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Abstract The paper deals with problems of the type −∆u + a(x)u = |u|p−2u, u > 0, with zero
Dirichlet boundary condition on unbounded domains in R

N , N � 2, with a(x) � c > 0, p > 2 and
p < 2N/(N − 2) if N � 3. The lack of compactness in the problem, related to the unboundedness of
the domain, is analysed. Moreover, if the potential a(x) has k suitable ‘bumps’ and the domain has h

suitable ‘holes’, it is proved that the problem has at least 2(h+k) positive solutions (h or k can be zero).
The multiplicity results are obtained under a geometric assumption on Ω at infinity which ensures the
validity of a local Palais–Smale condition.
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1. Introduction

This paper is concerned with problems of the form

−∆u + (1 + a(x))u = up−1 in D,

u > 0 in D,

u = 0 on ∂D,

⎫⎪⎬
⎪⎭ P (a,D)

where D is an unbounded domain in RN , p > 2, p < 2N/(N − 2) if N � 3 and a(x) is a
non-negative function in LN/2(D).

Classical arguments show that, when D is bounded, problem P (a,D) has a solution,
whose existence does not depend either on the geometry or on the topology of D. The
geometrical-topological properties of D and the shape of a affect only the multiplicity
of solutions; indeed, the number of solutions increases when the structure of D becomes
more complex and when a has more peaks (see, for example, [4,5,8,15,25]).
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The solutions of problem P (a,D) correspond to the positive functions that are critical
points of the energy functional

Ea(u) =
∫

D
[|∇u|2 + (1 + a(x))u2] dx

constrained on the manifold

M(D) = {u ∈ H1
0 (D) : |u|Lp = 1}.

The unboundedness of the domain causes a lack of compactness for Ea constrained
on M(D), as a consequence of the non-compact embedding H1

0 (D) ↪→ Lp(D); hence, the
topological methods of the calculus of variations do not work directly. This is not only a
technical problem. Indeed, there is a large class of domains D (that includes half-spaces,
for instance) in which P (0,D) has no solution (see [13]). On the other hand, it is well
known (see [6, 14, 16, 22]) that P (0, RN ) has a solution and that this solution, which
is unique modulo translation, corresponds to the unique radially symmetric function vp,
vp > 0, that realizes

m = min
u∈M(RN )

E0(u). (1.1)

When D is an exterior domain (that is RN \ D is bounded), Ea satisfies the well-
known Palais–Smale compactness condition on M(D) in the energy range (m, 21−2/pm)
(see [2,3]) and so it is possible to relate the number of solutions of P (a,D) to the shape
of D and a (see [2,3,7,9,10,19–21] and references therein).

If not only D but also ∂D is unbounded, different situations can occur, from the
point of view of the Palais–Smale condition (we refer the reader to [24] for a detailed
discussion on the Palais–Smale condition on unbounded domains). For example, in [12] it
is proved that, in strip-like domains D, problem P (0,D) has a solution uD; consequently,
for these domains the compactness condition cannot hold at level E0(uD/|uD|Lp), because
uD generates a non-compact family of solutions, by translation. Also, for the domains
considered in [11], every solution causes a lack of compactness at the corresponding
energy level. More precisely, in [11], domains with periodicity in some directions are
studied and, after an analysis of the compactness failure, the multiplicity of solutions is
proved. In [17], assumptions on the shape of D at infinity are stated which guarantee
a local compactness condition for Ea constrained on M(D). Let us remark that, in the
examples mentioned above, a non-converging Palais–Smale sequence actually only exists
at some energy levels. In § 2 we construct a domain (with unbounded boundary) such
that for every energy level c there exists a non-relatively compact Palais–Smale sequence,
at level c, and we remark that easy examples of domains, thin at infinity, can be given, in
which the compactness condition globally holds (see also [18]). In this paper we also want
to analyse the effect of the shape of D and of a on the number of solutions of P (a,D),
when D is a domain with unbounded boundary.

We make the following assumption on the shape of D at infinity.
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Assumption (C).

lim
R→+∞

inf{r(x) : x ∈ D, |x| = R} = +∞, (C1)

lim
R→+∞

sup{h(y) : y ∈ ∂D, |y| = R} = 0, (C2)

where, for x ∈ D and y ∈ ∂D we define

r(x) = sup{ρ > 0 : ∃x̄ ∈ D such that x ∈ B(x̄, ρ) and B(x̄, ρ) ⊂ D},

h(y) = sup{dist(z, T∂D,y ∩ B(y, 1)) : z is in the connected component of
∂D ∩ B(y, 1) containing y},

with B(y, r), r > 0, the ball centred in y with radius r, and T∂D,y the hyperplane tangent
to ∂D in y.

Assumption (C) says that D enlarges at infinity and that its boundary flattens (or
shrinks) at infinity.

The potential a(x) is assumed to decay exponentially. Namely, we suppose that the
following condition holds:∫

RN

a(x)e2|x|(1 + |x|(N−1)σ/2) dx < +∞ for some σ ∈ (1, 2]. (1.2)

Now, our goal is to see in which way the presence of ‘holes’ in the domain and of
‘bumps’ in the potential affects the number of solutions of P (a,D). To this aim, the
effect on the functional Ea constrained on M(D) of the holes and the bumps is analysed.
Namely, one can see what happens when the holes enlarge, or narrow, and the bumps
increase, or vanish. For example, every hole provides a kind of local maximum level in
the constrained energy, whose value increases as the size of the hole increases, and the
same holds for the bumps in the potential. Moreover, the interaction of two holes (or
bumps) produces a saddle-type level in the constrained energy and an analogous effect is
given by the interaction of the holes with the bumps and with the ‘exterior’ boundary of
the domain. The saddle-type level related to the interaction of two holes (or bumps) goes
down as the holes (bumps) move away from each other. Exploiting the effects described
above, it is possible to state that if there are h suitably large holes in the domain and k

suitably high bumps in the potential, with appropriate spacing in between them, then
our problem has at least 2(h + k) solutions (see Theorem 4.1). Note that a key factor
in the variational arguments used is a local compactness condition, which is related to
Assumption (C) (see Proposition 2.2).

The method used in the proof of Theorem 4.1 can also be employed to cover the case
of small holes and small bumps (see § 5).

The paper is organized as follows. Section 2 deals with Palais–Smale condition. In § 3 we
introduce some tools and preliminary results, which are used in § 4 to prove Theorem 4.1.
In § 5 we discuss the asymptotic behaviour of the solutions given by Theorem 4.1 and
present other multiplicity results (see Theorem 5.1, for instance).
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2. The Palais–Smale condition

In order to find positive functions that are critical points for Ea on M(D), we use minimax
techniques of the calculus of variations. In general, a basic tool with which to apply these
methods is the Palais–Smale compactness condition for Ea on M(D). When D is bounded,
it is well known that global compactness holds, as a consequence of the Rellich’s compact
embedding theorem, and variational methods work (see, for example, [23, §§ II-2, II-6]).
Actually, to obtain the Palais–Smale condition it is sufficient to have

H1
0 (D) ↪→ Lp(D)

compact. Hence, taking into account [1, Theorem 6.16], for instance, if D becomes thin at
infinity, then compactness holds. As an example, the following domain can be considered:

D0 =
{

x = (x1, . . . , xN ) ∈ RN :
N−1∑
i=1

|xi|2 <
1

1 + |xN |

}

∪
+∞⋃
n=2

{
x ∈ RN : n < |x| < n +

1
n

}
. (2.1)

While in D0 every Palais–Smale sequence at every energy level is relatively compact,
the following example provides a domain in which, conversely, for every energy level there
exist non-relatively compact Palais–Smale sequences.

Example 2.1. Let (qi)i = Q+ and define

Si = {(x1, . . . , xN ) ∈ RN : − 1
2qi < x1 < 1

2qi}.

