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Abstract

We derive estimates relating the values of a solution at any two points to the distance between the points
for quasilinear parabolic equations on compact Riemannian manifolds under Ricci flow.
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1. Introduction

Andrews and Clutterbuck [2, 3] and Andrews [ 1] studied two-point estimates and their
applications in a variety of geometric contexts. Recently, Andrews and Xiong [4] used
two-point estimates to deduce gradient estimates of the solutions of the quasilinear
equations

a(u,|Du I)

+ﬁ(u |Du|)( ]D iDju + q(u,|Dul) = (1.1)

|D |2)

where the left-hand side of (1.1) is continuous on R X T M X LE(T M), a and B are
nonnegative functions and (s, ) > 0 for ¢ > 0. They proved the following result.

ID I2

TueoreM 1.1 [4]. Let M"™ be a compact Riemannian manifold with Ric > 0 and let u be
a viscosity solution of (1.1). Suppose that the barrier ¢ : [a, b] — [inf u, sup u] satisfies
¢ >0,

d (w"a(so, ¢) +4q(e, 90’)) <0.

dz ¢'Ble. ¢')
If ¥ is the inverse of ¢ (that is, Y(¢(2)) = z), then

Y(u(y)) — w(u(x)) —d(x,y) <0 forall x,y € M.
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320 M. Chen 2]

Allowing y to approach x leads to the following gradient estimate.

CoroLLARY 1.2. Under the conditions of Theorem 1.1, for every u € C'(M) and x € M,

Vu(x) < ¢ (Y (u(x))).

The Modica-type gradient estimate obtained by using the P-function in [8] is a
special case of this result with @« =8 =1 and a generalisation of Modica’s result
in [6] is also a special case with @ = 2¥"(z)z + ¥'(2) and B8 = ¥(z). The details of
the two-point estimates are comparatively simple and geometric compared with the
calculations involved in the P-function approach. Since this method does not involve
differentiating the equation, it applies with minimal regularity requirements on the
solution u, corresponding to the viscosity solution requirement.

We seek to apply this method to derive gradient estimates for parabolic equations.
Azagra et al. [5] defined the viscosity solution and proved the parabolic maximum
principle for semicontinuous functions on manifolds. Several authors considered
gradient estimates under Ricci flow,

gtg(x, 1) = —2Ric(x, t).

For example, Liu [7] derived gradient estimates on a closed Riemannian manifold.

Tueorem 1.3 [7]. Let (M, g(t)) be a closed Riemannian manifold, where g(t) evolves
by the Ricci flow in such a way that —Ky < Ric < Kj for t € [0, T]. If u is a positive
solution to (A — 0y)u(x, t) = 0, then, for (x,t) € M x (0, T],

Vu(x,)>  u(x,t) na®> ne’Ky

32,2
<—+—F+ Ko+ K
u(x, 1) u(x, 1) t a—1 " (Ko D

forany a > 1.

We find that the two-point function approach works when the metric evolves as a
supersolution of the Ricci flow, that is, dg/dt > —2Ric. We prove the following result.

TueOREM 1.4. Let M"™ be a compact Riemannian manifold with diameter D(t) and
let g(t) be a time-dependent metric on M satisfying dg/0t > —2Ric. Assume that the
diameter D(t) is bounded above by D, the Ricci curvature satisfies Ric > 0 fort € [0,T)
and u: M X [0,T) — R is a viscosity solution of the heat equation

D,‘MD

\Du? +,3(t)(6ij - )]D,-Dju + q(u,|Dul, 1), (1.2)

u; = a(u, |Dul, 1) “IDu

where B(t) > 1. Suppose that ¢ : [0, D] X [0, T] — R satisfies

¢ >0
1(901 —¢"alg, ¢, 1) + q(p, ¢, t)) -0
ds @'B(1) '
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Let ¥ be given by inverting ¢ for each t, so that o(‘¥(z,1),t) = z for each z and t. Assume
that the range of u(-,0) is contained in the interval [¢(0,0), o(D, 0)] and that, for all x
andyin M,

Y(u(y,0),0) — Y(u(x,0),0) — dy(x,y) < 0.

Then
Y(u(y,1),t) — P(u(x,1),1) — di(x,y) <0

forall x,ye M and t € [0, T).
The gradient estimate follows immediately.

CorOLLARY 1.5. Under the conditions of Theorem 1.4, for every x € M and t > 0,
IVu(x, 0 < ' (WP(u(x, 1), 0),1).

The graphical mean curvature flow and the Laplacian heat flow are two important
examples of the heat equation of Theorem 1.4. We consider another type of heat
equation which includes important examples such as p-Laplacian heat flow.

