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ABSTRACT

Albrecher et al. (ALBRECHER, H.,MAYER PH., SCHOUTENS,W. (2008) General
lower bounds for arithmetic Asian option prices.AppliedMathematical Finance,
15, 123–149) have proposed model-independent lower bounds for arithmetic
Asian options. In this paper we provide an alternative and more elementary
derivation of their results. We use the bounds as control variates to develop a
simpleMonte Carlo method for pricing contracts with Asian-style features. The
conditioning idea that is inherent in our approach also inspires us to propose
a new semi-analytic pricing approach. We compare both approaches and con-
clude that these both have their merits and are useful in practice. In particular,
we point out that our newly proposed Monte Carlo method allows to deal with
Asian-style products that appear in insurance (e.g., unit-linked contracts) in a
very efficient way, and outperforms other knownMonte Carlo methods that are
based on control variates.
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1. INTRODUCTION

An Asian option is a derivative whose payoff is based on the average of the
trajectory of an underlying primitive asset. Such smoothing is often regarded
as a desired protection against unexpected and brutal changes in the value of
the underlying.1 The same averaging feature also appears naturally when com-
pounding or discounting cash flows, and hence Asian-style payoffs crop up in
finance and actuarial science naturally. Among others we mention unit-linked
products (see e.g., Schrager and Pelsser, 2004), ratchet equity indexed annu-
ities (with Asian-end design) (see e.g., Lin and Tan 2003; Ballotta 2010) and
variable annuities with flexible premiums (see e.g., Milevsky and Posner 2003).
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Technically speaking, Asian options also appear in other disciplines such as
physics (see e.g., Romeo et al. 2003) and engineering (see e.g., Fenton 1960).
Unfortunately the averaging, and thus the path-dependence involved, makes
options with Asian-style features much harder to value than their plain vanilla
counterparts, and this even under the standard Black–Scholes model for the
financial market. Hence, there has always been a great interest of the aca-
demic community in Asian options; see e.g., Boyle and Potapchik (2008) for
an overview. They also exist in different flavors, but in this paper we focus on
the discretely monitored fixed strike Asian option with arithmetic averaging.

We make several contributions in this paper. Our first contribution is that
we derive model-independent lower bounds for Asian options valid in a rather
general market setting. Model-independent bounds are important because they
are solely implied by information available in the market and hence are neither
prone to model error nor incompleteness of financial markets. The bounds we
obtain are closely tied to the ones appearing in Albrecher et al. (2008), but are
here obtained in a more straightforward way. Our approach does not make use
of ad hoc probabilistic arguments but rather relies on simple conditioning tech-
niques combined with well-established actuarial theory on stop-loss bounds.
This result is also appealing as similar conditioning arguments can be useful to
derive bounds for other options. In this paper we show that the idea of condi-
tioning is also crucial in proposing a new semi-analytic approach.

Our second contribution is that, in the context of the subordinated Brown-
ian motion for modeling the stock returns, we present a semi-analytic pricing
method using a two-step approach. The idea of this method is that in the first
step we condition on the stochastic clock which makes the nature of the prob-
lem multi-variate normal and allows us to make use of very accurate closed
form approximations that we apply conditionally. Next, we use Monte Carlo
simulation to account for the stochasticity of the clock itself. This method is
astonishingly fast and provides tight lower bound approximations. The budget
for carrying out simulations is important when economic (real-world) scenarios
interplay with (risk-neutral) pricing, a situation that appears when assessing the
risk of a portfolio of financial instruments over a given horizon (e.g., one year).
In these instances thismethod appears to provide an attractive trade-off between
accuracy and efficiency.

Monte Carlo simulation is a classical approach to value derivatives. It com-
bines flexibility with accuracy, i.e., asymptotically the simulated value converges
to the true value. The drawback is that the variance on the estimate decreases
slowly, which creates room for potentially attractive improvements. Our third
contribution is that we show how the bounds that we derive can also be used
as the so-called control variates to increase the efficiency of traditional Monte
Carlo schemes. We compare this method with other promising control vari-
ate approaches that were recently proposed by Dingec and Hormann (2012)
and Fusai and Meucci (2008). Several numerical experiments allow us to con-
clude that our approach is outperforming when pricing insurance contracts
with Asian-style features such as unit-linked contracts or variable annuities with

https://doi.org/10.1017/asb.2014.6 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.6


IMPROVING THE PRICING OF ASIAN-STYLE OPTIONS 239

flexible premiums. In contrast, the method of Fusai andMeucci (2008) is better
adapted when pricing contracts with a shorter maturity.

The structure of the paper is as follows. In Section 2 we derive model-
independent lower bounds that were introduced in Albrecher et al. (2008) in
a more straightforward way. In Section 3 we discuss the use of these bounds as
control variates inMonte Carlo simulations. In Section 4 we introduce the mar-
ket setting that we focus on, namely a subordinated Brownian motion frame-
work with as particular examples the Variance Gamma (VG) and the Normal
Inverse Gaussian (NIG) models. Section 5 is devoted to the derivation of an-
alytical expressions for the lower bounds that we use as control variates in the
setting of the VG and the NIG models. Section 6 presents the second approach
for deriving precise and efficient estimations for the price of an Asian option.
Several sets of numerical results are discussed in Section 7. Section 8 provides
some extensions, in particular ratchet equity-indexed annuities and unit-linked
insurances are discussed. Section 9 concludes the paper.

2. MODEL-INDEPENDENT BOUNDS FOR ASIAN OPTIONS

The bounds that we propose to price Asian options efficiently are rooted in actu-
arial theory on stop-loss order.We first define this ordering concept and provide
a modest accompanying result that we further need in the paper. Next we derive
three model-independent lower bounds for Asian options. These can also be
found in Albrecher et al. (2008), but are here derived in a more straightforward
way.

2.1. Stop-loss bounds

Stop-loss order is a well-established concept in the actuarial literature. It can be
formally defined as follows.

Definition 1 (stop-loss order). Let X and Y be two random variables. We say that
the random variable2 X is smaller than Y in stop-loss order, denoted as X ≤sl Y,

if for all d ∈ R it holds that E[Max(X− d, 0)] ≤ E[Max(Y− d, 0)].

It is well known that X ≤sl Y ⇔ E[v(X))] ≤ E[v(Y)] for all increasing con-
vex functions v, which explains why stop-loss order also appears in the literature
under the name increasing convex order.3A well-known stop-loss lower bound
for X is obtained by conditioning, i.e., for any random variable Z it holds that,

E[X | Z] ≤sl X, (1)

where Z can be any random variable. This result is also known as Jensen’s in-
equality and is instrumental in this paper. A sufficient condition for X ≤sl Y
is that E[X] ≤ E[Y] and their respective distribution functions cross only once
(i.e., there exists a real c so that FX(x) ≤ FY(x) for x ≤ c and FX(x) ≥ FY(x)
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for x ≥ c). See also Müller and Stoyan (2002) for example. It is then also clear
that when g and h are non-decreasing,

g(X) + E[h(X)] ≤sl g(X) + h(X). (2)

This last inequality will also be often used throughout the paper.

2.2. Asian options

In this paper we use the setup and the notation from Albrecher et al. (2008).
Hence, we consider an arbitrage-free financial market containing a risky asset
with price process {St, t ≥ 0} and a risk-free asset yielding the continuously
compounded risk-free rate r . Let P denote the physical probability measure.
We consider the arithmetic Asian option with payoff at maturity T > 0 given
by

Max(HT − K, 0) .

Here

HT = 1
n

n∑
i=1

Sti ,

K is the strike and the ti (i = 1, 2, ..., n) are the n monitoring times. Without
loss of generality we assume that tn = T. The absence of arbitrage opportunities
implies there is an equivalent martingale (also called risk-neutral) measure Q
such that

E[Ss | St] = Ster(s−t) s ≥ t ≥ 0, (3)

holds, where the expectation is taken with respect to Q. Unless otherwise
mentioned, all expectations appearing in this paper are Q-expectations. The
arbitrage-free value of the Asian option at t = 0 is denoted by AC(K, n) and is
determined by

AC(K, n) = e−rTE[Max (HT − K, 0)]. (4)

It is well known that the absence of arbitrage is not sufficient to determine the
risk-neutral measure Q uniquely, hence the pricing of an Asian option (and
other derivatives) might not be unambiguous.Moreover, for any possible choice
for the pricing measureQ the evaluation of (4) is by nomeans trivial and analyt-
ical solutions appear to be out of reach in general. Several methods have then
been proposed in the literature, including (pseudo) Monte Carlo simulations,
moment-matching techniques and Fast Fourier Transforms (FFTs). Unfortu-
nately, the successful application of thesemethods require a further specification
of the price process {St, t ≥ 0} .

The uncertainty inherent with arbitrage-free pricing then gives an incentive
to develop model-independent lower bounds, i.e., bounds for AC(K, n) that are
(as much as possible) based on available market information only and do not
requiremodeling assumptions.Hence, in the next sectionwe aim at finding lower
bounds for AC(K, n) that are “as close as possible” to AC(K, n), while also “as
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model free as possible” in the sense that they intend to hold irrespective of the
choices onemakes for the risk-neutral measure and the price process of the risky
asset. Indeed, the bounds that we propose only require knowledge of prices of
plain vanilla call prices essentially. Let us now introduce random variables Hl,t

T
defined as

Hl,t
T = E[HT | St] 0 ≤ t ≤ T.

Using the notation

j (t) = Min{i | ti ≥ t} ,

we find using condition (3) that Hl,t
T can also be expressed as

Hl,t
T = AT + 1

n

n∑
i= j (t)

Ster(ti−t),

where AT is given as

AT =
j (t)−1∑
i=1

1
n
E[Sti | St], (5)

and where it is tacitly assumed that
∑ j (t)−1

i=1 = 0 when j (t) = 1. Note that
Jensen’s inequality (1) implies that

Hl,t
T ≤sl HT,

which shows, as per the definition of stop-loss order, that the Hl,t
T might be useful

to determine lower bounds for the Asian call price AC(K, n), and this is the
topic of the next section.

2.3. Albrecher et al.’s model-independent lower bounds

2.3.1. First lower bound. Let us consider the case 0 ≤ t ≤ t1. In this instance
Hl,t
T clearly writes as,

Hl,t
T = 1

n

n∑
i=1

Ster(ti−t).

Let us observe that

Hl,t
T = E[Hl,t1

T | St].

In particular, this implies that for all t ∈ [0, t1], H
l,t
T ≤sl H

l,t1
T so that the best

lower bound for the Asian call price AC(K, n), based on Hl,t
T , is reached when
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t = t1. For its value, denoted by LB1, we find that

LB1 = e−rTE
[
Max(Hl,t1

T − K, 0)
]

= e−rT

n
E
[
Max

(
St1 − nK∑n

i=1 er(ti−t1)
, 0

)] n∑
i=1

er(ti−t1)

= 1
n
C

(
nK∑n

i=1 er(ti−t1)
, t1

) n∑
i=1

e−r(T−ti ), (6)

where in the last step we have tacitly introduced the notation C(K, t) to denote
the value of a standard European Call with strike K and maturity t > 0. In
summary, we have that

LB1 ≤ AC(K, n),

and only the non-arbitrage assumption was needed to derive the expression for
LB1. Hence, the value for LB1 can be observed in the market as soon as the
European calls are quoted.

We remark that expression (6) was already derived in Albrecher et al. (2008,
eq. (4) p. 127). They resorted to comonotonicity theory in order to do so, but
this is unnecessary. In the next section we sharpen the bounds further. However,
this goes at the cost of imposing some more structure on the market.