Then set

D̂ =
{

x = (x1, . . . , xN ) ∈ RN :
N∑

j=2

x2
j < 1

}

∪ S1 ∪
[ ∞⋃

i=2

[
Si +

(
i +

i−1∑
j=1

qj + 1
2qi, 0, . . . , 0

)]]
.

For every a ∈ LN/2(D̂), Ea(M(D̂)) = (m, +∞) holds and, for every c ∈ [m, +∞), there
exists a Palais–Smale sequence for Ea constrained on M(D̂), at level c, that is not rela-
tively compact.

To prove our assertions, let us recall that for every i ∈ N there exists a critical point ui

for E0 on M(Si), corresponding to the ‘minimal’ solution of P (0, Si) (see [12]). Namely,
ui satisfies

Θ(qi) := min
M(Si)

E0(u) = E0(ui). (2.2)
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From (2.2) it follows that the map Θ : Q → R is a monotone decreasing continuous
function and we claim that

lim
qi→+∞

E0(ui) = m, (2.3)

lim
qi→0

E0(ui) = +∞. (2.4)

Taking into account (2.2), to prove (2.3) it is sufficient to construct, for every i ∈ N, a
function wi ∈ M(Si) such that

lim
qi→+∞

E0(wi) = m. (2.5)

It is well known that the unique radially symmetric function vp that realizes (1.1) satisfies

lim
|x|→+∞

|vp(x)| |x|(N−1)/2e|x| = d > 0, (2.6)

lim
|x|→+∞

|∇vp(x)| |x|(N−1)/2e|x| = d, (2.7)

for a suitable positive constant d (see [6]). Moreover, for every i ∈ N let us introduce
the function ci : RN → [0, 1] defined by ci(x) = f(|x|/qi), where f ∈ C∞(R+, [0, 1]) is a
non-increasing function such that

f ≡
{

1 in [0, 1
4 ],

0 in [12 , +∞).

From (2.6) and (2.7) it follows that

lim
qi→+∞

civp = vp in Lp(RN ) and in H1(RN ). (2.8)

So, (2.5) follows by setting wi = civp/|civp|Lp .
To prove (2.4) observe that, by the Poincaré inequality on a strip, there exists a

constant c̄ > 0 such that

|u|Lp � c̄|∇u|L2 , ∀u ∈ H1
0 (S1) (2.9)

(see [1, Theorem 6.30], for example). To simplify the notation, let us assume q1 = 1 and
set ûi(x) = ui(qix); applying (2.9) to ûi we get

q
−[2N−p(N−2)]/(2p)
i � c̄|∇ui|L2(Sqi

),

because |ui|Lp = 1 ∀i ∈ N, which implies our claim.
Now, if c = Θ(qi) for some i ∈ N, let us construct the sequence (ui,j)j in M(D̂) by

ui,j(x1, . . . , xN ) = ui

(
x1 −

(
i +

i−1∑
r=1

qr + 1
2qi

)
, x2 + j, x3, . . . , xN

)
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(ui is extended by 0 outside Si). It is not then difficult to see that (ui,j)j is a Palais–
Smale sequence for E0 constrained on M(D̂), at level c, and it cannot have a converging
subsequence.

If c ∈ [m, +∞) \ Θ(Q), let (qij )j be a sequence in Q such that c = limj→+∞ Θ(qij ).
Then (uij ,j)j is a Palais–Smale sequence for E0 constrained on M(D̂) at level c that has
no converging subsequence.

The equality (m, +∞) = E0(M(D̂)) is a direct consequence of (1.1), (2.3), (2.4) and
of the continuity of E0.

Now, to conclude, it is sufficient to observe that, for every fixed non-negative a ∈
LN/2(D̂), Ea(u) � E0(u) ∀u ∈ H1

0 (D̂) and

lim
j→+∞

|Ea(ui,j) − E0(ui,j)| = 0, ∀i ∈ N,

lim
j→+∞

|Ea(uij ,j) − E0(uij ,j)| = 0,

lim
j→+∞

∇Ea(ui,j) − ∇E0(ui,j) = 0, ∀i ∈ N,

lim
j→+∞

∇Ea(uij ,j) − ∇E0(uij ,j) = 0 in H−1(D̂).

In the domains we consider, we cannot expect a nice situation, as in (2.1), from the
point of view of compactness, but, because of Assumption (C), the situation is also not
as bad as in Example 2.1. In fact, we have the following local compactness result.

Proposition 2.2. Assume that D ⊂ RN satisfies Assumption (C) and let a be a non-
negative function in LN/2(D). If (un)n is a Palais–Smale sequence for Ea constrained
on M(D) at a level c ∈ (m, 21−2/pm), then (un)n is relatively compact.

Proof. The proof can be obtained arguing exactly as in the proof of [17, Lemma 3.1].
�

By using Proposition 2.2, in the proof of Theorem 4.1 we will find 2(h + k) distinct
critical values for Ea on M(D) in the energy range (m, 21−2/pm). The following propo-
sition states that the critical points that correspond to critical values in (m, 21−2/pm)
are functions that do not change sign in D; actually, they have constant sign, by the
maximum principle, and so solve P (a,D).

Proposition 2.3. Let D be an open set in RN and let a be a non-negative function
in LN/2(D). If u ∈ H1

0 (D) is such that

|u|Lp = 1, Ea(u) = c, ∇Ea|M(D)(u) = 0,

then u+ �≡ 0 and u− �≡ 0 implies c > 21−2/pm.

Proof. The proof is contained in the proof of [9, Theorem 1.1] and can be deduced
by the minimality of m (see (1.1)). �

Finally, observe that, in our domains, the Palais–Smale condition cannot hold at level m
and that P (a,D) cannot be solved by a minimization argument, because of the following
result.

https://doi.org/10.1017/S0013091504001592 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504001592


On elliptic problems in domains with unbounded boundary 715

Proposition 2.4. Let D be an open set in RN satisfying (C1) and a(x) be a non-
negative function in LN/2(RN ). Then

inf
M(D)

Ea = m (2.10)

and, if D �= RN or a �≡ 0, the infimum in (2.10) is not achieved.

Proof. Observe that, by (C1), for every n ∈ N there exists zn ∈ D such that
B(zn, n) ⊂ D. Then, arguing as for (2.5), we have

inf
u∈M(D)

Ea(u) = m. (2.11)

If u∗ ∈ M(D) realizes (2.11), then u∗ also realizes (1.1), because

m � E0(u∗) � Ea(u∗) = m. (2.12)

Then, by the uniqueness of the minimizers of (1.1), there exists y∗ ∈ RN such that
u∗(x) = vp(x − y∗). Since vp > 0 in RN , we can conclude that D = RN . Moreover,

m = Ea(u∗) =
∫

RN

[|∇vp(x − y∗)|2 + (1 + a(x))v2
p(x − y∗)] dx

=
∫

RN

[|∇vp(x − y∗)|2 + v2
p(x − y∗)] dx +

∫
RN

a(x)v2
p(x − y∗) dx

= m +
∫

RN

a(x)v2
p(x − y∗) dx, (2.13)

which implies that a ≡ 0 because a is non-negative. �

3. Tools, preliminary results and known facts

For every smooth domain D ⊂ RN , we define a cut-off function cD, which is a function
in C∞(RN , [0, 1]) such that cD = 0 on RN \ D, cD(x) = 1 if x ∈ D and dist(x, ∂D) � 1.
If D = RN , set cD ≡ 1.

Then we introduce the map vp,D : RN → M(D) as

vp,D[y](x) =
cD(x)vp(x − y)
|cDvp(· − y)|Lp

.

Fixing ζ ∈ ∂B(0, 1) and z ∈ RN , we define

Σz = ∂B(z + ζ, 2) = {y ∈ RN : |y − (z + ζ)| = 2}

and, for ρ > 0, we define
ΨD,ρ,z : Σz × [0, 1] → M(D)

as

ΨD,ρ,z[y, t](x) =
cD(x)[(1 − t)vp(x − [z + ρ(y − z)]) + tvp(x − (z + ρζ))]
|cD[(1 − t)vp(· − [z + ρ(y − z)]) + tvp(· − (z + ρζ))]|Lp

.
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Notice that

ΨD,ρ,z[y, 0] = vp,D[z + ρ(y − z)], ΨD,ρ,z[y, 1] = vp,D[z + ρζ], ∀z ∈ RN , ∀y ∈ Σz.