THeEOREM 1.6. Let M"™ be a compact Riemannian manifold with diameter D(t) and
let g(t) be a time-dependent metric on M satisfying dg/dt > —2Ric. Assume that
the diameter D(t) is bounded above by D, the Ricci curvature satisfies |Ric| < « for
tel0,T)andu: M X [0,T) — R is a viscosity solution of the heat equation

= |a(|Dul, t)

Y B(Dul, z)( )]D Dyu+q(Dul,n,  (1.3)

ID |2 ID D

where @ > 0 and 8 > 0. Suppose that ¢ : [0, D] X [0, T) — R satisfies
@ =@ alg’, 1) + ksl’(1 = Blg’, D)l

and, that for all x and y in M,

do(x,y)
2

u(y, 0) — u(x, 0) — 2¢( ,0) <0.

Then
u(y, 1) — u(x, 1) — 290( ’()2‘ -Y) )50.

CoroLLARY 1.7. Under the conditions of Theorem 1.6, for every x € M and t > 0,
[Vu(x, )] < ¢'(0, 7).

The paper is organised as follows. In Section 2 we recall background material
including the definitions of P>~ f(ty, xo) and P> f(to, xo) when f is a semicontinuous
function and parabolic maximum principles for semicontinuous functions. In Section 3
we give the proof of Theorem 1.4 and Corollary 1.5 for one type of heat equation.
Then Theorem 1.6 and Corollary 1.7 are proved in Section 4 for the other type of heat
equation.
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2. Preliminaries
First we present some definitions and results which will be used later.

DernitioN 2.1 [5]. Let £ : (0,T) X M — (—o0, +00] be a lower semicontinuous (LSC)
function. The parabolic second-order subjet of f at a point (¢y, x9) € (0,7) X M is
defined by

P2 f(t9, x0) :={(Dsgp(to, o), Dxp(to, Xo), D2p(to, X0)) : ¢ is once continuously
differentiable in ¢ € (0, T'), twice continuously differentiable in
Xx € M and f — ¢ attains a local minimum at (#y, xo)}.
Similarly, for an upper semicontinuous (USC) function f : (0,7) X M — [—oo0, +00),
the parabolic second-order superjet of f at (¢, xo) is defined by
P f(to, x0) := {(Dip(to, Xo), Dxplto, Xo), Dap(to, Xo)) : ¢ is once continuously
differentiable in ¢ € (0, T'), twice continuously differentiable in

x € M and f — ¢ attains a local maximum at (#y, xo)}.

DEFINITION 2.2 [5]._Let f:(0,T)xX M — (—o0,+00] be an LSC function and (¢, x) be in
(0,T) x M. Then P>~ f(to, xo) is the set of (a,Z,A) € R x TM: x L2(T M,) such that
there exists a sequence (xk, ax, (i, Ax) in M X R X TM; X L?(TMxk) satisfying:

(i) (@ & Ar) € P> f (1, x0); and
(i) limy (#, Xk, f(fs Xk, ak, S, Ax) = (8, x, f(2, ), a,, A).
The corresponding definition of P>* f(ty, xo) when f is an upper semicontinuous

function is then clear.

TueorEM 2.3 [5]. Let My, ..., My be Riemannian manifolds and ; € M; open subsets.
Define Q = (0,T) X Qq X --- X Q. Let u; be upper semicontinuous functions on
0, T)x Q;fori=1,... k. Let ¢ be a function defined on Q which is once continuously
differentiable in t € (0, T) and twice continuously differentiable in x := (xy,...,x;) €
Qq X -+ X Qy and set

w(t, X1, ..., x) =up(t,xy) + - +u(t, xx) for (t,xy1,...,x,) € Q.

Assume that (, %1, . .., %) is a maximum of w — ¢ in Q. Further, assume that there is a
T > 0 such that for every M > 0 there is C > 0 such that fori=1,...,k,

a; < C whenever (a;, (i, A;) € @igu,-(t, x;),
d(x;, %) + |t = 1| < T and |u;(t, x;)| + 14| + Al < M.

Then, for each € > 0, there exist real numbers b; and bilinear forms B; € L2(T M,);, for
i=1,...,ksuch that

(bi» Dyp(h, 21, ..., &), BY) € (air £ix Ai) € Pyt uiF, %)

https://doi.org/10.1017/S0004972720000532 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972720000532

[5] Parabolic equations under Ricci flow 323

fori=1,... kand the block diagonal matrix with entries B; satisfies
| B, -~ 0
—(— n ||A||)I <|: i lsAaren?,
c : :
0 - B

where A = D*¢(t, %1, ..., %) and by + - -+ + by = 0p/0t(f, X1, . ., ).
We prove the next lemma by the same method as [3, Lemma 8].