2.3.2. Second lower bound. The first lower bound might not be sharp because
the variable Hl,t1

T , obtained by taking the conditional expectation of HT with
respect to St1, may not always depict the best possible approximation for HT
(which incorporates the randomness of St over the entire horizon [0,T] and not
only [0, t1]). Hence, to improve the bounds we aim at considering choices for
all 0 ≤ t ≤ T. In order to do so successfully we need to impose the following
condition on the market.

Condition 1. For all 0 ≤ t ≤ T and all i = 1, . . . , j (t) − 1 the random
variables E[Sti | St] are non-decreasing in St.

Assume that the stock price St at time t > 0 is known. Then the condition
states that the expected stock prices at any intermediate time are increasing in St,
which appears a natural and desirable property for the risky asset price process
{St, t ≥ 0}. FromCondition 1 it follows that AT as defined in (5) is increasing in
St (0 ≤ t ≤ T) so that inequality (2) can be applied to find the stop-loss bound,

E[AT] +
1
n

n∑
i= j (t)

Ster(ti−t) ≤sl HT, (7)
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where E[AT] is explicitly given as

E[AT] = 1
n

j (t)−1∑
i=1

S0erti .

From (7) it follows that

e−rTE

⎡⎣Max

⎛⎝E[AT] +
1
n

n∑
i= j (t)

Ster(ti−t) − K, 0

⎞⎠⎤⎦
= e−rT

∑n
i= j (t) e

r(ti−t)

n
E

[
Max

(
St − n(K − E[AT])∑n

i= j (t) er(ti−t)
, 0

)]

= 1
n

n∑
i= j (t)

e−r(T−ti )C(c(1)
t , t)

≤ AC(K, n),

where c(1)
t is given as

c(1)
t =

(
nK − ∑ j (t)−1

i=1 S0erti
)

∑n
i= j (t) er(ti−t)

.

Since this holds for all 0 ≤ t ≤ T, we find that

LB(1)
t ≤ AC(K, n),

with LB(1)
t given as

LB(1)
t = e−rT

n
Max
0≤t≤T

⎛⎝C(c(1)
t , t)

n∑
i= j (t)

erti

⎞⎠ . (8)

Note that expression (8) can also be found in Albrecher et al. (2008, eq. (10),
p. 129), where more involved probabilistic arguments have been used to obtain
it. Hence, the value for the LB(1)

t can be observed in the market as soon as the
European calls are quoted. Furthermore, in order to derive the LB(1)

t we do not
really need Condition 1. It is sufficient that (the less intuitive) condition (7) is
fulfilled (see alsoAlbrecher et al., 2008). Finally, let us remark that LB1 ≤ LB(1)

t .

2.3.3. Third lower bound. The following condition usually allows to further
improve the bounds.
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Condition 2. For all i = 1, . . . , j (t)−1we assume that E[Sti | St] ≥ S
1− ti

t
0 S

ti
t
t

(almost surely).

Assume that the stock price St at time t > 0 is known. Then the expected
stock price at intermediate times 0 ≤ ti ≤ t is bounded below by the geometric
average of the stock prices St and S0 with weights equal to normalized distance
between ti and 0 respectively. It is not difficult to show that this assumption holds
when log-returns are identically and independently distributed, a condition that
holds true for exponential Lévy models (see also Proposition 2.1 in Albrecher
et al., 2008).

Condition 2 implies that

Lt := 1
n

j (t)−1∑
i=1

S0

(
St
S0

) ti
t

+ 1
n

n∑
i= j (t)

Ster(ti−t) ≤sl
1
n

n∑
i=1

Sti . (9)

Taking into account that the left-hand side of the inequality is increasing in St,
we find that

e−rTE[Max(Lt − K, 0)]

= e−rTS0
n

j (t)−1∑
i=1

E

⎡⎣Max

⎛⎝(
St
S0

) ti
t

−
(
c(2)
t

S0

) ti
t

, 0

⎞⎠⎤⎦
+ e−rT

n

n∑
i= j (t)

er(ti−t)E[Max(St − c(2)
t , 0)]

= e−rTS0
n

j (t)−1∑
i=1

E

⎡⎣Max

⎛⎝(
St
S0

) ti
t

−
(
c(2)
t

S0

) ti
t

, 0

⎞⎠⎤⎦
+ e−rT

n

n∑
i= j (t)

erti C(c(2)
t , t),

where c(2)
t is now the solution of

nK −
j (t)−1∑
i=1

S0

(
c(2)
t

S0

) ti
t

− c(2)
t

n∑
i= j (t)

Ster(ti−t) = 0.

Hence, we find that

LB(2)
t ≤ AC(K, n),
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where LB(2)
t is given by

LB(2)
t = e−rT

n
Max
0≤t≤T

⎛⎝S0 j (t)−1∑
i=1

E

⎡⎣Max

⎛⎝(
St
S0

) ti
t

−
(
c(2)
t

S0

) ti
t

, 0

⎞⎠⎤⎦
+

n∑
i= j (t)

erti C(c(2)
t , t)

⎞⎠ . (10)

Note that in order to derive LB(2)
t we do not really need Condition 2. It is suf-

ficient that (the less intuitive) condition (9) will hold. Also, this expression can
be found in Albrecher et al. (2008, eq. (15), p. 132), but our approach is based
on simpler considerations. Also note that LB(2)

t is maximum over different time
instances of prices of a path-independent power call option. Carr and Chou
(1997) explain that if an investor can trade in all European calls maturing at T,

the path-independent option can be uniquely decomposed into a bond and a
continuum of calls. Hence, when all call prices are available in the market, the
value for LB(2)

t can be determined using their decomposition formula.
In Albrecher et al. (2008) the different lower bounds for Asian option prices

have been numerically evaluated with varying success. Intuitively this is because
the bounds used are essentially based on “approximating” the sum 1

n

∑n
i=1 Sti

by a conditioned sum involving a single component Stj ( j = 1, 2, . . . , n) only.
While this procedure allows to obtain (almost) model-free lower bounds for
Asian option prices, the reduction of dimensionality comes at some cost.

In this paper we aim at improving the accuracy. More precisely, we show the
bounds can be used as control variates to improve efficiency of Monte Carlo
approaches when estimating the price of Asian options. In doing so we focus
on the third stop-loss bound. While there is no formal guarantee that it outper-
forms the second lower bound (and thus also the first lower bound), Albrecher
et al. (2008) provides theoretical and empirical evidence that this is often the
case. Recall also that this third lower bound exists in a Lévy setting and thus
has practical4 appeal (see also proposition 2.1 in Albrecher et al., 2008).

In the next Sections 3–5 we explain in detail the control variate approach
that we propose. Numerical results can be found in Section 7.

3. BOUNDS AS CONTROL VARIATES FOR IMPROVED SIMULATION

In this section we show that the stop-loss bounds derived in Section 2 appear as
a useful device to improve Monte Carlo simulation significantly, namely when
using them as control variates.
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3.1. Control variates

Clearly, the pricing of an Asian option amounts to determining the ex-
pected value of a random variable. A traditional technique to cope with
such problem is Monte Carlo simulation which builds upon the law of large
numbers and thereby upon large samples of random numbers. Hence, let
Y1, Y2, . . . ,Yk be a series of k independently and identically distributed (i.i.d.)
replications of the payoff e−rT( 1n

∑n
i=1 Sti − K)+. Then a classical estimator for

E[Y] := e−rTE[( 1n
∑n

i=1 Sti − K)+] is its sample mean Y given as

Y = 1
k

k∑
i=1

Yi . (11)

The law of large numbers assures that a sample of independent, identically
distributed random variables converges to the sample mean as the sample size
k increases. More specifically, the statistic Y is an unbiased and (strongly) con-
sistent estimator for E[Y], and

√
k(Y− E[Y])√

Var[Y]
⇒ N(0, 1),

where “⇒” denotes convergence in distribution, and N(0, 1) denotes the stan-
dard normal distribution. To summarize: The Monte Carlo simulation consists
in generating random draws Y1, . . . ,Yk and next applying (11). We remark that
the O(k− 1

2 ) convergence rate is independent of the number of dimensions n in-
volved in the payoff sum, namely

∑n
i=1 Sti , making simulation for highly multi-

dimensional problems often the preferred approach above other numerical tech-
niques.

On the other hand, one of the main weaknesses with the Monte Carlo
method is efficiency since standard simulation provides convergence rates of
(only) k−1/2. Using simulation, excessive run lengths or replications may thus
be necessary to yield estimators with acceptable precision. In practice, simula-
tion time can be of great importance, and consequently techniques have been
developed to improve the performance of the Monte Carlo method, most of
which are aimed at reducing the variance of the estimator. Variance reduction
techniques thus allow to obtain greater precision for the same amount of simu-
lation time, or to achieve a desired precisionwith less simulation time. One of the
most effective variance reduction techniques is the method of control variates.
The main idea is to use a highly correlated random variable with known mean
to reduce the variance of the estimator. In our context, the geometric counter-
part of the arithmetic Asian option has already been proposed in literature as a
control variate by, e.g., Kemna and Vorst (1990) and Fu et al. (1999). Recently,
this idea was further exploited and deepened by Fusai and Meucci (2008) and
Dingec and Hormann (2012).
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In this paper we show how the stop-loss bounds Lt that we discussed in
Section 2 can appear as suitable control variates. More precisely, when Con-
dition 2 is fulfilled the random variables Lt (see (9)) provide stop-loss bounds
for HT = 1

n

∑n
i=1 Sti . We remark that the Lt are essentially obtained through

conditioning and thus may preserve a significant amount of the information
contained in HT. In other words, one may intuitively expect the Lt to have good
correlation with HT making them possible candidates to improve convergence
considerably.

First, let us consider only one time instance tj and therefore only one
random variable Ltj . Suppose that for each replication Yi for the payoff
e−rT( 1n

∑n
i=k Stk − K)+, we calculate another output Xi corresponding to the

replication of X := e−rT(Ltj −K)+ (Xi will be later in the text denoted by X(tj )
i ,

but as long as there is no confusion it is denoted just by Xi ). Let us assume
that E[X] is known analytically (an analytical expression is given in Section 5
in the setting of VG and NIG models). We then consider the replications Xi
(i = 1, 2, . . . , k) such that the subsequent pairs (Xi ,Yi ) are i.i.d. The unbiased
estimator of E[X] is therefore given by

X = 1
k

k∑
i=1

Xi .

Then the control variate estimator Yc of E[Y] given by

Yc = Y− b(X− E[X])

= 1
k

k∑
i=1

(Yi − b(Xi − E[X]))

is also unbiased and asymptotically normally distributed (see Glasserman,
2003).

The optimal coefficient b∗ which minimizes the variance of the new control
variate estimator, namely5

Var[Yc] = Var[Y](1 − ρ2
XY) (12)

with ρXY the correlation between X and Y, is given by (see Glasserman, 2003)

b∗ = Cov[X,Y]
Var[X]

.