For z ∈ RN , let βz : Lp(RN ) \ {0} → RN be the function defined by

βz(u) = z +
1

|u|pLp

∫
RN

χ(x − z)|u(x)|p dx, (3.1)

where
χ(x) =

x

1 + |x| . (3.2)

For u ∈ Lp(RN ) we set

ũ(x) =
1

ωN

∫
B(x,1)

|u(y)| dy,

where ωN is the measure of the unit ball in RN , and

û(x) =
[
ũ(x) − 1

2 max
RN

ũ(x)
]+

.

We then define the map
β : Lp(RN ) \ {0} → RN

by

β(u) =
1

|û|pLp

∫
RN

[û(x)]pxdx. (3.3)

The ‘barycentre-type’ functions βz and β are well defined and continuous in the Lp-norm.
Moreover,

β(u(x − x̄)) = β(u) + x̄, ∀u ∈ Lp(RN ) \ {0}, ∀x̄ ∈ RN , (3.4)

and, by the radial symmetry of vp,

β(vp(· − y)) = y, ∀y ∈ RN . (3.5)

Finally, for x, y ∈ RN , we denote the segment joining x and y by

[x, y] = {x + t(y − x) : t ∈ [0, 1]}.

Proposition 3.1. Let a(x) be a non-negative function in LN/2(RN ), and Ω and ω be
open domains in RN , Ω̄, ω �= RN . If a(x) �≡ 0 or ω �= ∅, then there exists µ > m such
that

inf{Ea(·−x̄)(u) : x̄ ∈ RN , u ∈ M(Ω \ (ω̄ + x̄)), β(u) = 0} > µ, (3.6)

inf{Ea(·−x̄)(u) : x̄ ∈ RN , u ∈ M(Ω \ (ω̄ + x̄)), β(u) = x̄} > µ (3.7)

(with the notation inf ∅ = +∞).
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Proof. Since M(Ω \ (ω̄ + x̄)) ⊆ M(Ω) and Ea(·−x̄)(u) � E0(u), for all u ∈ H1(RN )
and all x̄ ∈ RN , in order to prove (3.6) it is sufficient to verify that

inf{E0(u) : u ∈ M(Ω), β(u) = 0} > m. (3.8)

Assume, by contradiction, that (3.8) does not hold, i.e. there exists a sequence (un)n

in M(Ω) such that β(un) = 0 for all n ∈ N and limn→+∞ E0(un) = m. Since (un)n is a
minimizing sequence for (1.1), there exists, as proved in [3], a sequence of points (yn)n

in RN and a sequence of functions (wn)n in H1(RN ) such that

un(x) = vp(x − yn) + wn(x) with lim
n→+∞

‖wn‖H1 = 0. (3.9)

The sequence (yn)n has to be unbounded. Indeed, if yn −−−−−→
n→+∞

ȳ, up to a subsequence,
then from (3.9) it follows that

lim
n→+∞

E0(un) =
∫

Ω

[|∇vp(x − ȳ)|2 + (vp(x − ȳ))2] dx < m, (3.10)

because the function vp that realizes (1.1) is strictly positive on RN , while Ω̄ �= RN ;
hence, a contradiction arises.

Observe that, from (3.4), (3.5) and the continuity of β, it follows that

lim
n→+∞

|β(un) − yn| = lim
n→+∞

|β(vp(x − yn) + wn(x)) − yn|

= lim
n→+∞

|β(vp(x) + wn(x + yn))| = 0, (3.11)

and this contradicts the fact that (yn)n is unbounded, because β(un) ≡ 0. So (3.8), and
thus (3.6), is proved.

Taking into account (3.4) and M((Ω − x̄) \ ω̄) ⊂ M(RN \ ω̄), in order to prove (3.7)
it is sufficient to verify that

inf{Ea(u) : u ∈ M(RN \ ω̄), β(u) = 0} > m. (3.12)

If ω �= ∅, then (3.12) can be proved by arguing as for the proof of (3.8). Therefore, assume
that ω = ∅ and suppose, by contradiction, that (3.12) does not hold, i.e. there exists a
sequence (vn)n in H1(RN ) such that

Ea(vn) −−−−−→
n→+∞

m

and β(vn) = 0 for all n ∈ N. Since m � E0(vn) � Ea(vn), because m = minM(RN ) E0 and
a(x) � 0 for all x ∈ RN , we find that (vn)n is a minimizing sequence for (1.1). There
then exists a sequence of points (yn) in RN and a sequence of functions (wn)n in H1(RN )
such that (3.9) holds with vn in place of un. The sequence (yn)n is unbounded, otherwise
yn −−−−−→

n→+∞
ȳ, up to a subsequence, and

lim
n→+∞

Ea(vn) =
∫

RN

[|∇vp(x − ȳ)|2 + (1 + a(x))(vp(x − ȳ))2] dx > m,
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because vp > 0 in RN and a �≡ 0. But (yn)n cannot be unbounded; indeed, arguing as
in (3.11), we find that

|β(vn) − yn| −−−−−→
n→+∞

0

and that β(vn) ≡ 0 holds. So a contradiction arises and (3.12) is proved. �

Proposition 3.2. Let Ω and ω be open domains in RN and let a ∈ Lq(RN ) for some
q ∈ [1, +∞); moreover, assume that ω is bounded and that Ω verifies (C1). If (zn)n is
such that B(zn, n) ⊂ Ω, then

(a) lim
n→+∞

sup
y∈∂B(zn,n/2)

Ea(·−zn)(vp,Ω\(ω̄+zn)[y]) = m,

(b) lim
n→+∞

sup
y∈∂B(zn,n/2)

|β(vp,Ω\(ω̄+zn)[y]) − y| = 0.

Proof. From (2.6) and (2.7) we may infer that

lim
n→+∞

sup
y∈∂B(zn,n/2)

|vp(· − y) − cΩ\(ω̄+zn)vp(· − y)|Lp = 0, (3.13)

lim
n→+∞

sup
y∈∂B(zn,n/2)

‖vp(· − y) − cΩ\(ω̄+zn)vp(· − y)‖H1 = 0; (3.14)

therefore

lim
n→+∞

sup
y∈∂B(zn,n/2)

‖vp(· − y) − vp,Ω\(ω̄+zn)[y]‖H1 = 0. (3.15)

Moreover, we claim that∫
RN

a(x − z̄)v2
p(x − ȳ) dx =

∫
RN

a(x)v2
p(x − (ȳ − z̄)) dx → 0 as |ȳ − z̄| → +∞. (3.16)

Indeed, assume that q > 1 and call q′ = q/(q − 1) the conjugate exponent. Let us
fix η > 0 and choose R to be large enough to have

|a|Lq(RN \B(0,R)) < (η/2)|v2
p|−1

Lq′ (RN )

and let |ȳ − z̄| be large enough to have

|v2
p|Lq′ (B(z̄−ȳ,R)) < (η/2)|a|−1

Lq(RN )

(from (2.6), it follows that v2
p ∈ Lr(RN ) for all r ∈ [1, +∞)). Then∫

RN

a(x)v2
p(x − (ȳ − z̄)) dx =

∫
B(0,R)

a(x)v2
p(x − (ȳ − z̄)) dx

+
∫

RN \B(0,R)
a(x)v2

p(x − (ȳ − z̄)) dx

� |a|Lq(RN )|v2
p|Lq′ (B(z̄−ȳ,R)) + |a|Lq(RN \B(0,R))|v2

p|Lq′ (RN )

� η

and (3.16) follows on letting η → 0.
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If q = 1, then (3.16) follows from the Lebesgue theorem and (2.6).
By using (3.16) and (3.15) we obtain

lim
n→+∞

sup
y∈∂B(zn,n/2)

∫
RN

a(x − zn)(vp,Ω\(ω̄+zn)(x − y))2 dx = 0. (3.17)

Assertion (a) follows from (3.15) and (3.17).
By (3.15) we have

lim
n→+∞

sup
y∈∂B(zn,n/2)

|vp,Ω\(ω̄+zn)[y] − vp(· − y)|Lp = 0,

and hence (b) follows from the continuity of β and from (3.5). �

Remark 3.3. By Proposition 3.2 (b) we find that, for n large enough, there exists
y ∈ ∂B(zn, 1

2n) such that β(vp,Ω\(ω̄+zn)[y]) ∈ [0, zn].