Levma 2.4. Let u be a continuous function and ¢ : R x [0,T) — R be a C>! function
with ¢ > 0. Let ¥ : R X [0, T) — R be the inverse of ¢, so that

Y(p(u@y,1),1),1) = u(y,1).
() If(a, ¢ A) € PP (¥ o u)(X, 1)), then
(P + ¢ 009" LR+ ¢ A) € PPHu(d, 1),

where all derivatives of ¢ are evaluated at Y (u(%,1),1).
(i) If(a,,A) € P>~ (Yo u)(&, 1), then

(0 + ¢ 009" LR+ ¢ A) € PP u(, 1),

where all derivatives of ¢ are evaluated at Y(u(%,7),1).
(iii) The same statements hold if we replace the semijets by their closures.

Proor. (i) Assume that (a,l,A) € P>*(¥ o u)(%,7). By Definition 2.1, there is a
C?>! function A such that W(u(x, ), ) — h(x, t) has a local maximum at (%,7) and
(h;, Dh, Dzh)(fc, ) =(a, ¢, A). Since ¢ is increasing,

u(x, 1) — @(h(x, 0, 1) = e(¥(u(x, 1), 1), 1) — (h(x, 1), 1)
has a local maximum at (%, 7). It follows that
(@ +¢a @', ¢"{®L+¢'A) e PP u(i, ).
Part (ii) can be proved by a similar argument. Part (iii) follows by an approxima-
tion. m]
3. Proof of Theorem 1.4

Let € > 0 be arbitrary and consider the first time #; > 0 and points xy and yy in M at
which the inequality

Y(u(y,n),t) —Pulx,1),t) —di(x,y) —e(1+1 <0

reaches equality. Note that if € > 0, then we necessarily have yy # x. Even though the
length of the curve depends explicitly on ¢ through the time dependence of the metric g,
we can still replace d;(x, y) by a smooth function d;(x, y) as in [4, proof of Theorem 6]
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within a neighbourhood of (xp, yo) at any fixed time ¢. Let y((s) be a minimising
geodesic joining xo and yo parametrised by arc length at time 7o, that is, [y{(s)lg) = 1
with length [ = Zu(v0) = di,(x0, yo). Let {ei(s)}L, be parallel orthonormal vector
fields along yo(s) with e,(s) = y((s). Then in small neighbourhoods Uy, of x and Uy,
of yy, there are mappings x +— (a;(x),...,a,(x)) and y — (b1(y), ..., b,(y)) such that

c=expy (V). y=exp, (Y b0wem)
i=1 i=1

Then d,(x, y) can be defined by

di,3) = Lo Xy (Z_Ts D aieis) + 5 Y bies))) for s 10,11

Therefore,
Y(u(y, 1), 1) — Pu(x, 1), 1) — di(x,y) < e(1 + 1)

for any (x,y,t) € Uy, X Uy, X [0, T] and with equality at (xo, yo, fp). Thus, we can
apply the parabolic maximum principle to conclude that for each A > 0 there exist
X € LXTM,,),Y € L2(TM,,) such that

(b1, Dydi (6 V)| o0 V) €PHE(E 0 )30 to),
(=b2, =Dadi(, ), 0 X) € PH (¥ 0 )0, 10),
d -
€r E(d[(x’ y))l(fo,xo,yo) =bi+b
and
-X 0 )
( 0 v ) <H+ AH",

where H = D?d,(x,Y)|.x0.y,)- We compute

ds

=ty

d - ld ’ ’ 1/2
E(dl(xay))hm‘xo,yo):‘fo d_t(<y0(s)970(s)>g(t)
!

1 (d
- f dg (V(’)(s),yé(s))‘ ds> _f Ricy, (en(s), en(s)) ds.
o at 1=ty 0

Therefore,
[
by +by >€e- f Ric,,(en(s), e,4(s)) ds. (3.1
0
Note that Dyd, (X, Y)l.x050) = €n(]) and Ddy (X, Y)ly.x0.50) = —€a(0). By Lemma 2.4,

(bl‘P,(Zyw tO) + ‘Pt(zyo» t0)7 ‘p,(zyo? tO)en(l)v <p"(zy()7 tO)Y + Spl(zyo’ [O)En(l) ® en(l))
is in P%* (u)(yo, to) and

