
J. Fluid Mech. (2001), vol. 442, pp. 119–140. Printed in the United Kingdom

c© 2001 Cambridge University Press

119

Direct numerical simulation of instabilities in a
two-dimensional near-critical fluid layer heated

from below

By S. A M I R O U D I N E1,2, P. B O N T O U X1†,
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An analysis of the hydrodynamic stability of a fluid near its near critical point –
initially at rest and in thermodynamic equilibrium – is considered in the Rayleigh–
Bénard configuration, i.e. heated from below. The geometry is a two-dimensional
square cavity and the top and bottom walls are maintained at constant temperatures
while the sidewalls are insulated. Owing to the homogeneous thermo-acoustic heating
(piston effect), the thermal field exhibits a very specific structure in the vertical
direction. A very thin hot thermal boundary layer is formed at the bottom, then a
homogeneously heated bulk settles in the core at a lower temperature; at the top, a
cooler boundary layer forms in order to continuously match the bulk temperature
with the colder temperature of the upper wall. We analyse the stability of the two
boundary layers by numerically solving the Navier–Stokes equations appropriate for
a van der Waals’ gas slightly above its critical point. A finite-volume method is used
together with an acoustic filtering procedure. The onset of the instabilities in the
two different layers is discussed with respect to the results of the theoretical stability
analyses available in the literature and stability diagrams are derived. By accounting
for the piston effect the present results can be put within the framework of the stability
analysis of Gitterman and Steinberg for a single layer subjected to a uniform, steady
temperature gradient.

1. Introduction
Interest in the hydrodynamics of supercritical fluids dates from the early 1990s.

Reputed physicists reported what they termed a fourth heat equilibration mechanism
from experiments in free convection. The phenomenon was particularly obvious in
pure fluid layers near critical conditions and was termed as the ‘piston effect’ (PE).
This thermo-acoustic effect, which was predicted theoretically (Boukari et al. 1990;
Onuki, Hao & Ferrel 1990; Zappoli et al. 1990; Zappoli 1992; Carlès 1995; Zhong
& Meyer 1995) after an experimental observation by Nitsche & Straub (1987), is
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responsible for fast thermal equilibration in the absence of convection and conduction.
It was then explored experimentally for micro-gravity conditions that suppress the
convective component of the heat transport (Guenoun et al. 1993; Garrabos et al.
1998). Numerical modelling has confirmed and has contributed to the understanding
of the hydrodynamics of these very compressible, low heat diffusing, dense fluids
(Bravais, Zappoli & Mignon 1993; Zappoli & Durand-Daubin 1994; Amiroudine
1995; Amiroudine et al. 1996; Larroudé et al. 1996; Zappoli et al. 1996). The question
which then naturally arose was that of heat transport in near-critical fluids under
conditions of terrestrial gravity, or, more specifically, the interaction between the PE
and natural convection.

The problem is complex and broad since it addresses the hydrodynamics of hyper-
compressible, low-heat diffusing pure fluids. The fluids are characterized by a high
density (close to the density of the liquid) and by a low viscosity (close to the viscosity
of the gas). The heat transfer is governed by a very large compressibility and by
a vanishing thermal diffusivity. Some recent numerical simulations and experiments
have shown that the interaction of the PE with convection depends on the boundary
conditions. In order to avoid hydrodynamic stability issues, Zappoli et al. (1996)
considered a two-dimensional square cavity filled with a near-critical fluid subjected
to heating along a vertical boundary, the three other walls being thermally insulated.
The result was the striking evidence of the existence of a quasi-isothermal convective
motion of the fluid; the PE generated along the vertical heated wall equilibrates the
bulk temperature on a time scale shorter than that required to initiate convection.
Convection is then triggered by the remaining vanishing thermal inhomogenities that
still provoke large density gradients orthogonal to the gravity vector, owing to the
large compressibility of the fluid. This result seemed to contradict the experimental
observations of Garrabos et al. (1998) who reported a decrease of the adiabatic
heating (PE) when heated by a thermistor in the presence of convection. Further
numerical simulations taking into account the thermal interaction with boundaries
(Zappoli et al. 1999) showed that the decrease of the bulk temperature came from
a homogeneous, bulk PE triggered by the thermal plume rising from the thermistor
impinging on the upper constant-temperature wall.

The continuation of these studies led us naturally to consider the Rayleigh–Bénard
configuration, i.e. a fluid layer heated from below. In such a case, internal motion
begins within the fluid (free convection), attempting to even out the temperature in
the whole volume of fluid by thermal expansion. However, this motion is hindered by
the density and the pressure stratification in the fluid and dissipative processes. When
considered separately, one or other of these two factors lead to the two well-known
stability criteria due to Schwarzchild and Rayleigh (Normand, Pomeau & Velarde
1977) for determining the onset of convection. The Boussinesq equations in which
density variations are neglected except in the term describing the buoyancy driving
force are equally applicable to compressible fluids; in such a case, an equivalent com-
pressible Rayleigh number can be derived (Spiegel 1965). In the case of near-critical
fluids, the volume expansion coefficient diverges which suggests that the convective
instabilities become more and more important. Gitterman & Steinberg (1970a,b) de-
rived the convection threshold in the classical Rayleigh–Bénard problem for fluids
near the critical point, by heuristic arguments. Recent experimental investigations of
Rayleigh–Bénard convection near the critical condition are reported in Assenheimer
& Steinberg (1993) and by Kogan, Murphy & Meyer (1999) for SF6 and 3He gases,
respectively.