Quantities Cov[X,Y] and Var[X] are usually not known and in this case one
has to use an estimate of b∗. Here we have chosen to use the estimate b̂ given by

b̂ =
∑k

i=1(Xi − X)(Yi − Y)∑k
i=1(Xi − X)2

.
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In our setting we can choose any tj to create a single control variate. It
appears natural to use different Ltj ( j = 1, 2, . . . , n) together to create n
control variates. Suppose that each replication of a simulation produces out-
puts Yi and Xi = (X(t1)

i , . . . , X(tn)
i )′ (the exponent ′ denotes that the vec-

tor is transposed) corresponding to a vector of payoff replications, namely
X = e−rT((Lt1 − K)+, . . . , (Ltn − K)+)′, and suppose that the vector of cor-
responding expectations E[X] is known. Then one can derive that the control
variate estimatorYc based on the vector of sample means of the control variates
X := (X(t1), X(t2), . . . , X(tn))′ is given by

Yc = Y− (B)′(X − E[X]),

where B∗ = �−1
X �XY is optimal with minimized variance of Yc. �X is a

n × n covariance matrix and�XY is a n × 1 covariance vector (see Glasserman,
2003). Since B∗ is not known explicitly, it needs to be estimated. In order to
avoid introducing bias we first generate pairs to estimate B∗ and, in particular,
estimates �̂X and �̂XY for �X and �XY respectively. Next, we use the remaining
pairs to determine Yc(B∗) independently, and then the minimized variance is

Var[Yc] = Var[Y](1 − R2), (13)

where one estimates R2 by �̂′
XY�̂−1

X �̂XY/Var[Y].
Whereas the random variables Ltj are based on arithmetic averaging, we will

propose in Section 3.3 control variates based on geometric averaging. These will
be applied in the same way as above.

While the technique of using control variates is rather straightforward, its
successful application depends on a series of conditions that need to be met.
First, using a control variate X for estimating E[Y] more efficiently implies that
E[X] needs to be known. Second, as expressed by (12) and (13), the gain in
efficiency depends on the strength of correlation. Finally, on a more practical
note, it is important to observe that the computational cost to generate the repli-
cations (Xi ,Yi ) should roughly be the same as generating the Yi alone. We now
discuss these conditions in some more detail for the specific context at hand.

3.2. Arithmetic lower bounds (ALBs)

We now show that the stop-loss bounds Ltj given in (9) are usually useful as
control variates in simulation schemes for pricing Asian options.

First, the intrinsic properties of the sum Ltj make it often possible to com-
pute E[(Ltj − K)+] ( j = 1, . . . , n) explicitly. Indeed, as shown in Section 2 and
in Albrecher et al. (2008), every E[(Lt − K)+] can be expressed as

E[(Lt − K)+] =
j (t)−1∑
i=1

S
1− ti

t
0

n
E[(S

ti
t

t − k
ti
t )+] +

n∑
i= j (t)

er(ti−t)

n
E[(St − k)+], (14)
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where k is the solution of the equation:

1
n

j (t)−1∑
i=1

S0

(
k
S0

) ti
t

+ 1
n

n∑
i= j (t)

ker(ti−t) = K.

As can be easily noticed in (14), evaluating E[(Ltj − K)+] essentially amounts
to pricing a series of European power call payoffs of the type

(Srt − K)+,

with r being a suitable real number and K a strike. We will see in Sections 4 and
5 that this is often in reach explicitly.

Second, the replications for both HT and L := (Lt1, Lt2, . . . , Ltn ) are fully
determined by replications for the Sti (i = 1, 2, . . . , n) so that “almost no
extra cost” is implied when generating the replications (Hi

T,Li ). Third, the
random variable HT is expected to be strongly related with the different Ltj
( j = 1, 2, . . . , n) so that significant efficiency gains are made.

We remark that (9) is in fact the arithmetic average of the vector⎛⎝S0 ( St
S0

) t1
t

, . . . , S0

(
St
S0

) t j (t)−1
t

, Ster(tj (t)−t), . . . , Ster(tn−t)

⎞⎠ .

When using Ltj ( j = 1, 2, . . . , n) as control variates to speed up the Crude
Monte Carlo (CMC), we label this in the following as the ALB approach, and
we use the shorthand notation ALBt to reflect e−rTE[(Lt − K)+].

3.3. Geometric lower bounds (GLBs)

Using the lower bounds (10) at different spot times t1, . . . , tn to construct a
multi-dimensional vector of control variates requires the evaluation of (14) for
all these spot times. This needs some computational efforts which may slow
down the pricing procedures. In order to derive in a more efficient way some
control variates that are both highly correlated and fast to compute, we also
propose to consider the geometric average of⎛⎝S0 ( St

S0

) t1
t

, . . . , S0

(
St
S0

) t j (t)−1
t

, Ster(tj (t)−t), . . . , Ster(tn−t)

⎞⎠ ,

denoted by L̃t, i.e.,

L̃t :=
⎛⎝ j (t)−1∏

i=1

S0

(
St
S0

) ti
t

n∏
i= j(t)

Ster(ti−t)

⎞⎠1/n

= αt(St)βt (15)
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with

αt =
⎛⎝ j (t)−1∏

i=1

(S0)1−
ti
t

n∏
i= j(t)

er(ti−t)

⎞⎠1/n

,

β t = 1
n

( j (t)−1∑
i=1

ti
t

+ n − j (t) + 1

)
. (16)

When using different L̃tj ( j = 1, 2, . . . , n) to enhance simulation, we refer
to GLB and denote GLBt := e−rTE[(L̃t − K)+]. Note that

GLBt := e−rTE[(αt(St)βt − K)+].

Compared with the ALBs in (14), we now only need to price one European
power call option for each spot time in (15). This saves a lot of computational
efforts but using the geometric average is at the cost of the precision. Indeed, it
is well known that the geometric averages are always smaller than the arithmetic
ones in (almost surely) order, and therefore one also has

e−rTE[(L̃t − K)+] ≤ e−rTE[(Lt − K)+].

Wenowproceed by specifying an important class ofmarketmodels forwhich
our pricing method based on control variates appears useful.

4. MARKET SETTING: SUBORDINATED BROWNIAN MOTION

In this section we discuss subordinated Brownian motion as a suitable way to
model asset returns. This provides a convenient framework for using the control
variate approach.Wewill also use this setting in Section 6, where we develop our
second method to price Asian options.

4.1. Subordination

It is convenient to express the risky asset price in terms of its log-returns, i.e., we
write St = S0eXt , where Xt is to be interpreted as a cumulative log-return. The
workhorse for modeling returns consists in assuming {Xt, t ≥ 0} is a Brownian
motion with drift. This essentially amounts to assuming that the distribution of
the increments Xt+s − Xs over the time interval [s, s + t], s, t ≥ 0, is normally
distributed. This setup can be traced back to Bachelier (1900), and is known in
the literature as the famous Black–Scholes market. Numerous empirical studies
have revealed the fact that asset price volatility tends to be time-varying and
exhibits clustering effects. This in turn also implies that the assumption of nor-
mally distributed returns is not suitable to capture the long-tailed features of
financial time series, especially when the problem at hand involves short-term
returns; see e.g.,Mandelbrot (1963), Eberlein et al. (1998) and Carr et al. (2002).
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An idea to accommodate for this is to generalize the Brownian motion by
making time itself stochastic, i.e., by considering time-changed Brownian mo-
tions. To this end, suppose that φ(u) is the characteristic function related to
some distribution function (d.f.), and let Zt = θGt + σ BGt , where θ ∈ R,
σ ∈ R+

0 , Bt is the standard Brownian motion and where {Gt, t ≥ 0} is an-
other positive stochastic process. The latter process is referred to as time-change,
stochastic clock, chronometer or business time. We assume that it starts at zero,
has independent and stationary increments and is such that the distribution of
an increment over [s, s+t], s, t ≥ 0, i.e.,Gt+s−Gs has (φ(u))t as its characteristic
function. If {Gt, t ≥ 0} is a positive and strictly increasing Lévy process, it is
called a subordinator. It can be shown that a Lévy process that is time-changed
by a subordinator remains a Lévy process (see Sato, 1999).

The process {Zt, t ≥ 0} constructed in the above way from a Brownian mo-
tion is called the subordinated Brownian motion. Such processes provide more
flexibility and potential accuracy when modeling stochastic returns. For a full
theoretical background, we refer to Cont and Tankov (2004). The focus on sub-
ordinated Brownian motions for modeling asset returns is no real restriction
because Monroe (1978) essentially showed that arbitrage-free models for assets
can be represented as time-changed Brownian motions. Note that many popu-
lar models in finance are based on time-changed Brownian motion where the
time-change is chosen to be a subordinator. For example, the VG process or the
Generalized Hyperbolic Model (including the NIG process) can be represented
as Brownian motion time-changed by the respective Gamma process (Madan
et al., 1998) or the Generalized Inverse Gaussian process (Eberlein and Keller
1995). The Normal Tempered Stable process (also including the NIG process)
can be written as Brownian motion time-changed by a tempered stable subor-
dinator. We now formally present the first two models mentioned.

4.2. The variance Gamma model

This process was originally introduced byMadan and Senata (1990) and further
studied in Madan et al. (1998). It is a pure jump process that is obtained by
changing the clock of a standard Brownian motion by a Gamma process. More
precisely, let {Bt, t ≥ 0} denote a standard Brownian motion, σ > 0 and θ ∈ R;
then the VG process ZVG = {ZVGt , t ≥ 0}, with parameters σ , ν and θ is defined
as

ZVGt = θGt + σ BGt ,

where Gt is a Gamma process with mean t and variance νt. The density of Gt
can be written as

fGt (x;
t
ν
, ν) = x

t
ν
−1 e− x

ν



( t

ν

)
ν

t
ν

, ν > 0, (17)

where 
(·) stands for the Gamma function.
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The density and the characteristic function of a Brownian motion time-
changed by a subordinator, Gt, can be derived exploiting the fact that Zt condi-
tional on Gt = g has a Gaussian distribution with mean θg and variance σ 2g.
For completeness we report the characteristic and the density function in case
of univariate VG:

ϕVG(u; σ, ν, θ) =
(
1 − iuνθ + 1

2
νu2σ 2

)− t
ν

,

fVG(x; σ, ν, θ) = 2e
θx
σ2

ν
t
ν

√
2πσ
( t

ν
)

(
x2

2σ 2

ν
+ θ2

) t
2ν − 1

4

K t
ν
− 1

2

⎛⎝ 1
σ 2

√
x2(

2σ 2

ν
+ θ2)

⎞⎠,

(18)

where Kk(·) denotes the modified Bessel function of the second kind of order k,
see e.g., Madan et al. (1998).

In a Lévy market, there are many different equivalent martingale measures
to choose. There exist two popular approaches to find an equivalent martingale
measure, namely by using the so-called Esscher transform (see Gerber and Shiu,
1994, and the next paragraph) or by mean-correcting the exponential of a Lévy
process (see Schoutens, 2003). This last method consists in changing the “drift”
parameter in the Lévy process such that the discounted stock-price process be-
comes a martingale. For the VG model, we follow this last approach as in the
paper by Albrecher et al. (2008) since we aim to use their parameter estimates
in our numerical section.

More precisely, the risk-neutral process for the stock price dynamics in this
section is given by the following VG process obtained by replacing the role of
the Brownian motion in the original Black–Scholes model by the VG process
and by taking into account the right drift such that the discounted stock-price
process is a martingale:

St = S0 exp((r + ω)t + ZVGt )

= S0 exp(Z̃VGt ), (19)

where Z̃VGt = (r + ω)t + ZVGt with ω = 1
ν
ln(1 − θν − σ 2ν

2 ). Indeed, in this case
one easily observes that the mean rate of return on the stock equals the risk-free
interest rate r .