The same arguments used to prove Propositions 2.4, 3.1 and 3.2 can be used to state
the following results, where the effects on the energy functional of the ‘holes’ in the
domain and of the bumps in the potential are described. In particular, these results show
that the holes and the bumps play the same role.

Proposition 3.4. For x1, x2 ∈ RN and D1, D2 bounded non-empty open sets in RN ,
define D = RN \

⋃2
i=1(D̄i + xi). There then exists µD1,D2 > m such that

inf
x1,x2∈RN

inf{E0(u) : u ∈ M(D), β(u) ∈ {x1, x2}} > µD1,D2 > m.

Moreover,

(a) inf{E0(u) : u ∈ M(D), β(u) ∈ [x1, x2]} > m,

(b) lim
|x1−x2|→+∞

sup{E0(vp,D[y]) : y ∈ ∂B(x1,
1
2 |x2 − x1|)} = m,

(c) lim
|x1−x2|→+∞

sup
y∈∂B(x1,|x1−x2|/2)

|β(vp,D[y]) − y| = 0.

Proposition 3.5. Let a1 and a2 be non-negative functions in LN/2(RN ), with a2 �≡ 0,
and let ω be a bounded open set in RN . Define D = RN \ (ω̄ + x1) and a(x) = a1(x −
x1) + a2(x − x2), x1, x2 ∈ RN ; if a1 �≡ 0 or ω �= ∅, then there exists µω,a1,a2 > m such
that

inf
x1,x2∈RN

inf{Ea(u) : u ∈ M(D), β(u) ∈ {x1, x2}} > µω,a1,a2 > m.

Moreover,

(a) inf{Ea(u) : u ∈ M(D), β(u) ∈ [x1, x2]} > m,

(b) lim
|x1−x2|→+∞

sup{Ea(vp,D(· − y)) : y ∈ ∂B(x1,
1
2 |x2 − x1|)} = m,

(c) lim
|x1−x2|→+∞

sup
y∈∂B(x1,|x2−x1|/2)

|β(vp,D[y]) − y| = 0.
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Remark 3.6. From Proposition 3.4 (c) it follows that, for sufficiently large |x2 − x1|,
there exists y ∈ ∂B(x1,

1
2 |x2 − x1|) such that β(vp,D[y]) ∈ [x1, x2], where D = RN \⋃2

i=1(D̄i + xi). An analogous assertion follows from Proposition 3.5 (c).

Proposition 3.7. If a ∈ LN/2(RN ) is a non-negative function, a �≡ 0, and x̄ ∈ RN ,
then

(a) Ia := inf{Ea(·−x̄)(u) : u ∈ M(RN ), βx̄(u) = x̄} > m,

(b) lim
ρ→+∞

sup{Ea(·−x̄)(ΨRN ,ρ,x̄[y, 0]) : y ∈ Σx̄} = m.

Remark 3.8. From the symmetry of vp, it follows that, for all ρ > 0 and all y ∈ Σx̄,

βx̄(ΨRN ,ρ,x̄[y, 0]) = x̄ + θ(ρ|y − x̄|) y − x̄

|y − x̄| , with θ(τ) > 0, ∀τ > 0.

Then, as a consequence of the continuity of βx̄, for every ρ > 0 there exists (ŷ, t̂) ∈
Σx̄ × [0, 1] such that βx̄(ΨRN ,ρ,x̄[ŷ, t̂]) = x̄.

Proposition 3.9. Let ω ⊂ RN be a bounded non-empty open set and x̄ ∈ RN . If
D = RN \ (ω̄ + x̄), then

(a) Jω := inf{E0(u) : u ∈ M(D), βx̄(u) = x̄} > m,

(b) lim
ρ→+∞

sup{E0(ΨD,ρ,x̄[y, 0]) : y ∈ Σx̄} = m,

(c) lim
ρ→+∞

sup
y∈Σx̄

|βx̄(ΨD,ρ,x̄[y, 0]) − (x̄ + χ(ρ(y − x̄)))| = 0
(see (3.2) for the definition of χ).

Remark 3.10. From Proposition 3.9 (c) it follows that, for large ρ, there exists
(ŷ, t̂) ∈ Σx̄ × [0, 1] such that βx̄(ΨD,ρ,x̄[ŷ, t̂]) = x̄.

Now, let us establish what happens when ω enlarges and a increases. For ω ⊂ RN let
us set

D(ω) = sup{r ∈ R+ : B(y, r) ⊂ ω for some y ∈ RN}. (3.18)

Proposition 3.11. Let ω ⊂ RN be a bounded open set, x̄ ∈ RN and define D =
RN \ (ω̄ + x̄). There then exists ρ̄ = ρ̄(ω) such that

max
Σx̄×[0,1]

E0(ΨD,ρ,x̄[y, t]) < 21−2/pm, ∀ρ > ρ̄. (3.19)

Moreover, if B(0, D(ω)) ⊂ ω̄, then

lim
D(ω)→+∞

Jω = 21−2/pm. (3.20)

(Jω was introduced in Proposition 3.9 (a).)

Inequality (3.19) is [10, Lemma 3.5]; (3.20) is [19, Lemma 3.3].
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Proposition 3.12. Let (an)n be a sequence of non-negative functions in LN/2(RN )
that verify condition (1.2), and let x̄ ∈ RN . For every n ∈ N there exists ρ̄ = ρ̄(an) such
that

max
Σx̄×[0,1]

Ean(·−x̄)(ΨRN ,ρ,x̄[y, t]) < 21−2/pm, ∀ρ > ρ̄. (3.21)

If
lim

n→+∞
an(x) = +∞ for a.a. x ∈ RN ,

then
lim

n→+∞
Ian = 21−2/pm. (3.22)

(Ia was introduced in Proposition 3.7 (a).)

We can prove (3.21) and (3.22) by arguing as in the proof of [21, Lemmas 2.7 and 3.2],
where condition (1.2) has been considered with σ = 2.

4. A multiplicity result

Theorem 4.1. Let h, k ∈ N, h + k �= 0. Assume that Ω is a smooth open set in RN ,
Ω �= RN , that satisfies Assumption (C) and that (a1

n)n, . . . , (ak
n)n are k sequences of

non-negative functions in LN/2(RN ) verifying condition (1.2) and such that

lim
n→+∞

aj
n(x) = +∞ for a.a. x ∈ RN , for j = 1, . . . , k.

There then exist

D2 = D2(ω1),

D3 = D3(ω2),
...

Dh = Dh(ωh−1),

n̄1 = n̄1(ωh),

n̄2 = n̄2(a1
n1

),
...

n̄k = n̄k(ak−1
nk−1

),

x̄1 = x̄1(Ω, ω1),
...

x̄h = x̄h(Ω, ω1, x̄1, . . . , ωh−1, x̄h−1, ωh),

x̄h+1 = x̄h+1(D, a1
n1

),
...

x̄h+k = x̄h+k(D, a1
n1

, x̄h+1, . . . , a
k−1
nk−1

, x̄h+k−1, a
k
nk

),
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such that problem P (a,D), where D = Ω \
⋃h

i=1(ω̄i + x̄i), has at least 2(k + h) distinct
solutions whenever ωi are open bounded sets in RN such that D(ωi) > Di, for i =
2, . . . , h, and a(x) has the form

a(x) =
k∑

j=1

aj
nj

(x − x̄h+j), (4.1)

with nj > n̄j , for j = 1, . . . , k.

