixed frequency propagates along a coastline with slowly varying
curvature its local characteristics are governed by the leading-order system (3.7),
(2.7) which, at each position ξ = constant, reduces to an annular region with constant
radius of curvature γ −1. In general the local wavenumbers k± and corresponding
eigenfunction ψ± of the eigensystem (3.7), (2.7) can be obtained only numerically
but this is a straightforward one-dimensional problem (see the appendix A). Consider
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Boundary condition ωA
0,1 ωN

0,1 Error (%)

Dirichlet (2.3) 0.53730826 0.53716854 0.026
Neumann (2.4) 0.65866358 0.65832036 0.052
Cutoff (2.5) 0.60076114 0.60054020 0.037
Full open-ocean (2.6) 0.59979897 0.59972509 0.012

TABLE 2. Numerical eigenfrequencies, ωN
0,1, and asymptotic eigenfrequencies, ωA

0,1,
calculated using (3.56b), for the weak curvature function (3.55), depth profile (3.49) with
b= 2 and with ε = 0.1, and so a total bend angle of π/20.

the depth profile

H(ξ , η)=
{

e2bg(ξ)(η−1) 0 6 η6 1,
1 η > 1,

(5.1)

where g(ξ) controls the alongshore variation in shelf slope, which reduces to (3.49)
when g≡ 1. Figure 2 shows the local dispersion curves, computed using the spectral
method in the appendix A, for the fundamental cross-shelf mode over the depth profile
(5.1) with g≡ 1, for different values of the curvature γ and slope b. Larger positive
curvature has a similar effect to larger bottom slope, raising the cutoff frequency and
so permitting `CSWs encompassing the section of maximum curvature. This agrees
with the result in Johnson et al. (2012) that, in the limit of small curvature, there
is always an `CSW associated with a region of positive curvature on an otherwise
straight shelf (a ‘cape’) but no `CSW exists associated with a region of negative
curvature (a ‘bay’).
`CSWs can be characterised by their alongshore mode number n (with n = 0

corresponding to the fundamental mode) and cross-shelf mode number m. Denote
the frequency of the (n, m) mode by ωn,m, with corresponding eigenfunction Φn,m.
Table 1 compares the `WKBJ eigenvalues, ω`WKBJ

n,m , calculated using (3.26); the sWKBJ
eigenvalues, ωsWKBJ

n,m , calculated using (3.30); and the numerical eigenvalues, ωN
n,m, for

the curvature function
γ = (γ̄ /2) sech2 ξ, (5.2)

so that the total bend angle is γ̄ /ε, and depth profile (5.1), with b= 2 and g≡ 1, for
different values of ε, with full open-ocean boundary condition (2.6) applied at infinity.
The WKBJ eigenvalues are indeed extremely accurate, to well within 1 % of the
numerical solutions. As expected, the accuracy of the `WKBJ frequencies increases
with alongshore wavenumber, since the ratio of the variation in the wavelength to the
variation in the curvature increases as the number of alongshore modal oscillations
increases (Bender & Orszag 1978). The agreement with the full numerical solution
even for ε= 1 is remarkable. The accuracy of the sWKBJ frequencies decreases with
alongshore wavenumber since the length over which the modes propagate increases
with alongshore wavenumber. Figure 3 shows the modulus of the corresponding
numerical eigenfunctions |Φ0,1| and |Φ1,1| for ε = 0.1 (figure 3a,b) and ε = 1
(figure 3c,d). Most of the wave disturbance is concentrated in the region of maximum
curvature with modes decaying exponentially along the straight section of coast. From
figure 3(c,d), it is clear that the alongshore decay scale of the modes increases as
the mode number increases. The frequencies of `CSWs decrease with alongshore
mode number, with modes coupling to modes on the straight section of coast having
smaller value of Im k, and so decaying on a slower scale.
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FIGURE 4. Isobaths (a) and depth profiles (b) of the shelf with local perturbation on shelf
slope given by (5.1) and (5.3) with b= 2, a=π/4 and ε= 0.1. In the right panel the solid
line is the unperturbed far-field profile and the dashed line gives the maximally perturbed
profile at x= 0.