4.3. The normal inverse Gaussian model

The NIG process ZNIG = {ZNIG
t , t ≥ 0} has stationary and independent NIG-

distributed increments with ZNIG
0 = 0. More precisely, ZNIG

t has an NIG law
with parameters α, η, δ and μ given by

fNIG(x; α, η, δ, μ) = αδ

π
eδ

√
α2−η2+η(x−μ) K1(α

√
δ2 + (x− μ)2)√

δ2 + (x− μ)2
(20)
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with 0 ≤ |η| ≤ α, δ ≥ 0 and μ ∈ R, where K1(·) denotes the modified Bessel
function of the second kind of order 1. For a survey on stochastic processes of
the NIG-type, we refer to Barndorff-Nielsen (1998).

It is further well known (see e.g., Schoutens, 2003) that anNIGprocess ZNIG
t

with parameters α, η, δ and μ with density (20) can be rewritten as a drift term
plus an Inverse Gaussian time-changed Brownian motion, namely

ZNIG
t = μt + ηδ2 It + δBIt ,

where {It, t ≥ 0} is an Inverse Gaussian process for which the density function
is explicitly known, namely

fIG(x; a, b) = a√
2π

eabx−3/2e− 1
2 (a2x−1+b2x), x > 0

with parameters a = 1 and b = δ
√

α2 − η2.
To apply theNIGmodel formarket pricemodeling, we recall fromAlbrecher

and Predota (2004) that log-returns of asset prices will be modeled by an NIG
process ZNIG

t , and therefore prices by St = S0 exp(ZNIG
t ). Since the market

model is incomplete, there are many candidates of equivalent martingale mea-
sures for risk-neutral valuation and we use, as in the paper by Albrecher and
Predota (2004), the method of Esscher transforms in order to be able to use
their parameter estimates later on. We refer to Albrecher and Predota (2004)
for details and further references.

In particular, Albrecher and Predota (2004) show that for a Lévy process
{ZNIG

t , t ≥ 0} it is possible to define a locally equivalent probability measure
Pθ , called the Esscher equivalent measure, through

dPθ = exp(θZNIG
t − t logMNIG(θ))dP,

with MNIG(θ), the moment generating function of (20)6. This probability mea-
sure Pθ is a risk-neutral probability measure if θ is the solution of

r = μ + δ(
√

α2 − (η + θ)2 −
√

α2 − (η + θ + 1)2).

The stock prices under this probability measure Pθ also follow an NIG process
with new parameter η′ = η + θ . Therefore, under this risk-neutral measure, we
consider St = S0 exp(Z̃NIG

t ), where Z̃NIG
t is the NIG(α, η + θ, δ, μ) process.

Note that the NIG distribution is a special case λ = − 1
2 of the generalized

hyperbolic distribution given by the density

fGH(x; α, η, δ, λ, μ) = a(α, η, δ, λ)
Kλ− 1

2
(α

√
δ2 + (x− μ)2)

(δ2 + (x− μ)2)
1
4− λ

2

eη(x−μ),

a(α, η, δ, λ) = (α2 − η2)
λ
2

√
2παλ− 1

2 δλKλ(δ
√

α2 − η2)
,

(21)
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where Kν(x) denotes as above themodified Bessel function of the second kind of
order ν. Derivation of the characteristic function of the generalized hyperbolic
distribution (as well as its Lévy measure) can be found in Prause (1999), namely

ϕGH(u; α, η, δ, λ, μ) = eiuμ
(

α2 − η2

α2 − (η + iu)2

) λ
2 Kλ(δ

√
α2 − (η + iu)2)

Kλ(δ
√

α2 − η2)
. (22)

The generalized hyperbolic process is a pure jump process that has been in-
troduced in finance by the work of Eberlein andKeller (1995). Its construction is
similar to the one of the VG andNIG processes. However, this time the stochas-
tic clock follows a generalized inverse Gaussian distribution.

The VG process can also be seen as a special case of the generalized hyper-
bolic process. The density and characteristic function (18) can be obtained from
the generalized hyperbolic density and characteristic functions, namely (21) and
(22), by taking α =

√
(2/ν) + (θ2/ν4), η = θ/σ 2, λ = σ 2/ν, μ = 0 and δ → 0,

see e.g., Schoutens (2003).

5. ALB AND GLB AS AN EXPRESSION OF POWER CALLS

We remark that both ALB and GLB are based on the evaluation of power call
options with price

e−rTE[(αt(St)βt − K)+]. (23)

Indeed, the value of GLBt is then immediately obtained by substituting the
expressions of αt and β t stated in (16). The value of ALBt follows from rewriting
(14) as follows:

e−rTE[(Lt − K)+] = e−rT
j (t)−1∑
i=1

S
1− ti

t
0

n
E[(αti (St)

βti − k
ti
t )+]

+ e−rT
n∑

i= j (t)

er(ti−t)

n
E[(αti (St)

βti − k)+],

with αti = 1 for all i , β ti = ti
t for all 1 ≤ i ≤ j (t) − 1, β ti = 1 for all j (t) ≤ i ;

and with the appropriate strikes (see Sections 3.2 and 3.3).
We now will derive expressions for (23) in VG and NIG models.

5.1. Calculation of power call options in the variance Gamma model

We recall from Section 4 that under the chosen risk neutral measure the risk
neutral process is given by (19), namely

S(t) = S0 exp(Z̃VGt ),
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where Z̃VGt = (r + ω)t + ZVGt , ω = 1
ν
ln(1− θν − σ 2ν

2 ), and where {ZVGt , t ≥ 0}
is a VG process with parameters σ , ν and θ .

As mentioned in the beginning of this section, we study essentially the price
of a general power call option, namely

e−rTE[(αt(St)βt − K)+] = e−rTE[(αt(S0)βt eβt Z̃
VG
t − K)+]

= e−rTE[E[(αt(S0)βt eβt Z̃
VG
t − K)+|G(t) = g]]

= e−rTE
[∫ +∞

k∗
(αt(ξ t)

βt eβt x − K) f (x)dx
]

,

where k∗ = 1
βt
ln( K

αt(ξ t)
βt ), ξ t = S0 exp(rt + ωt) is a deterministic factor, and

where f (x) is the Gaussian probability density function with mean θg and vari-
ance σ 2g.

Hence, the inner expectation is given by the following Black–Scholes-type
formula, denoted by �(g):

�(g) :=
∫ +∞

k∗
(αt(ξ t)

βt eβt x − K) f (x)dx

= αt(ξ t)
βt exp

(
β tθg + σ 2gβ2

t

2

)
(1 − N (k∗; θg + σ 2g, σ

√
g))

− K(1 − N (k∗; θg, σ
√
g)),

where N (x; μ, σ) is the Gaussian cumulative distribution function with mean
μ and variance σ 2.

With this notation, the price of a general power call option equals

e−rTE[(αt(St)βt − K)+] = e−rT
∫ ∞

0
�(g) fG(t)(g)dg.

Using the density function fG(t)(g) of (17) and by substituting y = g
ν
, one

easily finds the following expression:

e−rTE[(αt(St)βt − K)+] =
∫ ∞

0
�(yν)y

t
ν
−1ν

t
ν
−1 e−y


( t
ν
)ν

t
ν

νdy

=
∫ ∞

0
y

t
ν
−1e−y�(yν)


( t
ν
)
dy. (24)

This integral can be computed numerically by using the generalized
Gauss Laguerre integration method. Indeed, the generalized Gauss Laguerre
quadrature (GLQ) is a numerical method to evaluate integrals of the form∫ +∞
0 w(y; α) f (y)dy, where w(y; α) = yαe−y with α > −1 (so in our case
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f (y) = �(yν)


( t
ν
)
and α = t

ν
− 1). More precisely, the GLQ proposes the following

approximation: ∫ +∞

0
yαe−y f (y)dy ≈

n∑
i

wi f (yi ),

where yi are the zeros of the generalized Laguerre polynomial L(α)
n (x) (see

Abramowitz and Stegun, 1964). These polynomials can be evaluated by using
the following recurrence relation:

(n + 1)L(α)

n+1(y) = (2n + 1 + s − y)L(α)
n (y) − (n + s)L(α)

n−1(y)

with initial conditions L(α)

0 (y) = 1 and L(α)

−1(y) = 0. The weights ωi are given by
the formula

wi = −
(n + α)


(n + 1)L(α)

n−1(xi )
dL(α)

n
dx (xi )

,

where the derivatives can be obtained by using the following relation:

y
d
dx

L(α)
n (y) = nL(α)

n (y) − (n + s)L(α)

n−1(y).

Formore details about this method, we refer to Press et al. (1992) and Stroud
and Secrest (1966). There are already a fewpapers that successfully appliedGLQ
for pricing various derivatives under the VG model in an accurate and fast way
(see for example, Madan et al., 2011 and Garcia et al., 2007). Browne et al.
(2003) used generalized GLQ for liquidity premium calculation. In our work,
as we have explained above, the generalized GLQ is a good method to compute
(24) showing up in the ALB and GLB values. The generalized GLQ leads to
accurate and fast approximations.

We remark that another famous and fast method to compute call options is
FFT, see e.g., Carr and Madan (1998). Indeed, one could use FFT to compute
expressions of the form (23). However, the FFT is adequate if one wants to
price options for multiple strikes because it returns a vector of option prices
simultaneously for different strikes. This makes it a suitable approach in the
context of model calibration, for instance. But in our case we need only the
price of one option for a fixed strike for differentαt and β t. Hence, an integration
routine which concentrates on single option prices saves significant computation
time. Therefore, we prefer the generalized GLQ.

5.2. Calculation of power call options in the normal inverse Gaussian model

To apply the NIG model, we recall from Section 4.3 that we model stock prices
by St = S0 exp(Z̃NIG

t ), where Z̃NIG
t is a NIG(α, η + θ, δ, μ) process under a

well-chosen risk-neutral measure related to the Esscher transform.
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Along the same lines as before, we find that
e−rTE[(αt(St)βt − K)+]

= e−rT
∫ ∞

1
βt

ln( K

αt S
βt
0

)

(αtS
βt
0 e

βt x − K) fNIG(x; α, η + θ, δ, μ)dx.

Note that exp(βtx) fNIG(x; α, η + θ, δ, μ) can be rewritten as

fNIG(x; α, η + θ + β t, δ, μ)c′
t,

where
c′
t = eδt(

√
α2−(η+θ)2−

√
α2−(η+θ+βt)

2
)+βtμ.

Therefore, one can easily derive an expression based on the cumulative dis-
tribution functions FNIG(·):

e−rTE[(αt(St)βt − K)+]

= e−rTc′
tαtS

βt
0

(
1 − FNIG

(
1
β t

ln

(
K

αtS
βt
0

)
; α, η + θ + β t, δ, μ

))

− K

(
1 − FNIG

(
1
βt

ln

(
K

αtS
βt
0

)
; α, η + θ, δ, μ

))
.

6. LOWER BOUND DERIVED USING THE STOCHASTIC CLOCK

Inspired by the idea of conditioning used to derive the model-independent
bounds in Section 2, we now present another method. Indeed, we will condi-
tion on different values in the path of the subordinator, also called the stochastic
clock. Assuming that St = S0 exp(μt+θGt+σ BGt ), where Bt is a Brownianmo-
tion and {Gt, t ≥ 0} is the stochastic clock, we can write the average 1

n

∑n
i=1 Sti

as
∑n

i=1 α(ti ,Gti ) exp(σ BGti
), with α(ti ,Gti ) = S0e

μti+θGti

n . As before, we assume
that tn = T.