(_bZ(p,(Zxo, tO) + ‘Pt(zxo, t0)9 (;0’(Zx0’ tO)en(O)s (PH(Zxo, tO)X + (10/(Zan tO)en(O) ® €n(0))
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is in P>~ (u)(xo, ty), where Zx, = P(ulxo, o), t0) and z,, = P(u(yo, o), fo). On the other
hand, since u is both a subsolution and a supersolution of (1.2),

Qot(zy()’ tO) + QO,(Z}'()? t())bl + Q(SO(ZyO, to)s ‘10/(1_\20’ tO)a t())
=t (' (&, 10)A2Y + ¢ (2, 10)Azen(l) @ €4(D) <0

and
QDI(ZX()’ t()) - QOI(ZX(V tO)b2 + Q(QD(me tO)v 90,(2)607 Z‘0)7 t())
—tr (' (2x» 10)ALY + @” (24,5 10)A1€4(0) ® €,(0)) <0,
where
B(t0)
A= o ,
B(to)
(2195 10) ' (2 10)s o)
B(to)
Ay =
B(to)
CY(QO(Z}YO, t0)9 <P/ (Zyoa to)’ tO)

For the inequality at yy,
@12y 10) = (@(P(2yy5 10)> €' (Zyy» 10)> 1P (2yy5 t0) + G(P(2y55 10)s ' (255 10)s T0))

, 0 C\[-X O
+90(zy0,t0)(b1 —tr(C A )( 0 v )) <0,

where C is an n X n matrix to be determined. Dividing by ¢’(z,,, f0)B(to) gives

"‘Lb—tro C)-x 0 <0
(2310 B(to) ! c A )No v I=7

! A 0\-X O
(2xgst0) _@(brtr(o 0 )( 0 Y ))ZO.

B(to)

(% —¢"alp, ¢, 1) + q(p, ¢, t))
'B(1)

Similarly, for the inequality at xj,

(sot —¢"alp, ¢, 1)+ qlp, ¢, t))
@'B(1)

Let

C =
B(to)

Then

o=@ alp, @', 1) + qle, ¢, t))

(zyqt0) _
Qp’ﬂ(l‘) + —(bl + by) —tr (W( OX g )) <0,

(quvt()) ﬁ(to)
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where the matrix

In—l O In—] O
O a(QO(ZX(p tO)? QD,(ZXO’ tO)’ t()) O O
W = B(10)
In—l 0 In—l 0
0 0 0 a’((p(zyoa tO)a Sol(zy()’ tO)’ tO)
B(t0)

is positive semidefinite. Since

X 0 )
(0 Y)§H+/1H,

it follows that

tr (W(_OX (; )) <tr(WH) + Atr (WH?).

Letting 4 — 0,

(2y4:10)

+ M(bl + by) <tr (WH).

(sot —¢"alp, ¢, 1) + q(p. ¢, t))
@'B()

(Zxg510)

Now we compute tr (WH):

n—1
tr (WH) = Z:(Dxpx,d, +2D,,Dyd, + Dy, Dyd)| P
i=
a(‘p(z)([n to)v ‘P (ZX()’ IO)’ ZO)DX DX d‘t’
B(t) n o (t0,%0,Y0)
)0 * t £ / ,t ,t ~
CL'(‘P(Z)O 0) ® (Zyo 0) O)Dy Dy dt‘ )
B(t) n I (t0,%0,y0)
The sum in the first line is
2 ~ d2
A d;,(exp,, (uei(0)), exp, (nei(l))) = A2 Za10)(€XPy, ) (1€i(5))se10.1)-
=0 u=0

By the second variation formulae,

2

ou?

!
Lyu,-) = f (V5. 0 = RO Vi ¥y 7)) s + s Vo, 7)o
(=0 0

where y/j means the normal part of the variational vector. Since y,, = ¢;(s), we have
V,.¥y =0and V, y, = 0and so

n—1
(DD d, + 2D, Dy.d, + Dy, D,.d,
i=1

)|(t0vmsﬂ)) -

!
- f Ric,,(en(s), e,(s)) ds.
0
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Similarly,

D-Xn Dxn 1 0’ Dyn Dyrl L:ZZ

|(l0 X0,0) |(l0,xo,y0) -

In summary,
!
tr(WH)=—f Ric;,(e,(5), en(s)) ds,
0

which implies that

(2yq:10)

o — ¢ ale, @', D)+ qle, ¢, t))
@'p(1)

Combining this with (3.1),

/
(2xy:t0) ,f;(_[())(b] +by) < - L Ric,,(en(s), e,(s)) ds.