Proof. We assume, in the first steps, that Ω = RN . Moreover, we can assume that
B(0, D(ωi)) ⊂ ω̄i, i = 1, . . . , h.

Step 1. Let us fix i ∈ {1, . . . , h}, xi ∈ RN and set Di = RN \ (ω̄i + xi).
From Propositions 2.4, 3.9 and 3.11, and taking into account Remark 3.10, it follows

that there exists ρ̄i > 0 such that

βxi(ΨDi,ρ̄i,xi [y, 0]) is homotopically equivalent in RN \ {xi} to the identity map on Σxi

(4.2)
and

m < sup{E0(ΨDi,ρ̄i,xi [y, 0]) : y ∈ Σxi}
< inf{E0(u) : u ∈ M(Di), βxi

(u) = xi}
� sup{E0(ΨDi,ρ̄i,xi [y, t]) : (y, t) ∈ Σxi

× [0, 1]}
< 21−2/pm. (4.3)

Moreover, again by Proposition 3.11, we find that for every i ∈ {1, . . . , h − 1} there
exists Di+1 = Di+1(ωi) > 0 such that

sup{E0(ΨDi,ρ̄i,xi [y, t]) : (y, t) ∈ Σxi × [0, 1]}
< inf{E0(u) : u ∈ M(Di+1), βxi+1(u) = xi+1} (4.4)

whenever D(ωi+1) > Di+1. In the following, ωi will be considered fixed, for i = 1, . . . , h,
as chosen in this step.

Step 2. Let us fix j ∈ {1, . . . , k}, xh+j ∈ RN and n ∈ N. By Propositions 2.4, 3.7,
3.12 and Remark 3.8, we can find ρ̄n

j > 0 such that

βxh+j
(ΨRN ,ρ̄n

j ,xh+j
[y, 0]) is homotopically equivalent in RN \ {xh+j}

to the identity map on Σxh+j
(4.5)

and

m < sup{Eaj
n(·−xh+j)

(ΨRN ,ρ̄n
j ,xh+j

[y, 0]) : y ∈ Σxh+j
}

< inf{Eaj
n(·−xh+j)

(u) : u ∈ M(RN ), βxh+j
(u) = xh+j}

� sup{Eaj
n(·−xh+j)

(ΨRN ,ρ̄n
j ,xh+j

[y, t]) : (y, t) ∈ Σxh+j
× [0, 1]}

< 21−2/pm. (4.6)
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Moreover, by Proposition 3.12, we can choose n̄1 ∈ N such that

sup{E0(ΨDh,ρ̄h,xh
[y, t]) : (y, t) ∈ Σxh

× [0, 1]}
< inf{Ea1

n(·−xh+1)(u) : u ∈ M(RN ), βxh+1(u) = xh+1} (4.7)

for every n > n̄1 and, fixing nj−1 ∈ N for j ∈ {2, . . . , k}, there exists n̄j = n̄j(aj−1
nj−i

) ∈ N

such that

sup{Eaj−1
nj−1 (·−xh+j−1)

(Ψ
RN ,ρ̄

nj−1
j−1 ,xh+j−1

[y, t]) : (y, t) ∈ Σxh+j−1 × [0, 1]}

< inf{Eaj
n(·−xh+j)

(u) : u ∈ M(RN ), βxh+j
(u) = xh+j}, (4.8)

for every n > n̄j . In the following, nj will be considered fixed, for j = 1, . . . , k, as chosen
in this step. Moreover, we will define ρ̄

nj

j = ρ̄h+j .

Notice that in Steps 1 and 2 ρ̄i, Di and n̄i are independent of the translation points xi.

Step 3. From Proposition 3.4, with ωi in place of Di (hence D = RN \
⋃2

i=1(ω̄i + xi)),
and from Remark 3.6, it follows that there exists R2 = R2(ω1, ω2) such that, if |x2−x1| >

R2, then we have

m < inf{E0(u) : u ∈ M(D), β(u) ∈ [x1, x2]}
� sup{E0(vp,D[y]) : y ∈ ∂B(x1,

1
2 |x2 − x1|)}

< inf{E0(u) : u ∈ M(D), β(u) ∈ {x1, x2}} (4.9)

and

sup{E0(vp,D[y]) : y ∈ ∂B(x1,
1
2 |x2 − x1|)} < inf{E0(u) : u ∈ M(RN \ ω̄1), β0(u) = 0}.

(4.10)
Moreover, we can choose R2 large enough that we also have the following:

the homotopy H1 : ∂B(x1,
1
2 |x2 − x1|) × [0, 1] → RN \ {x1, x2}

given by H1(y, t) = (1 − t)y + tβ(vp,D[y]) is well defined. (4.11)

We can apply this procedure recursively for j = 3, . . . , h, fixing xi, i = 1, . . . , j − 1.
Proposition 3.4, with D1 =

⋃j−1
i=1 (ωi +xi) and D2 = ωj (hence D = RN \

⋃j
i=1(ω̄i +xi)),

and Remark 3.6 guarantee the existence of Rj = Rj(ω1, ω2, x2, . . . , xj−1, ωj) such that,
for |xj − xj−1| > Rj ,

m < inf{E0(u) : u ∈ M(D), β(u) ∈ [xj−1, xj ]}
� sup{E0(vp,D[y]) : y ∈ ∂B(xj−1,

1
2 |xj − xj−1|)}

< inf{E0(u) : u ∈ M(D), β(u) ∈ {xj−1, xj}} (4.12)

and

sup{E0(vp,D[y]) : y ∈ ∂B(xj−1,
1
2 |xj − xj−1|)}

< inf
{

E0(u) : u ∈ M

(
RN \

j−1⋃
i=1

(ω̄i + xi)
)

, β(u) ∈ [xj−2, xj−1]
}

. (4.13)
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Moreover, Rj can be chosen large enough that we also have the following:

the homotopy Hj−1 : ∂B(xj−1,
1
2 |xj − xj−1|) × [0, 1] → RN \ {xj−1, xj}

given by Hj−1(y, t) = (1 − t)y + tβ(vp,D[y]) is well defined. (4.14)

Step 4. Fix D = RN \
⋃h

i=1(ω̄i + xi) and, for n ∈ N and xh+1 ∈ RN , set a(x) =
a1

n(x − xh+1).
From Proposition 3.5, with a1 ≡ 0 and a2 = a1

n, and Remark 3.6, it follows that there
exists Rh+1 = Rh+1(D, n) > 0 such that, if |xh+1 − xh| > Rh+1,

m < inf{Ea(u) : u ∈ M(D), β(u) ∈ [xh, xh+1]}
� sup{Ea(vp,D[y]) : y ∈ ∂B(xh, 1

2 |xh+1 − xh|)}
< inf{Ea(u) : u ∈ M(D), β(u) ∈ {xh, xh+1}} (4.15)

and

sup{Ea(vp,D[y]) : y ∈ ∂B(xh, 1
2 |xh+1 − xh|)}

< inf{E0(u) : u ∈ M(D), β(u) ∈ [xh−1, xh]}. (4.16)

Moreover, we can choose Rh+1 large enough that we also have the following:

the homotopy Hh : ∂B(xh, 1
2 |xh+1 − xh|) × [0, 1] → RN \ {xh, xh+1}

given by Hh(y, t) = (1 − t)y + tβ(vp,D[y]) is well defined. (4.17)

Step 5. Fix D = RN \
⋃h

i=1(ω̄i + xi) and, for j = 2, . . . , k, define

a(x) =
j∑

i=1

ai
ni

(x − xh+i),

ni ∈ N and xh+i ∈ RN . Taking into account Proposition 3.5 and Remark 3.6, we see
that there exists Rh+j = Rh+j(D, n1, xh+1, . . . , nj−1, xh+j−1, nj) such that, for |xh+j −
xh+j−1| > Rh+j ,

m < inf{Ea(u) : u ∈ M(D), β(u) ∈ [xh+j−1, xh+j ]}
� sup{Ea(vp,D[y]) : y ∈ ∂B(xh+j−1,