Using this notation, we can express the price of the Asian call option at time
t = 0 as

AC(K, n) = e−rTE

[(
1
n

n∑
i=1

Sti − K

)+]

= e−rTE

[
E

[(
n∑
i=1

α(ti ,Gti ) exp(σ BGti
) − K

)+
|Gt1, . . . ,Gtn

]]

= e−rTE

[
EG

[(
n∑
i=1

α(ti ,Gti ) exp(σ BGti
) − K

)+]]
,

where EG[.] is a short-hand notation to reflect E[.|Gt1, . . . ,Gtn ].
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Note that by conditioning, the inner expectation is essentially an option on
an average of log-normally distributed random variables. Indeed, after con-
ditioning we have that σ BGti

are normally distributed random variables with
means and variances that only depend on the values of Gti .

Vanduffel et al. (2008a) proposed for E[(
∑n

i=1 αi eXi − K)+] with Xi (multi-
variate) normal random variables, a lower bound based on the so-called maxi-
mal variance approximation, namely

E

[(
E

[
n∑
i=1

αi eXi | � =
n∑
i=1

λi Xi

]
− K

)+]
,

with an appropriate choice for the coefficients of the conditioning variable
� = ∑n

i=1 λi Xi . Indeed, λi are chosen in order to maximize the first-order ap-
proximation of the variance of E[

∑n
i=1 αi eXi | � = ∑n

i=1 λi Xi ]. This method
leads to lower very accurate analytical lower bound approximations of the true
prices (see e.g., Kaas et al., 2000; Vanduffel et al., 2008a,b; Valdez et al., 2009).

Applying the appropriate formulae of Vanduffel et al. (2008a), namely their
equations (10), (17), (37) and (40), we derive the lower bound

AC(K, n) = e−rTE

[
EG

[(
n∑
i=1

α(ti ,Gti ) exp(σ BGti
) − K

)+]]

≥ e−rTE

[
EG

[(
E

[
n∑
i=1

α(ti ,Gti ) exp(σ BGti
) | � =

n∑
i=1

λiσ BGti

]
− K

)+]]

= e−rTE

[
EG

[
n∑
i=1

α(ti ,Gti )E[e
σ BGti ]N (RGti

− N−1(p)) − K(1 − p)

]]
(25)

with

λi = α(ti ,Gti )E[e
σ BGti ] = α(ti ,Gti ) exp

(
E
[
σ BGti

] + 1
2
Var[σ BGti

]
)

,

RGti
=

∑n
j=1 α(ti ,Gti )E[e

σ BGti ]cov[BGti
, BGtj

]σ 2

σ�

σ 2
� =

n∑
i=1

n∑
j=1

α(ti ,Gti )α(tj ,Gtj )E[e
σ BGi ]E[eσ BGtj ]cov[BGti

, BGtj
]σ 2,

and with p the solution of the equation

Qp

[
EG

[
n∑
i=1

α(ti ,Gti ) exp(σ BGti
) | � =

n∑
i=1

λiσ BGti

]]
= K,
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where Qp(X) is the p-quantile risk measure for a random variable X defined as

Qp(X) = inf{x ∈ R | FX(x) ≥ p}, p ∈ (0, 1),

where FX(x) = P[X ≤ x], andN (·) is the cumulative distribution function of a
standard normal distribution.

Since the expressions in (25) only depend on the values Gti of the path of
the subordinator, we can denote (25) as e−rTE[H(Gt1, . . . ,Gtn )] for a certain
function H given by

H(Gt1, . . . ,Gtn ) :=EG

[
n∑
i=1

α(ti ,Gti )E[e
σ BGti ]N (RGti

− N−1(p)) − K(1 − p)

]
.

(26)

Therefore, the lower bound (25) could be calculated by a numerical multi-
dimensional integration method. However, since there is usually a large number
of spot times to take into account, one would need a high-dimensional numer-
ical integration method which usually turns out to be slow and moreover not
always precise due to the accumulated errors. Therefore, in this paper we use a
Monte Carlo simulation with GLB as control variates to compute the values in
(25). This method will be referred to as the lower bound derived by using the
Stochastic Clock (i.e., the LBSC approach). As explained before, such a Monte
Carlo simulation is easy to implement, and as our numerical results in Section
7 will show, this method leads to very precise approximations. This method has
the advantage that one has not to simulate Brownian motions. Indeed, for this
approach one only needs to generate the values of the clock and the analytical
formula (26). Therefore, one only needs to generate half the numbers in compar-
isonwith the case of time-changedBrownianmotion. Furthermore, the variance
of the conditional expectation H(Gt1, . . . ,Gtn ) is smaller than the variance of
the Asian payoff so that convergence is expected to be much faster than the
CMC (see also Section 7.2.3).

7. NUMERICAL ILLUSTRATIONS

In this section we present different sets of numerical results in order to illus-
trate the methods introduced in this paper. We focus on the two subordinated
Brownian motion Lévy models that were described in Section 4, namely the VG
and NIG processes. For deriving the numerical results, we made use of the CPU
Intel Core i7-3630 QM 2.40 GHz and RAM 8.00 GB under the Windows 8 OS
64 bit.

7.1. General setup

We present our numerical results for Asian options in the context of a VG econ-
omy (see Section 7.2.1) and an NIG economy (see Section 7.2.2). We use the
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CMC) approach as the benchmark to compare the results of the Monte Carlo
approaches that use as control variates the ALB, resp. the GLB as presented
in Section 3, with the results of the semi-analytic LBSC approach explained in
Section 6. In all instances, we use the same 50,000 simulations to perform the
calculations. Specifically, for the different methodsmentioned we provide the es-
timated mean, the standard error (SE), the computation time (C), the variance
reduction factor (Var-RF) and the efficiency reduction factor (Eff-RF). These
parameters are well known and do not require further explanation except the
last two.

The Var-RF is defined as the ratio between the variance of the estimator for
themethod at hand and the variance of the estimator under the CMCapproach.
Note indeed that variance reduction techniques precisely allow to obtain greater
precision for the same budget of computer time, or, equivalently, to obtain a
given degree of precision with less simulation time. Therefore, it is natural to
consider the Var-RF as a first performance measure. However, to measure the
efficiency of approaches, we should not only consider the variance reduction but
also the computation time and the possibility of bias. Let μ be the unknown
quantity that we estimate (i.e., the mean of the control variate at hand), and let
Y be the corresponding estimator. The bias,7 variance and mean square error of
Y are defined as,

Bias(Y) = E[Y] − μ,

Var(Y) = E[(Y− E[Y])2],

MSE(Y) = E[(Y− μ)2] = (Bias(Y))2 + Var(Y),

where the mean square error reflects both bias and variance. A second possible
measure (see Glasserman, 2003; L’Ecuyer, 1994) to reflect the efficiency (Eff) of
an estimator Y is then to use the inverse of the average computation time (C)
multiplied by the mean square error:

Eff(Y) = 1

C(Y)MSE(Y)
.

This efficiency measure balances the issues of computation time, bias and
variance reduction and has a strong intuitive appeal. Note, however, that com-
putation time also depends on the efficiency of the particular code used and
computer specifications. Furthermore, the penalty for bias in this measure ap-
pears in an ad hoc way and lacks a strong theoretical foundation. In some
situations (e.g., in the context of risk management) a biased approach may
be perfectly acceptable to some degree whereas in other cases (e.g., a trading
context) this feature may be considered as completely unacceptable. In other
words, the precise interpretation of Eff-RF also depends on the context at hand.
This remark also explains why we in the numerical illustrations also provide
the computation time for all methods used, and also why we separately show
the (estimated) relative bias for the LBSC approach. Formally, the relative bias
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(Rel. Bias) is defined as

Rel. Bias =
∣∣∣∣∣E[YLBSC] − μ

μ

∣∣∣∣∣ ,
where YLBSC is the statistical estimator under the LBSC approach. Note that
μ is not known and needs to be estimated. To this end, we use an unbiased
estimator based on 10,000,000 simulations, namely the CMC with the ALBs as
control variates (CMC with ALBs).

We also compare the results with two other methods that were recently pro-
posed in the literature. In Dingec and Hormann (2012), the authors propose a
Monte Carlo method with control variate for the pricing of arithmetic Asian
options in a Lévy setting. The idea of this method is to use as a control variate
the geometric average Asian option payoff as calculated under the hypothesis
of a geometric Brownian motion. The method is further based on the numerical
inversion of the cumulative distribution function of the increments and is there-
fore applicable to Lévy processes for which the transition law is known. In Fusai
and Meucci (2008), the authors propose a Monte Carlo method in which the
control variate is the corresponding geometric Asian option but now computed
in the (true) Lévy setting. The theoretical value of the geometric Asian option
is here obtained using the FFT method. We denote the methods by Fusai and
Meucci (2008) and Dingec and Hormann (2012) in this paper further as CMC-
GA Lévy resp. CMC-GA BS.

Finally, we make some remarks regarding the reported computation time.
All methods require some pre-processing. In particular, the regression coeffi-
cients that are inherent in the approaches that use control variates need to be
computed separately (to avoid bias). All these coefficients are computed from
the same sample using 100,000 replications. The computation time for estimat-
ing these coefficients is not included in the reported computation time results.
Furthermore, the method by Fusai and Meucci (2008) uses the FFT approach
to price the value of the geometric Asian option that is used as control variate.
Setting up this framework is not completely straightforward and the method
needs to be adapted (i.e., the level of discretization and/or truncation used) to the
specificities (e.g., the strike) of the payoff at hand. We do not consider these ef-
forts when reporting computation time. Finally, the computational effort that is
needed to estimate the bias of the LBSC approach is not included in the reported
computation time for this method. Indeed, this computational effort only arises
because it is not possible to estimate bias with a closed-form formula and does
not reveal information on the intrinsic quality (speed) of the method itself.

7.2. Numerical results for a variance Gamma economy

We first calculate Asian option prices in a VG model. We refer to (19) for the
risk-neutral price process and we take the parameters as in Albrecher et al.
(2008, Table 8), namely σ = 0.2684, ν = 1.1737 and θ = −0.1280. This setting
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leads to an annual volatility for the log-returns of 30 (211%) (see alsoDingec and
Hormann, 2012 for more details). In our numerical example we take as starting
value S0 = 100, risk-free interest rate r = 0.03 and consider that the options are
averaged monthly with maturity T = 10 years, namely the number of averaging
n = 120 (see Table 1). We also give results for higher and lower volatility cases,
namely σ = 0.5884 and 0.058, corresponding to annual volatilities of 60 (452%)
and 15 (031%) respectively (see Tables 2 and 3 respectively).

In Tables 1–3, the mean, relative bias, SE, C, Eff-RF and Var-RF are pre-
sented in these VG settings for different approaches and different strikes. We
also present the “True Value”, which is estimated by using CMC with the ALB
method and an extremely large number of simulations (10 millions).

7.3. Numerical results for a normal inverse Gaussian economy

In this section we calculate Asian option prices in the settings of an NIGmodel.
In Table 4, results are presented for Asian option prices in the settings of anNIG
process, with the log-return following the density (20) and the parameter values
taken from Albrecher and Predota (2004), namely α = 136.29, η = −8.95,
δ = 0.0059, μ = 0.00079. The initial value S0 is chosen to be 50, the maturity
is 20 days and the number of averaging days n equals the number of days until
maturity, namely n = 20. The yearly risk-free interest rate equals r = 0.1. We
also give results for a higher volatility, namely δ = 0.1059, keeping the short
maturity of 20 days (see Table 5). Finally, we present results for a high volatil-
ity, namely δ = 0.5, and a long maturity of five years with monthly averaging,
n = 60 (see Table 6). The performances of different methods are summarized
for different strikes.