Table 2 compares the numerical eigenfrequencies, ωN
0,1, and the asymptotic

eigenfrequencies, ωA
0,1, calculated using expansion (3.34) with λ2 given by (3.56b),

for the weak curvature (3.55) and depth profile (3.49) with b = 2 and ε = 0.1, for
boundary conditions (2.3)–(2.6). The asymptotic eigenfrequencies are again extremely
accurate, with the absolute error well below 1 % for all four boundary conditions.
Eigenfrequencies calculated using the full open-ocean condition (2.6) and the
near-cutoff approximation (2.5) differ by less than 0.2 %, showing the high accuracy
and thus usefulness of (2.5) when computing `CSWs. The cutoff and full open-ocean
eigenfrequencies lie above the Dirichlet but below the Neumann eigenfrequencies as
expected (Johnson 1989). Table 3 compares the `WKBJ eigenvalues and the weak
curvature eigenvalues (with error derived from the full numerical eigenvalues) for
the (0, 1) mode, for the weak curvature (3.55) and depth profile (3.49), with b = 2,
ε = 0.1 and the full open-ocean boundary condition (2.6) applied at infinity. The
comparison shows that even for extreme values of (weak) curvature the `WKBJ
eigenvalues remain in close agreement with the full numerical solutions, and in fact
are more accurate than the eigenvalues derived from the method of § 3.2, specifically
designed for small curvature.

5.2. Alongshore variations in offshore depth profile
The frequencies of CSWs are greatly affected by changes in the gradient of the
shelf slope. Figure 2(b) shows dispersion curves for the depth profile (5.1), with
g ≡ 1 and γ ≡ 0, for different values of b. The steepening of the shelf slope (i.e.
increasing b) raises the maximum frequency of propagation of the waves. Consider
the depth function (5.1) with local variation in shelf slope governed by

g(ξ)= 1+ ā sech2(ξ), (5.3)

so that the maximum perturbation in shelf slope occurs at ξ = 0 and then disappears
as ξ→∞, with ā> 0 corresponding to a submerged continental shelf ridge (figure 4).
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Method ω0,1 Error (%)

WKBJ analysis 0.59967995 0.007
Weak curvature analysis 0.59979897 0.012

TABLE 3. Comparison between the WKBJ eigenvalues, calculated using (3.26), and the
asymptotic eigenvalues calculated using (3.56b) with λ2 given by (3.56b), for the weak
curvature function (3.55), depth profile (3.49) with b= 2 and ε = 0.1 and so a total bend
angle of π/20.

Table 4 compares the numerical eigenfrequencies, ωN
n,m, the `WKBJ asymptotic

eigenfrequencies, ω`WKBJ
n.m , and the sWKBJ asymptotic eigenfrequencies, ωsWKBJ

n.m , for
the Dirichlet boundary condition (2.3), the curvature function γ ≡ 0 and depth profile
(5.1) with g given by (5.3), ā = π/4, b = 2 and ε = 0.1. Again the asymptotic
eigenvalues are extremely accurate, with the relative error well below 1 % with the
accuracy of the `WKBJ eigenvalues increasing, and that of the sWKBJ eigenvalues
decreasing, with alongshore wavenumber, n. The accuracy of the both the `WKBJ
eigenvalues and sWKBJ eigenvalues also increases with increasing offshore number,
m. Higher offshore modes propagate, locally, over a shorter alongshore distance.
They are confined over a shorter strip of shelf and the wavelength varies on a faster
scale compared to the variation in the curvature, and both the `WKBJ and sWKBJ
approximations improve. For boundary conditions (2.4)–(2.6) the accuracy of the
`WKBJ eigenvalues mirrors the accuracy shown in table 4, and so these results are
not displayed.