1
2 |xh+j − xh+j−1|)}

< inf{Ea(u) : u ∈ M(D), β(u) ∈ {xh+j−1, xh+j}} (4.18)

and

sup{Ea(vp,D[y]) : y ∈ ∂B(xh+j−1,
1
2 |xh+j − xh+j−1|)}

< inf{Ea(u) : u ∈ M(D), β(u) ∈ [xh+j−2, xh+j−1]}. (4.19)

Moreover, Rh+j can be chosen large enough that we also have:

the homotopy Hh+j−1 : ∂B(xh+j−1,
1
2 |xh+j − xh+j−1|) × [0, 1] → RN \ {xh+j−1, xh+j}

given by Hh+j−1(y, t) = (1 − t)y + tβ(vp,D[y]) is well defined. (4.20)
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Step 6. First, set D1,2 = RN \
⋃2

i=1(ω̄i + xi). From (2.6), (2.7) it follows that, for
i = 1, 2,

lim
|x2−x1|→+∞

max{E0(ΨD1,2,ρ̄i,xi [y, t]) : (y, t) ∈ K} = max{E0(ΨDi,ρ̄i,xi [y, t]) : (y, t) ∈ K},

(4.21)
for every compact subset K in Σxi × [0, 1]. Moreover,

lim
|x2−x1|→+∞

βxi(ΨD1,2,ρ̄i,xi [y, 0]) = βxi(ΨDi,ρ̄i,xi [y, 0]) uniformly in Σxi , i = 1, 2.

(4.22)
Hence, in particular, for |x2 − x1| sufficiently large, (4.2) holds with D1,2 in place of Di,
so

∃(z̄i, t̄i) ∈ Σxi
× [0, 1] such that βxi

(ΨD1,2,ρ̄i,xi
[z̄i, t̄i]) = xi. (4.23)

Now observe that

inf{E0(u) : u ∈ M(Di), βxi
(u) = xi}

� inf{E0(u) : u ∈ M(D1,2), βxi(u) = xi}, i = 1, 2. (4.24)

From (4.21), (4.23) and (4.24) it follows that, if |x2−x1| is sufficiently large, (4.3) holds
with D1,2 in place of Di, i = 1, 2, and (4.4) holds with i = 1 and D1 = D2 = D1,2.

Furthermore, we can also take |x2 − x1| to be sufficiently large to get (4.9)–(4.11).
Now, set D1,2,3 = RN \

⋃3
i=1(ω̄i + xi), with x1 and x2 fixed as in the previous claim.

We find that

lim
|x3−x2|→+∞

max{E0(ΨD1,2,3,ρ̄3,x3 [y, t]) : (y, t) ∈ K}

= max{E0(ΨD3,ρ̄3,x3 [y, t]) : (y, t) ∈ K}, (4.25)

for every compact subset K in Σx3 × [0, 1]. Moreover,

lim
|x3|→+∞

βx3(ΨD1,2,3,ρ̄3,x3 [y, 0]) = βx3(ΨD3,ρ̄3,x3 [y, 0]) uniformly in Σx3 , (4.26)

so, for |x3| sufficiently large, (4.2) holds for i = 3, with D1,2,3 in place of D3 and

∃(z̄3, t̄3) ∈ Σx3 × [0, 1] such that βx3(ΨD1,2,3,ρ̄3,x3 [z̄3, t̄3]) = x3. (4.27)

Observe also that

inf{E0(u) : u ∈ M(D3), βx3(u) = x3} � inf{E0(u) : u ∈ M(D1,2,3), βx3(u) = x3}.

(4.28)
From (4.25), (4.27) and (4.28) it follows that, for |x3| large enough, (4.3) holds, for

i = 3, with D1,2,3 in place of D3.
We have, for i = 1, 2,

lim
|x3|→+∞

max{E0(ΨD1,2,3,ρ̄i,xi [y, t]) : (y, t) ∈ K} = max{E0(ΨD1,2,ρ̄i,xi [y, t]) : (y, t) ∈ K},

(4.29)
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for every compact subset K in Σxi
× [0, 1]. Furthermore,

lim
|x3|→+∞

βxi(ΨD1,2,3,ρ̄i,xi [y, 0]) = βxi(ΨD1,2,ρ̄i,xi [y, 0]) uniformly in Σxi . (4.30)

Hence, for |x3| sufficiently large, (4.2) holds with D1,2,3 in place of Di, for i = 1, 2, and

∃(z̄i, t̄i) ∈ Σxi
× [0, 1] such that βxi

(ΨD1,2,3,ρ̄i,xi
[z̄i, t̄i]) = xi. (4.31)

Now, observe that

inf{E0(u) : u ∈ M(D1,2), βxi(u) = xi}
� inf{E0(u) : u ∈ M(D1,2,3), βxi(u) = xi} for i = 1, 2. (4.32)

So (4.29), (4.31) and (4.32) imply that, for sufficiently large |x3|, (4.3) also holds, for
i = 1, 2, with D1,2,3 in place of Di.

Moreover, taking into account (4.25), (4.29) and (4.28), (4.32), we get (4.4) with i = 1, 2
and Di = Di+1 = D1,2,3.

We have

lim
|x3|→+∞

max{E0(vp,D1,2,3 [y]) : y ∈ ∂B(x1,
1
2 |x2 − x1|)}

= max{E0(vp,D1,2 [y]) : y ∈ ∂B(x1,
1
2 |x2 − x1|)} (4.33)

and

inf{E0(u) : u ∈ M(D1,2), β(u) ∈ {x1, x2}}
� inf{E0(u) : u ∈ M(D1,2,3), β(u) ∈ {x1, x2}}, ∀x3 ∈ RN . (4.34)

Furthermore,

lim
|x3|→+∞

β(vp,D1,2,3 [y]) = β(vp,D1,2 [y]) uniformly in ∂B(x1,
1
2 |x2 − x1|), (4.35)

so, for |x3| sufficiently large, (4.11) holds with D1,2,3 in place of D and, in particular,

∃y1,2 ∈ ∂B(x1,
1
2 |x2 − x1|) such that β(vp,D1,2,3 [y1,2]) ∈ [x1, x2]. (4.36)

Then, from (4.33)–(4.36) it follows that, for sufficiently large |x3|, (4.9)–(4.11) hold with
D1,2,3 in place of D.

We can also take |x3| sufficiently large to verify (4.12)–(4.14) with j = 3.
Iterating these arguments, we get (4.2), (4.3) with RN \

⋃h
i=1(ω̄i + xi) in place of Di,

i = 1, . . . , h, (4.4) with

Di = Di+1 = RN \
h⋃

i=1

(ω̄i + xi), i = 1, . . . , h − 1,

and (4.9)–(4.14) with RN \
⋃h

i=1(ω̄i + xi) in place of D.
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Now, fix D = RN \
⋃h

i=1(ω̄i + xi).
Notice that, arguing as for (3.16), for every a ∈ LN/2(RN ) we obtain

lim
|z|→+∞

Ea(·−z)(w) = E0(w) uniformly in w ∈ K, K ⊂ H1
0 (D) a compact set. (4.37)

Moreover, for a(x) = a1
n1

(x − xh+1), xh+1 ∈ RN ,

inf{E0(u) : u ∈ M(D), βxi
(u) = xi}

� inf{Ea(u) : u ∈ M(D), βxi(u) = xi}, i = 1, . . . , h, (4.38)

and

inf{E0(u) : u ∈ M(D), β(u) ∈ {xi, xi+1}}
� inf{Ea(u) : u ∈ M(D), β(u) ∈ {xi, xi+1}}, i = 1, . . . , h − 1. (4.39)

Hence, we can choose |xh+1| sufficiently large in such a way that not only do (4.15)–
(4.17) hold, but also (4.3), (4.4), (4.9), (4.10) and (4.12), (4.13) hold, on the domain
D = RN \

⋃h
i=1(ω̄i + xi), with the functional Ea in place of E0.