7.4. Discussion

From an analysis of Tables 1 to 6, we observe that the LBSC approach is per-
forming very well in terms of the variance reduction. It is in many cases the
approach with the highest values for Var-RF (Tables 1, 2, 4–6). In particular, the
approach is performing outstanding when the volatility of the underlying risky
asset reaches average to high levels. Recall that all other things being equal, the
higher the Var-RF, the smaller the number of simulations that are needed to
obtain a given accuracy. Therefore, for a given acceptable bound on the SE, the
LBSC approach often needs the smallest calculation time (even if we consider
the fact that for each replication the method requires more running resources).
We explain the feature of the high variance reduction ability for the LBSC as fol-
lows: The approach is based on conditioning, which allows to avoid simulation
of the Brownian motion. More precisely, for each realization of the stochastic
clock one uses an analytical formula for approximating the (conditional) op-
tion price. Next, by generating different scenarios for the clock one obtains an
estimated price for the (unconditional) option price. It is then clear that the
variance of the estimator using the LBSC approach is lower than the estimator
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TABLE 1

SUMMARY OF THE SIMULATIONS FOR VG MODELS WITH σ = 0.2684, ν = 1.1737, θ = −0.1280, S0 = 100,
r = 0.03, THE MATURITY IS 10 YEARS (T = 10), AND THERE IS MONTHLY AVERAGING (n = 120).

VG Model with an Annual Volatility of 30.211% and a Maturity of 10 Years

True Eff-
Strike Value Approach Mean Rel. Bias SE C RF Var-RF

CMC 43.7069 – 0.2043 3.09 1.0 1.0
CMC-GA BS 43.7912 – 0.1547 8.99 0.6 1.7

K = 60 43.6440 CMC-GA Lévy 43.6111 – 0.0263 4.10 45.5 60.3
CMC with ALBs 43.6194 – 0.0184 3.80 100.2 123.3
CMC with GLBs 43.5956 – 0.0318 3.74 34.1 41.3
LBSC 43.6163 0.0633% 0.0019 50.30 3.3 11 561.9

CMC 32.2381 – 0.1918 3.07 1.0 1.0
CMC-GA BS 32.3366 – 0.1470 9.04 0.6 1.7

K = 80 32.1815 CMC-GA Lévy 32.1553 – 0.0243 4.04 47.3 62.3
CMC with ALBs 32.1567 – 0.0179 3.77 93.5 114.8
CMC with GLBs 32.1318 – 0.0290 3.71 36.2 43.7
LBSC 32.1815 0.0357% 0.0018 50.40 16.6 11 354.1

CMC 23.1672 – 0.1747 3.09 1.0 1.0
CMC-GA BS 23.2488 – 0.1372 9.21 0.5 1.6

K = 100 23.1446 CMC-GA Lévy 23.1437 – 0.0226 4.16 44.4 59.8
CMC with ALBs 23.1186 – 0.0170 3.70 88.2 105.6
CMC with GLBs 23.0971 – 0.0253 3.62 40.7 47.7
LBSC 23.1136 0.1339% 0.0015 50.62 1.9 13 564.5

CMC 16.3973 – 0.1558 3.08 1.0 1.0
CMC-GA BS 16.4650 – 0.1257 9.21 0.5 1.5

K = 120 16.4151 CMC-GA Lévy 16.4400 – 0.0213 4.16 39.6 53.5
CMC with ALBs 16.3942 – 0.0161 3.72 77.5 93.6
CMC with GLBs 16.3790 – 0.0212 3.63 45.8 54.0
LBSC 16.3870 0.1710% 0.0010 50.20 1.9 24 273.6

CMC 9.6845 – 0.1282 3.08 1.0 1.0
CMC-GA BS 9.7259 – 0.1077 9.01 0.5 1.4

K = 150 9.7445 CMC-GA Lévy 9.7753 – 0.0203 4.13 29.7 39.9
CMC with ALBs 9.7265 – 0.0154 3.47 61.5 69.3
CMC with GLBs 9.7214 – 0.0169 3.43 51.7 57.5
LBSC 9.7152 0.1084% 0.0007 50.60 8.9 33 541.3

when using the traditional Monte Carlo simulation. Intuitively, this difference
in variance is expected to be quite significant because the stochastic clock is only
one source of randomness for the Asian option price, and is independent of the
second source, which is the Brownianmotion. Unfortunately, andmainly driven
by the presence of bias, this efficiency in terms of variance reduction is not re-
flected in the other efficiency measure, Eff-Rf. One also observes that the bias is
increasing in maturity and volatility, but remains rather small. We believe that
the LBSC approach is particularly useful in a risk management context because
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264 G. DEELSTRA, G. RAYÉE, S. VANDUFFEL AND J. YAO

TABLE 2

SUMMARY OF THE SIMULATIONS FOR VGMODELS WITH σ = 0.5884, ν = 1.1737, θ = −0.1280, S0 = 100,
r = 0.03, THE MATURITY IS 10 YEARS (T = 10), AND THERE IS MONTHLY AVERAGING (n = 120).

VG Model with an Annual Volatility of 60.452% and a Maturity of 10 Years

True Eff-
Strike Value Approach Mean Rel. Bias SE C RF Var-RF

CMC 49.4934 – 0.8367 3.24 1.0 1.0
CMC-GA BS 49.3145 – 0.7660 9.18 0.4 1.2

K = 60 50.5757 CMC-GA Lévy 50.1774 – 0.3715 4.09 4.0 5.1
CMC with ALBs 50.3151 – 0.1160 3.96 42.6 52.0
CMC with GLBs 49.8362 – 0.4730 3.85 2.6 3.1
LBSC 50.1856 0.7712% 0.0056 51.07 0.3 22323.6

CMC 42.6894 – 0.8279 3.26 1.0 1.0
CMC-GA BS 42.5279 – 0.7628 9.30 0.4 1.2

K = 80 43.8048 CMC-GA Lévy 43.4574 – 0.3698 4.19 3.9 5.0
CMC with ALBs 43.5767 – 0.1077 3.77 51.1 59.1
CMC with GLBs 43.1395 – 0.4590 3.67 2.9 3.3
LBSC 43.4394 0.8341% 0.0107 50.64 0.3 5 986.7

CMC 37.5352 – 0.8185 3.24 1.0 1.0
CMC-GA BS 37.4047 – 0.7589 9.13 0.4 1.2

K = 100 38.7141 CMC-GA Lévy 38.3246 – 0.3688 4.19 3.8 4.9
CMC with ALBs 38.4763 – 0.1001 3.93 55.1 66.9
CMC with GLBs 38.0813 – 0.4444 3.86 2.8 3.4
LBSC 38.3370 0.9741% 0.0110 50.15 0.3 5 536.7

CMC 33.5189 – 0.8091 3.26 1.0 1.0
CMC-GA BS 33.4197 – 0.7547 9.26 0.4 1.1

K = 120 34.6617 CMC-GA Lévy 34.3530 – 0.3685 4.22 3.7 4.8
CMC with ALBs 34.4984 – 0.0933 3.74 65.6 75.2
CMC with GLBs 34.0747 – 0.4297 4.09 2.8 3.5
LBSC 34.3474 0.9067% 0.0112 50.80 0.4 5 218.8

CMC 28.9148 – 0.7954 3.27 1.0 1.0
CMC-GA BS 28.8438 – 0.7479 9.17 0.4 1.1

K = 150 30.0585 CMC-GA Lévy 29.8106 – 0.3693 4.22 3.6 4.6
CMC with ALBs 29.9484 – 0.0848 3.68 78.2 88.0
CMC with GLBs 29.5825 – 0.4081 3.38 3.7 3.8
LBSC 29.7612 0.9892% 0.0103 51.00 0.5 5 963.4

the feature of variance reduction may be considered as more important than
the fact that the approach provides estimates that are biased. Note indeed that
especially in risk management computation time is still an issue because sim-
ulations are typically carried out jointly in the real world and the risk-neutral
world (e.g., when calculating the risk for a portfolio of options over a one-year
horizon, one needs to compute prices in the risk-neutral world conditional on
the occurrence of real-world scenarios). In this instance, small pricing errors can
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TABLE 3

SUMMARY OF THE SIMULATIONS FOR VG MODELS WITH σ = 0.058, ν = 1.1737, θ = −0.1280, S0 = 100,
r = 0.03, THE MATURITY IS 10 YEARS (T = 10), AND THERE IS MONTHLY AVERAGING (n = 120).

VG Model with an Annual Volatility of 15.031% and a Maturity of 10 Years

True Eff-
Strike Value Approach Mean Rel. Bias S.E. C. RF Var-RF

CMC 42.2141 – 0.0964 3.05 1.0 1.0
CMC-GA BS 42.2457 – 0.0794 9.06 0.5 1.5

K = 60 42.1930 CMC-GA Lévy 42.1844 – 0.0055 4.02 233.1 307.2
CMC with ALBs 42.1899 – 0.0053 3.85 262.1 330.8
CMC with GLBs 42.1869 – 0.0077 3.55 134.7 156.7
LBSC 42.1876 0.0127% 0.0064 51.15 8.0 226.9

CMC 28.2458 – 0.0903 3.03 1.0 1.0
CMC-GA BS 28.2773 – 0.0750 9.18 0.5 1.4

K = 80 28.2478 CMC-GA Lévy 28.2397 – 0.0047 4.01 278.9 369.1
CMC with ALBs 28.2340 – 0.0068 3.74 142.9 176.3
CMC with GLBs 28.2321 – 0.0082 3.54 103.8 121.3
LBSC 28.2377 0.0357% 0.0066 50.65 3.4 187.2

CMC 16.3192 – 0.0757 3.04 1.0 1.0
CMC-GA BS 16.3471 – 0.0642 9.34 0.5 1.4

K = 100 16.3258 CMC-GA Lévy 16.3300 – 0.0038 4.10 294.2 396.8
CMC with ALBs 16.3292 – 0.0076 3.92 76.9 99.2
CMC with GLBs 16.3285 – 0.0082 3.87 66.9 85.2
LBSC 16.3204 0.0333% 0.0061 50.33 5.2 153.5

CMC 7.7266 – 0.0540 3.05 1.0 1.0
CMC-GA BS 7.7447 – 0.0473 9.61 0.4 1.3

K = 120 7.7350 CMC-GA Lévy 7.7528 – 0.0033 4.12 198.2 267.8
CMC with ALBs 7.7311 – 0.0073 3.86 43.2 54.7
CMC with GLBs 7.7301 – 0.0072 3.60 47.7 56.3
LBSC 7.7306 0.0568% 0.0050 51.10 3.9 116.6

CMC 1.4876 – 0.0221 3.04 1.0 1.0
CMC-GA BS 1.4937 – 0.0204 9.39 0.4 1.2

K = 150 1.4991 CMC-GA Lévy 1.5112 – 0.0032 4.13 35.1 47.7
CMC with ALBs 1.5056 – 0.0049 3.92 15.8 20.3
CMC with GLBs 1.5088 – 0.0057 3.62 12.6 15.0
LBSC 1.5007 0.1084% 0.0034 50.40 2.1 42.3

surely be neglected but speed is important. Therefore, for asset-liability manage-
ment purposes, the LBSC approach is a very suitable candidate.

As for the unbiasedMonte Carlo approaches that are based on control vari-
ates, the analysis of different tables shows that there are two approaches that de-
part from the others and show nice performance statistics. These are the crude
MonteCarlo with the ALBs as control variates (CMC with ALBs approach)
and the control variate approach (CMC-GA Lévy) of Fusai andMeucci (2008).

https://doi.org/10.1017/asb.2014.6 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.6
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TABLE 4

SUMMARY OF THE SIMULATIONS FOR NIG MODELS WITH α = 136.29, η = −8.95, δ = 0.0059, μ = 0.00079,
S0 = 50, r = 0.1, THE MATURITY IS 20 DAYS (T = 20/365), AND THERE IS DAILY AVERAGING (n = 20).