Table 5 compares the corresponding `WKBJ eigenvalues with boundary conditions
(2.3)–(2.6). Comparison between the eigenfrequencies calculated using the cutoff
ocean boundary condition (2.5) and the full open-ocean boundary condition (2.6)
shows agreement to well within 1 % with accuracy increasing with alongshore
mode number, as the offshore decay scale approaches cutoff. Again the cutoff and
full open-ocean eigenfrequencies lie above the Dirichlet but below the Neumann
eigenfrequencies. Figure 5 compares `WKBJ (dot-dashed line), sWKBJ (dashed
line) and numerical eigenfunctions (solid line) |Φ0,1| and |Φn,m| (from table 4), as
a function of ξ in the cross section y = 0.5. The caustics, located at ξ = ±ξc are
represented by the dotted lines. Most of the wave disturbance is concentrated above
the maximum perturbation in shelf slope and decays exponentially alongshore, with
the `WKBJ eigenfunctions becoming singular at the caustics.

6. The response to localised forcing
Inviscid barotropic motion over continental shelves forced by a wind stress τ is

governed (Adams & Buchwald 1969) by the inhomogeneous form of (2.1):

∇ · (H−1
∇Ψt)+ f ẑ · ∇Ψ ×∇H−1 = ẑ · ∇× (τ/H). (6.1)

In the curvilinear coordinates (σ , η), consider a localised, time-periodic wind-stress
curl given by

ẑ · ∇× (τ/H)= (πa2)−1/2H−1 exp[−(σ − σ0)
2/w2] cos(ωft), (6.2)

with non-dimensional frequency ω, centred about σ = σ0 with width w and reducing
alongshelf to the Dirac delta function as w→ 0. For simplicity take the topography
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Numerical

FIGURE 5. (Colour online) (a) Comparison of the modulus of the numerical eigenfunction
with eigenvalue ω0,1 (solid line) as a function of the coordinate ξ at y = 0.5, with
the corresponding `WKBJ (dot-dashed line) and sWKBJ eigenfunctions (dashed line, but
indistinguishable from the numerical solution), for the depth profile (5.1) with local
slope perturbation (5.3) and the Dirichlet boundary condition applied at the coast and
shelf–ocean boundary. (b) As in (a) but for the eigenvalue ω2,1. In both panels b = 2,
ε = 0.1 and ā=π/4.

to be the exponential shelf of (3.49) and the boundary conditions to be (2.2), (2.4),
following Adams & Buchwald (1969). Then the high-wavenumber carrier wave can
be factored out by introducing the reduced streamfunction φ(σ , η), defined by

Ψ (x, y, t)=Re{exp[−i(ωft+ bσ/ω)]φ(σ , η)}. (6.3)

This gives the forced form of (3.2), in terms here of the unscaled alongshore
coordinate σ ,

κ2φσσ + φηη + [κ3ηγσ + 2i(b/ω)κ2ηγ ]φσ − (2b− κγ )φη
+ [(b/ω)2(2κ + κ2)− i(b/ω)κ3ηγσ ]φ
= i(ωfw

√
π)−1 exp[−(σ − σ0)

2/w2 + ibσ/ω], (6.4)

which can be solved numerically by similar spectral methods to those above. To allow
a smaller computational domain a boundary condition can be applied at moderate σ
by noting that, for a given frequency,

φ(ξ, η)→ Ae±|kω |σ+b(η−1) sin αη, as σ→∓∞, (6.5)
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0.65813 0.65818 0.65823 0.65828 0.65833 0.65838 0.65843 0.65848

1.0

0

0.2

0.4

0.6

0.8

FIGURE 6. The ratio of local energy in the curved region to local energy in the forcing
region as a function of frequency. The largest response occurs at frequencies close to that
of the fundamental `CSW, ω=ωN

0,1, shown dashed.

where A is an undetermined constant, α is given by (3.52) and kω = [b2/ω2 − (α2 +
b2)]1/2, so

φσ ∓ |kω|φ→ 0, as σ→±∞. (6.6)

The non-constant coefficient system formed by equation (6.4), boundary conditions
(2.2) and (2.4) and far-field conditions (6.6) applied at σ = ±σL, forming the ends
of the computational domain, is approximated pseudo-spectrally, as in § 4, on a two-
dimensional grid of N Chebyshev points across the shelf and M Chebyshev points
along the shelf, giving a linear system of (N− 1)M equations in (N− 1)M unknowns
which can be solved by standard methods.