[
€ < (1 -B(t)) f Ricy,(€x(5), €a(5)) ds,
0

which gives a contradiction. Therefore,

Y(u(y,n),t) —Pu(x,1),1) — di(x,y) <0.

4. Proof of Theorem 1.6
Let € > 0 be arbitrary and consider the first time 7y > 0 and points xy and yp in M at
which the inequality

u(y, 1) — u(x, £) — 2¢( f(Z” )—e(l+t)§0

reaches equality. If € > 0, then we necessarily have y # xo. We replace d;(x, y) by a
smooth function d,(x,y) as in the proof of Theorem 1.4 within a neighbourhood of
(X0, Y0)- Then

u(y, 1) — u(x, £) — 2¢( di(x.) )—E(1+t)s0

for any (x,y,1) € Uy, X Uy, X [0,T] and with equality at (xo, Yo, fp). Assume that
I = d;,(x0,y0) = 259. We apply the parabolic maximum principle to conclude that for
each A > 0, there exist X € LXTM,,), Y € L2(T M,,) such that

(b1, (50, 10Dy d(x, )|, o2 ) € P (@) (o, to),
(=2, =/ (50, 1) Dxds (6, M), 1+ XD € PP ()0, 10),

cr 2l v

and
-X 0 )
(O Y)SH+/1H,

where H = D> and ¢ = ZQD(LZ(X, /2,1).
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We compute

by + by = € — ¢'(s0, 1) j: Ricy, (en(s), €x(5)) ds + 2¢,(s0, to).
Since u is both a subsolution and a supersolution of (1.3),
by < tr(A2Y) + q(¢' (50, t0), 10),  —ba = tr (A1 X) + q(¢(s0, t0), t0),
where
B¢’ (50, 10), 10)
A=A =

B’ (50, 10), t0)
a(¢’ (0, 1), o)

b1Str((g AC2 )(_5( 2))+q(¢’(s(),to),to),

—by > —tr ((%l 8 )(_5( (; )) + g(¢’ (50, 10), o).

Therefore,

B¢’ (50, 10), o)

B¢’ (50, 10), 1)
0

Combining (4.2) with (4.3),

wmselle Lo v ) =elle Srede D)

Dividing by B(¢’(s0, t0), tp) gives

b +b
W <tr(WH) + Atr (WHQ),
¢ (S0,%0), lo
where
In—l 0 In—l 0
(¢’ (s0,t0),0)

W = 0 B(g' (s010):10) 0 0

Infl 0 In,] 0
0 0 0 e

B’ (50,10):10)

is positive semidefinite.
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Next,

n—1

Z(DX[DX#’ + 2DXIDY1¢’ + Dy[Dy"lfl/)|(f0,xo,yo)
i=1

—

n—

2

d ~
(90 (0, to) a2 d; (exp,, (uei(0)), expy, (uei(1))

=0

i, (exp,, (ei(0), expyowem)))

I\
—

i

1/ d
+ ¢" (50, fo)d—

=0
n—1

Z10)(€XPy, ) (1€i($))sef0.7)
,u:O

(‘10 (S07 tO)

i=1

1/ d
t¢ (So,to)a i’fgao)(expm(s)(,Uei(s))se[o,z]))

u=0
i
= —¢/(s0.10) f Ric (ea(s), en(s)) ds.
0
The summand in the first line is

(D, Dy, + 2Dy, Dy, + DynDynw)|(to’x0,y0)
’ d2 3
= ¢'(s0, fo)d—'uz dy, (exp,, (1en(0)), exp,, (uen (D))

u=0

d 5 2
~¢" (s0, ro)(— dyy(exp,, (1eq(0)), expyowen(l»))

+
2 du

=0

, &
= ,[ _
@' (50, 10) a2

Z10)(€XPy, () (1€ (8)) ser0.1)
=0

+ =y (s r)(i
290 0,0 i
=2¢" (50, 19).

2
c%m(expwouen<s)>se[o,q>)

=0

In summary,

a(¢’(s0,10), to)
B¢’ (50, 10), t0)

Substituting this into (4.4) and letting A — 0,

tr (WH) = 2¢" (50, 1)

by + by <24/'(s )a'(go’(so, 10), 1)
B ot~ O B o 10). 10)
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Combining this equation with (4.1),

€ < =20,(s0, to) + 2a(¢’ (50, 10), 10)¢” (50, 1)

250
+ ¢ (50, 70)(1 —,3(90'(So,to),to))f0 Ricy,(en(s), en(s)) ds,

which gives a contradiction. Consequently,

dt(x’y)
2

u(y,t) — u(x,t) — 2g0( ,t) —e(l+1<0.
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