NIG Model with an Annual Volatility of 12.611% and a Maturity of 20 Days

True Eff-
Strike Value Approach Mean Rel. Bias SE C RF Var-RF

CMC 3.1248 0.003959 0.48 1.0 1.0
CMC-GA BS 3.1271 0.000788 1.07 11.3 25.2

K = 47 3.1271 CMC-GA Lévy 3.1270 0.000017 1.00 27 357.7 56 995.3
CMC with ALBs 3.1271 0.000034 0.68 9 776.0 13 849.3
CMC with GLBs 3.1271 0.000038 0.70 7 255.4 10 580.8
LBSC 3.1271 0.0001% 0.000002 14.80 34 667.5 3 207 703.5

CMC 1.6466 0.003821 0.50 1.0 1.0
CMC-GA BS 1.6485 0.000738 1.08 12.4 26.8

K = 48.5 1.6484 CMC-GA Lévy 1.6492 0.000015 1.02 33 277.2 67 885.5
CMC with ALBs 1.6487 0.000194 0.69 280.1 386.6
CMC with GLBs 1.6487 0.000196 0.72 264.3 380.6
LBSC 1.6484 0.0006% 0.000010 15.20 2 548.1 161 081.9

CMC 0.4241 0.002524 0.49 1.0 1.0
CMC-GA BS 0.4247 0.000526 1.08 10.5 23.1

K = 50 0.4249 CMC-GA Lévy 0.4250 0.000011 1.05 25 742.6 55 162.6
CMC with ALBs 0.4246 0.000306 0.71 47.0 68.2
CMC with GLBs 0.4246 0.000306 0.69 48.3 68.0
LBSC 0.4250 0.0017% 0.000009 15.10 1 494.2 73 918.4

CMC 0.0256 0.000632 0.53 1.0 1.0
CMC-GA BS 0.0253 0.000231 1.11 3.6 7.4

K = 51.5 0.0258 CMC-GA Lévy 0.0280 0.000008 1.09 3 206.2 6 593.8
CMC with ALBs 0.0257 0.000176 0.75 9.1 12.8
CMC with GLBs 0.0257 0.000177 0.76 8.9 12.7
LBSC 0.0258 0.0021% 0.000009 15.00 180.4 5 125.9

Tables 1, 2 and 6 show that the CMC with ALBs method is outperforming for
the different criteria considered, whereas Tables 3–5 support the use of CMC-
GA Lévy. A closer inspection of the specifications of different numerical illus-
trations, in particular considering the aspects ofmaturity and volatility, suggests
that Fusai and Meucci’s method (2008) is better adapted to deal with products
that have a rather short maturity (Tables 4 and 5) or when the volatility of the
underlying is rather low (Table 3). In contrast, the CMCwith ALBs approach is
outperforming when the maturities involved are longer (like in insurance prod-
ucts) and in these instances its performance increases with increasing volatility;
see Tables 1, 2 and 6. We further investigate these observations by performing
a further sensitivity analysis of maturity and volatility factors using an NIG
economy. The results of this analysis are shown in Tables 7 and 8, and confirm
the above findings. In summary, the numerical examples provide strong evidence
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TABLE 5

SUMMARY OF THE SIMULATIONS FOR NIGMODELS WITH α = 136.29, η = −8.95, δ = 0.1059, μ = 0.00079,
S0 = 50, r = 0.1, THE MATURITY IS 20 DAYS (T = 20/365), AND THERE IS DAILY AVERAGING (n = 20).

NIG Model with an Annual Volatility of 53.428% and a Maturity of 20 Days

True Eff-
Strike Value Approach Mean Rel. Bias SE C RF Var-RF

CMC 3.5012 0.014344 0.48 1.0 1.0
CMC-GA BS 3.5064 0.000365 1.07 691.1 1 540.6

K = 47 3.5060 CMC-GA Lévy 3.5069 0.000204 1.00 2 378.0 4 954.3
CMC with ALBs 3.5073 0.001231 0.68 95.8 135.7
CMC with GLBs 3.5073 0.001258 0.70 89.1 129.9
LBSC 3.5059 0.0030% 0.000006 14.80 601.0 5 079 044.3

CMC 2.4169 0.012600 0.50 1.0 1.0
CMC-GA BS 2.4180 0.000339 1.08 638.3 1 378.7

K = 48.5 2.4177 CMC-GA Lévy 2.4188 0.000187 1.02 2 221.7 4 532.3
CMC with ALBs 2.4197 0.001291 0.69 69.0 95.3
CMC with GLBs 2.4198 0.001311 0.72 64.2 92.4
LBSC 2.4176 0.0045% 0.000001 14.90 450.0 113 211 803.8

CMC 1.5542 0.010476 0.49 1.0 1.0
CMC-GA BS 1.5554 0.000311 1.08 514.6 1 134.3

K = 50 1.5549 CMC-GA Lévy 1.5553 0.000174 1.05 1 689.1 3 619.4
CMC with ALBs 1.5551 0.001272 0.71 46.8 67.8
CMC with GLBs 1.5552 0.001281 0.69 47.5 66.9
LBSC 1.5550 0.0060% 0.000002 15.00 411.7 20 992 432.5

CMC 0.9267 0.008248 0.53 1.0 1.0
CMC-GA BS 0.9292 0.000278 1.11 420.2 880.1

K = 51.5 0.9288 CMC-GA Lévy 0.9311 0.000163 1.09 1 244.4 2 559.1
CMC with ALBs 0.9276 0.001197 0.75 33.6 47.5
CMC with GLBs 0.9276 0.001197 0.76 33.1 47.5
LBSC 0.9289 0.0113% 0.000001 15.10 216.7 32 759 400.1

that the CMC with ALBs approach is suitable in an insurance context that in-
volves longer maturities, whereas Fusai and Meucci’s method (2008) is more
suitable in a trading context involving shorter maturities. On a more qualitative
note, we point out that the CMCwith ALBs approach and the CMCwithGLBs
approach computes the expectations of control variates using Gauss Laguerre
integration whereas Fusai and Meucci’s method (2008) requires the FFT ap-
proach. We found the former approach rather easy to implement and did not
encounter major difficulties. The implementation of the FFT requires a care-
ful handling of discretization and truncation (see also Carr and Madan, 1998),
which makes it sometimes more difficult to use.

8. APPLICATIONS TO OTHER PRODUCTS

8.1. Unit-linked insurance

Unit-linked insurance products are life-type insurance products where policy-
holder’s premiums are used to purchase units in investment funds generally com-
prising different assets such as, for example, bonds and stocks, usually selected
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TABLE 6

SUMMARY OF THE SIMULATIONS FOR NIGMODELS WITH α = 136.29, η = −8.95, δ = 0.5, μ = 0.00079× 30,
S0 = 50, r = 0.1, THE MATURITY IS FIVE YEARS (T = 5), AND THERE IS MONTHLY AVERAGING (n = 60).

NIG Model with an Annual Volatility of 21.05% and a Maturity of Five Years

True Eff-
Strike Value Approach Mean Rel. Bias SE C RF Var-RF

CMC 12.6258 0.050729 1.12 1.0 1.0
CMC-GA BS 12.6403 0.004346 1.82 83.8 136.2

K = 45 12.6220 CMC-GA Lévy 12.6238 0.004364 2.00 75.7 135.1
CMC with ALBs 12.6234 0.003498 1.54 153.0 210.3
CMC with GLBs 12.6238 0.005214 1.88 56.4 94.7
LBSC 12.6191 0.0232% 0.000004 31.20 10.8 130 013 302.8

CMC 10.1218 0.048370 1.14 1.0 1.0
CMC-GA BS 10.1292 0.004246 1.85 80.0 129.8

K = 50 10.1101 CMC-GA Lévy 10.1141 0.004254 2.20 67.0 129.3
CMC with ALBs 10.1110 0.003777 1.54 121.4 164.0
CMC with GLBs 10.1113 0.005139 1.82 55.5 88.6
LBSC 10.1075 0.0255% 0.000004 32.20 12.5 142 851 816.1

CMC 7.9205 0.045000 1.12 1.0 1.0
CMC-GA BS 7.9329 0.004065 1.82 75.4 122.5

K = 55 7.9216 CMC-GA Lévy 7.9192 0.004067 2.33 58.8 122.4
CMC with ALBs 7.9207 0.003865 1.55 98.0 135.6
CMC with GLBs 7.9201 0.004743 1.89 53.3 90.0
LBSC 7.9193 0.0288% 0.000003 31.50 13.8 177 883 174.4

CMC 6.1020 0.041040 1.13 1.0 1.0
CMC-GA BS 6.0955 0.003918 1.84 67.4 109.7

K = 60 6.0872 CMC-GA Lévy 6.0835 0.003910 2.29 54.4 110.2
CMC with ALBs 6.0835 0.003822 1.56 83.5 115.3
CMC with GLBs 6.0815 0.004264 1.91 54.8 92.6
LBSC 6.0852 0.0323% 0.000003 31.30 15.7 220 145 773.8

by the policyholder.8 Since the fund comprises risky assets, the insurance com-
pany generally proposes a minimum guarantee at maturity in order to protect
the policyholder against an economy downfall. Let us assume that the policy-
holder invests only in a single investment fund or stock and that investment pre-
miums Pi are paid at time ti , i = 0, 1, 2, . . . , n−1, which allow the policyholder
to purchase Pi/Sti units and each unit has a value ST at expiry T = tn. The
payoff of the contract at maturity T (conditional upon survival of the insured
until time T) is therefore given by the maximum of the fund value (FVn) and a
certain minimum payment K ,

max(FVn, K) = max

(
n−1∑
i=0

Pi
ST
Sti

, K

)
= K + max

(
n−1∑
i=0

Pi
ST
Sti

− K, 0

)
.

For example, in the case of a guaranteed rate of return R, insurance companies
often determine K to be equal to K = ∑n−1

i=0 Pie
R(T−ti ) (see Schrager and Pelsser,

2004), where the investment premiums Pi can be a function of the guaranteed
rate of return R.
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TABLE 7

SUMMARY OF THE SIMULATIONS FOR NIG MODELS WITH α = 136.29, η = −8.95, μ = 0.00079, δ = 1.02,
S0 = 50, r = 0.1, THE MATURITY PERIODS ARE 1, 5 AND 10 YEARS, AND THERE IS MONTHLY AVERAGING.