The vertically integrated time-averaged kinetic energy density per unit mass for the
motion can be written as

〈E〉 = 〈1/(2H)|∇Ψ |2〉 = 1/(2H)|∇(e−ibσ/ωφ)|2, (6.7)

and so a measure of the local time-averaged kinetic energy on the numerical grid can
be defined by

E(σ , LE)= 1
2

M∑
i

N∑
j

|∇[φ(σi, ηj)e−ibσi/ω]|2/H(σi, ηj), (6.8)

where the dashed alongshore sum is only over those points σi satisfying |σi− σ |6 LE

with the localization length, LE, chosen to be of the order of the decay scale of
any trapped mode. Figure 6 shows the ratio of the local kinetic energy in the
region of maximum curvature to the local kinetic energy in the neighbourhood of
the forcing as a function of the forcing frequency for curvature (5.2) with ε = 0.1,
γ̄ = ε2π/2, giving a total bend angle of π/20, σ0 = 60, w = 1 and localization
length LE = 20. The ratio has a narrow peak in this frequency range centred on the
frequency ω = ωN

0,1 of the fundamental `CSW (table 2). As the system is linear and
undamped the resonant response precisely at ω = ωN

0,1 is infinite. Shelf waves in the
forcing region are evanescent at these frequencies, and so away from the `CSW
resonance the relative energy in the curved region is negligible. Figure 7 shows the
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n m ωlWKBJ
n,m ωSWKBJ

n,m ωN
n,m ωlWKBJ

n,m Error (%) ωsWKBJ
n,m (%)

0 1 0.74592713354 0.74731643873 0.74622897501 0.041 0.146
1 1 0.73638853075 0.74035956138 0.73666455053 0.038 0.502
2 1 0.72709491820 0.73319417450 0.72734759086 0.025 0.804
0 2 0.49132433211 0.49212346055 0.49141433381 0.018 0.144
1 2 0.48589461389 0.48819280271 0.48598520243 0.019 0.454
2 2 0.48060618033 0.48427304639 0.48069715435 0.019 0.744
0 3 0.35276331546 0.35320772847 0.35279747803 0.010 0.116
1 3 0.34974439623 0.35103652602 0.34978095380 0.010 0.359
2 3 0.34678827097 0.34887658148 0.34682702395 0.011 0.591

TABLE 4. The `WKBJ and sWKBJ eigenfrequencies ω`WKBJ
n,m , ωsWKBJ

n,m generated by the
asymptotic scheme, and numerical eigenfrequencies ωN

n,m for the depth profile (5.1), with
g given by (5.3), and the Dirichlet boundary condition at the shelf–ocean boundary, with
ā=π/4, b= 2, ε = 0.1.

absolute value of the frequency response, |φ| at ω= 0.65832 (differing from ωN
0,1 by

approximately 10−5) when the coast is curved and when it is straight, normalised to
give maximum amplitude one, with darker shading corresponding to larger values of
|φ|. For a curved coast the wave disturbance is concentrated in the region of maximal
curvature, even though the source is located far alongshore at σ = σ0 = 60. For a
straight coast the response is evanescent and the linear response decays exponentially
away from the source. In practice nonlinearity and dissipation would broaden and
weaken resonances, in line with the observations of Gordon & Huthnance (1987), and
also tend to constrain the area over which remote wind stress could force `CSWs,
although the long decay scale of near-resonant evanescent waves would oppose this.

7. Discussion
Two asymptotic methods have been presented to obtain the frequency and spatial

structure of localised continental shelf waves, `CSWs, on arbitrarily curved coastal
waveguides with irregular depth profiles. For significantly curved coastlines or
coastlines with an alongshore-varying offshore profile solutions are constructed
using a WKBJ method. For almost-straight coastlines the weak curvature theory
of Postnova & Craster (2008) and Johnson et al. (2012) is extended to include
arbitrary offshore depth profiles and ocean boundary conditions. Direct comparisons
between both asymptotic methods and a spectrally convergent numerical method
show that both asymptotic methods are extremely accurate. Comparison between
the WKBJ eigenvalues and the almost-straight expansion eigenvalues in the limit of
weak curvature shows that the WKBJ eigenvalues remain accurate, even in the weak
curvature limit when the almost-straight expansion would be expected to perform
better.