Notice that from (2.6) and (2.7) it follows, for every a ∈ LN/2(RN ), that, for every
compact set K ⊂ Σ0 × [0, 1] and for every ρ > 0,

lim
|z|→+∞

Ea(·−z)(ΨD,ρ,z[y + z, t]) = Ea(ΨRN ,ρ,0[y, t]) uniformly in K. (4.40)

Moreover,

lim
|z|→+∞

sup
y∈Σ0

|(βz(ΨD,ρ,z[y + z, 0]) − z) − β0(ΨRN ,ρ,0[y, 0])| = 0. (4.41)

So, also taking into account relations (4.37), (4.40), (4.41) and arguing for the bumps
ai

ni
(x − xh+i), i = 1, . . . , k, as we have done for the holes (ω̄i + xi), i = 1, . . . , h, we can

choose recursively the ‘centre’ of the bumps xh+i in such a way that the inequalities
stated in Steps 1–5 hold with D = RN \

⋃h
i=1(ω̄i + xi) and Ea in place of E0, where

a(x) =
∑k

i=1a
i
ni

(x − xh+i). Namely, we obtain, for i = 1, . . . , h + k,

m < sup{Ea(ΨD,ρ̄i,xi
[y, 0]) : y ∈ Σxi

}
< b1,i := inf{Ea(u) : u ∈ M(D), βxi(u) = xi}
� b2,i := sup{Ea(ΨD,ρ̄i,xi [y, t]) : (y, t) ∈ Σxi × [0, 1]} < 21−2/pm, (4.42)

βxi(ΨD,ρ̄i,xi [y, 0]) is homotopically equivalent in RN \ {xi} to the identity map on Σxi

(4.43)
and, for i = 1, . . . , h + k − 1,

sup{Ea(ΨD,ρ̄i,xi
[y, t]) : (y, t) ∈ Σxi

× [0, 1]} < inf{Ea(u) : u ∈ M(D), βxi+1(u) = xi+1}.

(4.44)
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Moreover, for i = 1, . . . , h + k − 1,

m < d1,i := inf{Ea(u) : u ∈ M(D), β(u) ∈ [xi, xi+1]}
� d2,i := sup{Ea(vp,D[y]) : y ∈ ∂B(xi,

1
2 |xi+1 − xi|)}

< inf{Ea(u) : u ∈ M(D), β(u) ∈ {xi, xi+1}}, (4.45)

the homotopy Hi : ∂B(xi,
1
2 |xi+1 − xi|) × [0, 1] → RN \ {xi, xi+1}

given by Hi(y, t) = (1 − t)y + tβ(vp,D[y]) is well defined. (4.46)

Furthermore,

sup{Ea(vp,D[y]) : y ∈ ∂B(x1,
1
2 |x2 − x1|)}

< inf{Ea(u) : u ∈ M(D), βx1(u) = x1} < 21−2/pm (4.47)

and, for i = 2, . . . , h + k − 1,

sup{Ea(vp,D[y]) : y ∈ ∂B(xi,
1
2 |xi+1 − xi|)}

< inf{Ea(u) : u ∈ M(D), β(u) ∈ [xi−1, xi]} < 21−2/pm. (4.48)

Step 7. By Assumption (C), we can now consider a sequence of points zn ∈ Ω such
that B(zn, n) ⊂ Ω. Fix

D =
h⋃

j=1

(ω̄j + xj) and a(x) =
k∑

j=1

aj
nj

(x − xh+j).

For i = 1, . . . , h + k we have

lim
n→+∞

sup{|Ea(·−zn)(ΨRN \(D+zn),ρ̄i,xi+zn
[y + zn, t])

− Ea(·−zn)(ΨΩ\(D+zn),ρ̄i,xi+zn
[y + zn, t])| : (y, t) ∈ K} = 0,

K compact in Σxi × [0, 1], (4.49)

lim
n→+∞

sup
y∈Σxi+zn

|βxi+zn(ΨRN \(D+zn),ρ̄i,xi+zn
[y, 0]) − βxi+zn(ΨΩ\(D+zn),ρ̄i,xi+zn

[y, 0])| = 0,

(4.50)

inf{Ea(·−zn)(u) : u ∈ M(RN \ (D + zn)), βxi+zn(u) = xi + zn}
� inf{Ea(·−zn)(u) : u ∈ M(Ω \ (D + zn)), βxi+zn(u) = xi + zn}, ∀n ∈ N. (4.51)

Moreover, for every compact K in RN ,

lim
n→+∞

sup
y∈K

|Ea(·−zn)(vp,RN \(D+zn)[y + zn]) − Ea(·−zn)(vp,Ω\(D+zn)[y + zn])| = 0, (4.52)

lim
n→+∞

sup
y∈K

|β(vp,RN \(D+zn)[y + zn]) − β(vp,Ω\(D+zn)[y + zn])| = 0, (4.53)

inf{Ea(·−zn)(u) : u ∈ M(RN \ (D + zn)), β(u) ∈ K + zn}
� inf{Ea(·−zn)(u) : u ∈ M(Ω \ (D + zn)), β(u) ∈ K + zn}, ∀n ∈ N. (4.54)
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From (4.49)–(4.54) it follows that (4.42)–(4.48) hold, for n large, with

D = Ω \
h⋃

i=1

(ω̄i + (xi + zn)), a(x) =
k∑

i=1

ai
ni

(x − (xh+i + zn))

and setting
x̄i := xi + zn, i = 1, . . . , h + k, (4.55)

in place of xi. Furthermore, by Propositions 3.1, 3.2 and Remark 3.3, n can be chosen
to be large enough to also have

m < d1,h+k := inf{Ea(u) : u ∈ M(D), β(u) ∈ [0, zn]}
� d2,h+k := sup{Ea(vp,D) : y ∈ ∂B(zn, 1

2n)}
< inf{Ea(u) : u ∈ M(D), β(u) ∈ {0, zn}}, (4.56)

the homotopy Hh+k : ∂B(zn, 1
2n) × [0, 1] → RN \ {0, zn}

given by Hh+k(y, t) = (1 − t)y + tβ(vp,D[y]) is well defined (4.57)

and, moreover,

m < sup{Ea(vp,D) : y ∈ ∂B(zn, 1
2n)}

< inf{Ea(u) : u ∈ M(D), β(u) ∈ [x̄h+k−1, x̄h+k]} < 21−2/pm. (4.58)

Step 8. We now prove Theorem 4.1 with D2, . . . , Dh as in Step 1, n̄1, . . . , n̄k as in
Step 2 and x̄1, . . . , x̄h+k as in Step 7. Henceforth,

D = Ω \
h⋃

i=1

(ω̄i + x̄i) and a(x) =
k∑

i=1

ai
ni

(x − x̄h+i). (4.59)

We denote the sublevels of Ea in M(D) by

Ec
a = {u ∈ M(D) : Ea(u) � c}, c ∈ R.