NIG Model with an Annual Volatility of 30.07% and a Maturity of One Year

Strike Approach Mean SE C Eff-RF Var-RF

CMC 7.8910 0.0354 0.23 1.0 1.0
K = 45 CMC-GA Lévy 7.9164 0.0014 0.37 399.6 642.8

CMC with ALBs 7.9119 0.0030 0.22 149.4 142.9

CMC 1.3985 0.0172 0.25 1.0 1.0
K = 60 CMC-GA Lévy 1.4057 0.0012 0.40 137.0 219.2

CMC with ALBs 1.4054 0.0027 0.26 38.8 40.3

NIG Model with an Annual Volatility of 30.07% and a Maturity of Five Years

Strike Approach Mean SE C Eff-RF Var-RF

CMC 13.4823 0.0720 1.00 1.0 1.0
K = 45 CMC-GA Lévy 13.4578 0.0081 1.70 46.8 79.5

CMC with ALBs 13.4667 0.0059 1.15 129.3 148.7

CMC 7.8520 0.0615 1.10 1.0 1.0
K=60 CMC-GA Lévy 7.8560 0.0075 1.83 40.3 67.0

CMC with ALBs 7.8518 0.0057 1.32 98.5 118.1

NIG Model with an Annual Volatility of 30.07% and a Maturity of 10 Years

Strike Approach Mean SE C Eff-RF Var-RF

CMC 16.0506 0.0972 5.60 1.0 1.0
K = 45 CMC-GA Lévy 16.0415 0.0200 8.90 14.8 23.5

CMC with ALBs 16.0302 0.0088 6.72 102.3 122.7

CMC 12.2261 0.0923 5.60 1.0 1.0
K=60 CMC-GA Lévy 12.2298 0.0193 9.05 14.2 22.9

CMC with ALBs 12.2151 0.0083 6.65 104.2 123.8

Following Schrager and Pelsser (2004), we assume that at time i = 0, . . . ,
n − 1 the premium Pi is given by Pi = GPi − FCi − ci FVi , where GPi is the
gross premium at time i which is paid at regular intervals until the expiry of
the insurance contract; FCi is a fixed cost at time i , including investment costs,
administration costs; ci is the fund value-related cost deduction (including mor-
tality charges) and FVi is the fund value at time i . In Schrager andPelsser (2004),
it is shown that

n−1∑
i=0

Pi
ST
Sti

=
n−1∑
i=0

P̃n
i
ST
Sti

,

where P̃n
i = (GPi − FCi )

∏n−i−1
j=1 (1 − cn− j ), which is deterministic. In

particular, if ci is constant over time and denoted by ci ≡ c, we have
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TABLE 8

SUMMARY OF THE SIMULATIONS FOR NIG MODELS WITH α = 136.29, η = −8.95, μ = 0.00079, δ = 1.81,
S0 = 50, r = 0.1, THE MATURITY PERIODS ARE 1, 5 AND 10 YEARS, AND THERE IS MONTHLY AVERAGING.

NIG Model with an Annual Volatility of 40.05% and a Maturity of One Year

Strike Approach Mean SE C Eff-RF Var-RF

CMC 8.6853 0.0461 0.25 1.0 1.0
K = 45 CMC-GA Lévy 8.7163 0.0025 0.40 218.8 350.1

CMC with ALBs 8.7129 0.0042 0.27 113.8 122.9

CMC 2.4488 0.0277 0.27 1.0 1.0
K = 60 CMC-GA Lévy 2.4598 0.0021 0.44 102.4 166.9

CMC with ALBs 2.4586 0.0038 0.30 47.2 52.5

NIG Model with an Annual Volatility of 40.05% and a Maturity of Five Years

Strike Approach Mean SE C Eff-RF Var-RF

CMC 14.6706 0.0996 1.10 1.0 1.0
K = 45 CMC-GA Lévy 14.6663 0.0147 1.80 28.2 46.2

CMC with ALBs 14.6692 0.0089 1.30 105.4 124.6

CMC 9.7760 0.0890 1.15 1.0 1.0
K = 60 CMC-GA Lévy 9.7992 0.0138 1.88 25.4 41.5

CMC with ALBs 9.7969 0.0081 1.35 103.7 121.7

NIG Model with an Annual Volatility of 40.05 % and a Maturity of 10 Years

Strike Approach Mean SE C Eff-RF Var-RF

CMC 17.0460 0.1473 6.00 1.0 1.0
K = 45 CMC-GA Lévy 17.0598 0.0448 9.20 7.0 10.8

CMC with ALBs 17.0398 0.0172 7.00 62.6 73.0

CMC 13.8717 0.1423 5.88 1.0 1.0
K = 60 CMC-GA Lévy 13.8974 0.0437 9.14 6.8 10.6

CMC with ALBs 13.8764 0.0160 6.86 67.9 79.2

P̃n
i = (GPi − FCi )(1 − c)n−i−1. In that case, the no-arbitrage price of the unit-

linked contract can be rewritten as

P = K + E

[
max

(
n−1∑
i=0

P̃n
i
ST
Sti

− K, 0

)]
.

Following our approach of modeling the spot price by an exponential VG or
NIGprocess, namely St = S0eZt ,where Zt is a VGorNIGprocess, and using the
independent and stationary increment properties of Lévy processes, we obtain

n−1∑
i=0

P̃n
i
ST
Sti

=
n−1∑
i=0

P̃n
i e

ZT−Zti
D=

n−1∑
i=0

P̃n
i e

Z ′
T−ti ,
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where Z ′ is an independent copy of the Lévy process Z, and D= reflects equality
in law.

The no-arbitrage price of the unit-linked contract is now given by

P = K + E

[
max

(
n−1∑
i=0

P̃n
i e

Z ′
T−ti − K, 0

)]
.

It is easy to observe the relation between unit-linked insurance products and
Asian options, and therefore the approaches developed in this paper are suitable
to price such insurance contracts.

8.2. Ratchet equity-indexed annuities (EIAs)

In this section, we focus on pricing ratchet equity-indexed annuities (EIAs) with
Asian-end design. An equity-indexed annuity contract is a fixed annuity earn-
ing a minimum rate of interest and offering a potential gain which is tied to the
performance of an underlying equity index S and is, in general, measured on
the basis of the returns generated by the index over the lifetime of the contract.
There exist different types of EIAs and the most popular ones are the annual
ratchet EIAs. In the case of annual ratchet EIAs, the index return level Rt is mea-
sured each year based on the equity index performances. In the literature you
can find different designs for Rt, and according to Lin and Tan (2003) the most
common type of design is based on averaging (which according to Marrion,
2000, 2001 represents approximately 60% of Annual Reset EIAs), for example,

the index return is often determined by Rt = 1
N

∑N−1
i=0 St−i/N
St−1

− 1, where N is the
number of reset dates in one year to calculate the index return measure.

According to Lin and Tan (2003) and Marrion (2000, 2001), ratchet EIAs
are among the most popular contracts in the North America market in terms
of their sales volume. According to Marrion (2000, 2001), 70% of EIAs sold
in the market are of this type. There exist two types of ratchet EIAs, namely
the simple ratchet EIAs and the compounded ratchet EIAs. Following Ballotta
(2010), simple ratchet EIAs payoffs B(s)

T and compounded ratchet EIAs payoffs
B(c)
T at maturity T are respectively given by

B(s)
T = 1 + T F +

T∑
t=1

[
(αRt − F)+ − (αRt − C)+

]
,

B(c)
T =

T∏
t=1

[
1 + F + (αRt − F)+ − (αRt − C)+

]
,

where C and F ∈ (0, 1) denote fixed cap and floor rates providing respectively
an upper bound to the rate of return and a minimum guarantee, and where Rt
reflects the index return and α a fixed percentage, called the participation rate.
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Therefore, ratchet EIAs can be seen as a portfolio comprising a risk-free compo-
nent and a sequence of bull spreads composed of call options of types depending
on the design of Rt. Using the moment-matching method and assuming a VG
economy for the equity index St, Ballotta (2010) has derived an approximation

for a ratchet EIA where the index return is measured by Rt = 1
N

∑N−1
i=0 St−i/N
St−1

− 1,
where N is the number of reset dates in one year to calculate the index-level
measure.

Modeling the equity index S by an exponential VG or NIG process, namely
St = S0eZt , where Zt is a VG or NIG process (see Section 4), and because
of independent and stationary increment properties of Lévy processes, the no-
arbitrage price of the ratchet EIAs is in the settings of Ballotta (2010) in the
simple case given by

B(s)
0 = e−rT (1 + T F) + e−rTE

⎡⎣T(
α

N

N−1∑
i=0

eZ
′
1−i/N − KF

)+⎤⎦
−e−rTE

⎡⎣T(
α

N

N−1∑
i=0

eZ
′
1−i/N − KC

)+⎤⎦ ,

and in the compounded case by

B(c)
0 = e−rTE

⎡⎣1 + F +
(

α

N

N−1∑
i=0

eZ
′
1−i/N − KF

)+

−
(

α

N

N−1∑
i=0

eZ
′
1−i/N − KC

)+⎤⎦T

,

where KF = α + F and KC = α + C; and, as before, Z ′ is an independent
copy of the Lévy process Z. Hence, the pricing problem of such ratchet EIAs
with Asian-end design reduces to the problem of pricing two Asian options
with a maturity of one year and a strike of KF and KC. It is now easy to un-
derstand that the approximating price approaches developed in this paper to
price Asian options can be useful for insurance companies that deal with ratchet
EIAs.

9. CONCLUSIONS

In this paper we propose two methods for pricing Asian-style payoffs in a Lévy
market setting. The first approach consists in using model-independent lower
bounds for Asian options as control variates in a traditional Monte Carlo
scheme (CMCwithALBs approach).Numerical results show that this approach
outperforms other (unbiased) methods when the contracts involve longer ma-
turities. In contrast, the Monte Carlo method with geometric control variate
of Fusai and Meucci (2008) seems to be more efficient in a rather short matu-
rity context. Note that the CMC with ALBs approach avoids the use of FFT
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(needed in the well-known Fusai and Meucci (2008) method), which requires
more programming efforts and needs to be adjusted to the specificities of the
payoff at hand (issues of discretization, truncation and singularities). In this re-
spect Mont Carlo methods are more general approaches that often require less
programming efforts than deterministic numerical techniques.We conclude that
the (unbiased) CMC with ALBs approach is suitable in a pricing context, espe-
cially for the pricing of insurance Asian-type derivatives as these involve longer
maturities. Note that we also briefly discussed the application of the methods
presented in this paper to other insurance products such as ratchet EIAs and
unit-linked insurance agreements.

The second approach (LBSC) is based on the conditioning on the stochas-
tic clock, which makes the nature of the problem multi-variate normal and al-
lows us to make use of very accurate closed-form approximations that we apply
conditionally. Next, Monte Carlo simulations with control variates are used to
account for the stochasticity of the clock itself. This approach is biased, but
the bias appears to be small in practical examples. Moreover, the method is
simple to implement and its variance-reduction ability usually surpasses all the
other methods developed in this paper as well as the popular control variate
Monte Carlo methods of Fusai and Meucci (2008) and Dingec and Hormann
(2012). Therefore, the last method offers an attractive trade-off between accu-
racy and efficiency (speed), which is particularly useful in a risk management
context.
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NOTES

1. In contrast with standard calls they are less sensitive to speculators who could drive up the
gains from the option by manipulating the price of the underlying asset near maturity.

2. In the remainder of the paper all expectations are tacitly assumed to exist.
3. For more details on the properties of the stop-loss order and its applications in actuarial

science, we refer to Shaked and Shanthikumar (1994) or Kaas et al. (2008), among others.
4. It is well known that Lévy processes are suitable candidates to model log-returns of risky

assets; see e.g., Schoutens (2003).
5. We denote by (X,Y) a generic pair of random variables with the same distribution as each

(Xi ,Yi ).
6. Asmentioned in footnote 2, we assume tacitly the existence of all expectations, andmoreover

of all moment generating functions.
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7. In this paper we do not consider the bias that arises because of the error caused by the
numerical method at hand, but only the bias that appears if one uses a biased estimator. In other
words, we only consider the bias when using the LBSC approach to approximate the true value
(see Section 6). However, note that all other control variate-based methods that we discuss are also
biased to some extent even when the estimator used is unbiased. Indeed, numerical integration
methods, such as the GLQ or FFTs, also have an error term and are therefore biased.

8. Some insurers even give the possibility to invest in individual stocks (see Schrager and Pelsser,
2004)
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