It has been shown that a localised alongshore wind stress oscillating at the `CSW
frequency, on a straight section of coast, can resonantly excite an `CSW in a
geographically localised curved region far from the forced region. The energy of
the `CSWs is trapped and so the specific, discrete `CSW frequencies, determined
solely by the shelf geometry in barotropic flow, may appear as the same pronounced
peaks in the low-frequency spectra of randomly forced coastal flows along the section
of shelf supporting the `CSW (Gordon & Huthnance 1987; Schwing 1989; Stocker
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(a)

(b)

FIGURE 7. The response, |φ|, normalised to have maximum value unity, for a forcing
frequency close to that of the fundamental `CSW for curved (a) and straight (b) coasts.
Although both shelves are forced at the same station of σ =σ0=60 the maximum response
occurs at the forcing region for the straight coast and at the region of maximum curvature
for the curved coast.

& Johnson 1991). The distinctive feature of an `CSW would be that its frequency
would lie below cutoff everywhere within its region of support and that all stations
within the region of support would show the same frequency peaks even when the
local geometry differed. The observations described by Gordon & Huthnance (1987)
appear to show these characteristics.

Appendix A. Numerical solution for the local alongshore wavenumber k(ξ)

The quadratic eigenvalue problem (3.7), (2.7) is recast as a linear eigenvalue
problem by introducing q= kψ to give

ω[ψηη − (βη − κγ )ψη] = k(ωκ2q− βηκψ), (A 1a)
q= kψ, (A 1b)

subject to (2.7). To avoid excessively large computational domains the decay condition
(2.6) can be applied at the shelf–ocean edge by noting that the solution to (A 1a) in
the flat outer ocean βη = 0 is given by

ψouter = (1+ γ η)−k/γ , (A 2)

with Re k> 0, thus continuity of ψ and ψη at the shelf–ocean boundary η= ηL gives

(1+ γ η)ψη =−kψ, η= ηL. (A 3)

Discretising (A 1a) subject to (2.2) and (A 3) on an N-point Chebyshev grid, using
differential operator matrices following Trefethen (2000), gives a 2(N − 1)× 2(N − 1)
(where the Dirichlet boundary condition has been accounted for by removing the last
row of the Chebyshev differentiation matrix) linear generalised eigenvalue problem(

L1 0
0 I

)(
ψ
q

)
= k

(−L2 L3
I 0

)(
ψ
q

)
, (A 4)

where L1 is the discrete form of the left-hand side of (A 1a) with the first row
replaced with the discrete form of the left-hand side of (A 3), −L2 is the discrete
form of the second term on the right-hand side of (A 1a), with the first row replaced
by the first rows of the (N − 1) × (N − 1) negative identity matrix, and L3 is the
discrete form of the first term on the right-hand side of (A 1a), with the first row
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n m ω`WKBJ,d
n,m ω`WKBJ,ne

n,m ω`WKBJ,c
n,m ω`WKBJ

n,m

0 1 0.74592713354 0.81177254069 0.78710428859 0.78142204593
1 1 0.73638853075 0.80268643367 0.77756478813 0.77201272489
2 1 0.72709491819 0.79380844819 0.76824798417 0.76282956175

TABLE 5. The `WKBJ eigenfrequencies ω`WKBJ,d
n,m (Dirichlet shelf–ocean condition (2.3)),

ω`WKBJ,ne
n,m (Neumann shelf–ocean condition (2.4)), ω`WKBJ,c

n,m (cutoff ocean condition (2.5))
and ω`WKBJ

n,m (full open-ocean boundary condition (2.6)), for the depth profile (5.1) and local
slope perturbation (5.3) with γ ≡ 0, ā=π/4, b= 2 and ε = 0.1.

replaced by zeros. The matrices I and 0 are the (N − 1) × (N − 1) identity matrix
and (N − 1)× (N − 1) null matrix, respectively.
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