For i = 1, . . . , h + k, we claim that there exists a critical value ci ∈ [b1,i, b2,i] (see
(4.42), with a and D as in (4.59) and x̄i in place of xi). Assume, by contradiction, that
such a critical value does not exist. Then, taking into account Proposition 2.2, standard
arguments (see [23], for example) show that there exist ηi > 0 and a continuous map

Gi : Eb2,i
a → Eb1,i−ηi

a

such that
Gi(u) = u, ∀u ∈ Eb1,i−ηi

a . (4.60)

Moreover, by (4.42), ηi can be chosen small enough to have

b1,i − ηi > sup{Ea(ΨD,ρ̄i,x̄i [y, 0]) : y ∈ Σxi}. (4.61)
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If we identify B(x̄i, 1) with Σx̄i
× [0, 1], by polar coordinates (with the points of the form

(y, 1), y ∈ Σx̄i , corresponding to x̄i in B(x̄i, 1)), then, by (4.42), (4.60), (4.61) and (4.43),
the map gi : B(x̄i, 1) → RN given by

gi(y, t) = βxi(Gi(ΨD,ρ̄i,x̄i [y, t]))

is well defined, continuous and is such that gi|∂B(x̄i,1)
is homotopically equivalent to the

identity in RN \ {x̄i}. Hence, there exists (ȳi, t̄i) ∈ Σx̄i × [0, 1] such that gi(ȳi, t̄i) = x̄i,
i.e. βxi(Gi(ΨD,ρ̄i,x̄i

[y, t])) = x̄i, that is in contradiction to (4.60) and proves our claim.
Our next goal is to show that for every i = 1, . . . , h+ k − 1 there exists a critical value

ci,i+1 ∈ [d1,i, d2,i] (see (4.45) with a and D as in (4.59) and x̄i in place of xi). Observe
that [d1,i, d2,i] ⊂ (m, 21−2/pm) by (4.45), (4.47) and (4.48), and assume, by contradiction,
that such a critical point does not exist. Then, taking into account Proposition 2.2, we
see that there exist ηi,i+1 > 0 and a continuous deformation Fi : E

d2,i
a × [0, 1] → E

d2,i
a

such that

Fi(u, 0) = u, ∀u ∈ Ed2,i
a , and Fi(u, 1) ⊂ Ed1,i−ηi,i+1

a , ∀u ∈ Ed2,i
a . (4.62)

Now, let us define fi : ∂B(x̄i,
1
2 |x̄i+1 − x̄i|) × [0, 1] → RN \ {x̄i, x̄i+1} by

fi(y, t) =

{
Hi(y, 2t) if t ∈ [0, 1

2 ],

β(Fi(vp,D[y], 2t − 1)) if t ∈ [ 12 , 1].
(4.63)

By (4.46), (4.62) and (4.45), fi is a well-defined continuous deformation that verifies

fi(y, 0) = y, ∀y ∈ ∂B(x̄i,
1
2 |x̄i+1 − x̄i|),

fi(y, 1) ∩ [x̄i, x̄i+1] = ∅, ∀y ∈ ∂B(x̄i,
1
2 |x̄i+1 − x̄i|),

fi(y, t) �∈ {x̄i, x̄i+1}, ∀(y, t) ∈ ∂B(x̄i,
1
2 |x̄i+1 − x̄i|) × [0, 1],

which is impossible. So the existence of the critical value ci,i+1 is proved.
By using relations (4.56)–(4.58) and exactly the same argument developed to prove

the existence of the critical values ci,i+1, i = 1, . . . , h + k − 1, we can find a critical value
ch+k,h+k+1 ∈ [d1,h+k, d2,h+k].

To summarize: from (4.44), (4.47), (4.48) and (4.58) it follows that the critical levels
ci, ci,i+1, we have found for i = 1, . . . , h + k, verify

m < ch+k,h+k+1 < ch+k−1,h+k < · · · < c1,2 < c1 < · · · < ch+k < 21−2/pm. (4.64)

Hence, they actually give rise to distinct critical points for the functional Ea constrained
on M(D). These critical points are positive functions, by (4.64), Proposition 2.3 and the
maximum principle, so they provide 2(h + k) distinct solutions to problem P (a,D).

�
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5. Final remarks

In the proof of Theorem 4.1, h critical levels are related to the ωi, k to the ai, h + k − 1
to the interactions between the holes in the domain and the bump in the potential, and
another critical level comes from the action of the boundary of Ω. In order to distinguish
the critical levels we have found (hence the solutions), a crucial role has been played by
the asymptotic behaviour stated in Proposition 3.2 (a), in Propositions 3.4 (b) and 3.5,
and in (3.20), (3.22). The application of these results in the proof of Theorem 4.1 shows
that if uωi

are the solutions of P (a,D) related to ωi, uai
ni

are the solutions related to ai
ni

,
and ui,i+1 are the solutions given by the interactions, then the following energy estimates
hold:

lim
D(ωi)→+∞

Ea

(
uωi

|uωi
|Lp

)
= 21−2/pm, i = 1, . . . , h, (5.1)

lim
n̄i→+∞

Ea

( uai
ni

|uai
ni

|Lp

)
= 21−2/pm, i = 1, . . . , k, (5.2)

lim
|x̄i+1−x̄i|→+∞

Ea

(
ui,i+1

|ui,i+1|Lp

)
= m, i = 1, . . . , h + k − 1, (5.3)

lim
n→+∞

Ea

(
uh+k,h+k+1

|uh+k,h+k+1|Lp

)
= m (5.4)

(see (4.56) in Step 7 of the proof of Theorem 4.1 for the dependence on n of the solu-
tion uh+k,h+k+1). In fact, (5.1) and (5.2) follow from (4.42), (5.3) follows from (4.45),
and (5.4) follows from (4.56).

A natural question is what happens if the ‘holes’ ωi shrink, instead of enlarging, and
the bumps ai vanish, instead of increasing. To analyse this situation, arguing as in the
proof of [5, Theorem A.1] we can obtain the following asymptotic estimate:

lim
cap ω̄→0

sup{E0(vp,RN \ω̄[y]) : y ∈ RN} = m, (5.5)

where, for a closed bounded set G ⊂ RN , the capacity of G is defined by

cap G = inf{‖u‖H1 : u ∈ H1(RN ), u � 1 on G in the H1-sense}.

Moreover, it is easily seen that

lim
|a|

LN/2→0
sup{Ea(vp(· − y)) : y ∈ RN} = m. (5.6)

By the asymptotic behaviour stated in (5.5) and (5.6), the following result can be proved
by working as in Theorem 4.1.

Theorem 5.1. Let h, k ∈ N, h + k �= 0, and assume that Ω is an open set in RN that
satisfies Assumption (C). If

D = Ω \
h⋃

i=1

(ω̄i + x̄i), x̄i ∈ RN ,
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with ωi bounded open sets in RN , and a has the form

a(x) =
k∑

j=1

aj(x − x̄h+j), xh+j ∈ RN ,

with aj non-negative functions in LN/2(RN ) that satisfy assumption (1.2), then there
exist

C2 = C2(ω1),

C3 = C3(ω2),
...

Ch = Ch(ωh−1),

L1 = L1(ωh),

L2 = L2(a1),
...

Lk = Lk(ak−1),

x̄1 = x̄1(Ω, ω1),
...

x̄h = x̄h(Ω, ω1, x̄1, . . . , ωh−1, x̄h−1, ωh),

x̄h+1 = x̄h+1(D, a1),
...

x̄h+k = x̄h+k(D, a1, x̄h+1, . . . , ak−1, x̄h+k−1, ak)

such that problem P (a,D) has at least 2(k + h) distinct solutions uω1 , . . . , uωh
,

ua1 , . . . , uak
, ui,i+1, i = 1, . . . , h+k, whenever capω̄i < Ci, i = 1, . . . , h, and |ai|LN/2 < Li,

i = i, . . . , k.

In the case of Theorem 5.1, as a consequence of (5.5) and (5.6), the following estimates
can be obtained, besides (5.3) and (5.4):

lim
cap ω̄i→0

Ea

(
uωi

|uωi |Lp

)
= m, i = 1, . . . , h, (5.7)

lim
|ai|LN/2→0

Ea

(
uai

|uai
|Lp

)
= m, i = 1, . . . , k. (5.8)

Observe also that results similar to those stated in Theorems 4.1 and 5.1 can be proved
when there are holes that expand and holes that shrink and bumps that increase and
bumps that vanish simultaneously.
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Remark 5.2. If in Theorems 4.1 and 5.1 we consider Ω = RN , then we find that
problem P (a,D) has at least 2(h + k) − 1 solutions.

In fact, if we consider Theorem 4.1, for example, we can repeat the proof developed
in § 4, with the exception of Step 7, so the desired number of solutions can be found.
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