However, the present situation, in which the fluid is at rest and in thermodynamic
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Figure 1. Geometry of the square cavity of height L′ = 10 mm with horizontal axis x′ and vertical
axis y′ which is co-linear with the acceleration due to gravity g′. Velocity and temperature boundary
conditions at the walls. Characteristic zones: isothermal bulk in the core, hot and cold layers near
the two bottom and top horizontal walls. The directions and the senses of the expansion with time
of these layers in the core are visualized by the arrows and they are characterized by the local
height h′ and by the local temperature differences, δT ′L in the hot layer.

equilibrium, is more complex. The bulk is homogeneously heated by the piston effect
and a cold boundary layer thus forms along the top wall. Thus, the problem under
consideration here involves more than the bottom-heated boundary layer topped by
the bulk phase at the initial temperature, as is the case in classical configurations with
compressible fluids. The hydrodynamic stability of this configuration thus depends on
the stability of two layers which leads us to address two different stability problems:
the first for the bottom-heated layer and the second for the top-cooled one, the two
being separated by a thermally uniform bulk at an intermediate temperature. The
numerical prediction of the stability threshold is performed and discussed in the
present paper. The estimate of the local Rayleigh number shows that, provided the
relevant lengthscales and temperature differences (due to the piston effect) are taken
into account, the Gitterman & Steinberg stability criterion, applied to either one of
the layers, works well in predicting the thresholds.

In § 2, the modelling is presented. In § 3 we consider the different analyses which
address the onset of convection. The approach to the present stability analysis is
introduced and discussed in § 4. The numerical method is briefly recalled in § 5,
together with the details on the numerical simulation. The physical phenomena and
the results are presented and discussed in § 6.

2. The mode1
The same model as developed in Amiroudine (1995) and Zappoli et al. (1996)

has been used in the analysis of Rayleigh–Bénard convection. We consider a two-
dimensional square cavity of height L′ = 10 mm heated from below, with insulated
vertical walls subjected to a gravitational field. The configuration is shown in figure 1.
Horizontal and vertical directions are denoted by x′ and y′, respectively. The stratified
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fluid is initially at rest in thermodynamic equilibrium such that:

T ′i − T ′c
T ′c

= µ� 1,

where T ′i and T ′c are the initial and critical temperatures, respectively, and primes
denote dimensional variables; the parameter µ defines the dimensionless proximity to
the critical point. The domain is initially at uniform temperature T ′i and a temperature
increase ∆T ′ is applied at the bottom of the cavity (some mK per second). The top
wall is maintained at the initial temperature (T ′U = T ′i ). In our numerical simulations,
both solid boundaries are initially at the same temperature T ′i and the bottom wall
undergoes a change in temperature T ′L = T ′i + ∆T ′. This procedure avoids strong
initial discontinuities.

The governing Navier–Stokes equations are those of a Newtonian, viscous, hyper-
compressible, heat-conducting van der Waals’ gas (Zappoli et al. 1996). The fluid is
not too close to the critical point so that the hypothesis of a continuous medium
remains valid. According to Assenheimer & Steinberg (1996), the hydrodynamic limit
is around µ ≈ 10−6, which corresponds to T ′i − T ′c ≈ 0.3 mK for CO2. Here, we con-
sider T ′i − T ′c ≈ 1 K. We have chosen the van der Waals’ equation as the equation of
state. This choice results from a compromise between the reliability of the description
and the computational time; the use of real gas data would significantly increase the
computational time, but would also require substantially more intricate algorithms.
As the pressure appears in the form of a gradient (in the momentum equation), the
result does not depend on its initial background value, which is why we consider the
two critical coordinates to be density and temperature and use the van der Waals’
equation. Concerning the divergence of the isothermal compressibility, the model of
van der Waals gives a µ−1 behaviour whereas the real dependence is µ−1.24. As the
initial conditions are, at present, not taken too close to the critical point (1 K higher),
we consider that the van der Waals’ equation leads to the correct phenomenology
(as we did in previous papers on near-critical fluid hydrodynamics (Zappoli 1996,
1997). To explore closer to the critical point or to compare the obtained thermal field
with specific experiments, we would certainly do better with the cubic equation of
Moldover et al. (1979) at the expense of a significant lengthening of the computation
time. The following transport coefficients are considered:

λ =
λ′

λ′0
= 1 + Λ

(
T ′ − T ′c
T ′c

)−0.5

, Cv =
C ′v
C ′v0

= 1, η =
η′

η′0
= 1,

where λ′, C ′v and η′ are the thermal conductivity (in which Λ = 0.75), the heat
capacity at constant volume and the molecular viscosity, respectively; the subscript 0
represents the value far from the critical point. The heat capacity at constant volume
and the viscosity have been considered as constant and equal to the value for gaseous
CO2 considered as an ideal gas.

The equations are made dimensionless, as in Zappoli et al. (1996). The density and
the temperature are scaled relative to their critical values ρ′c and T ′c , respectively,
ρ′c = 467.8 kg m−3 and T ′c = 304.13 K, and the pressure with respect to its perfect
gas value, i.e. ρ′cR′T ′c (R′ = 188.8 J kg−1 K−1). Since the problem is to investigate the
interaction between the PE and buoyant convection following a change in boundary
temperature, the characteristic timescale should be the shorter of the two effects. Even
if these two-dimensional timescales are of the same order at a few degrees K from
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the critical point, the PE timescale will be much shorter as we approach it. The latter
is thus taken as the characteristic time.

The following non-dimensional PE velocity and time are used (Zappoli 1992;
Zappoli et al. 1996): V τ = V /cτ, τ = cτt with cτ = εf(µ, Λ)/µ2 and f(µ, Λ) =
µ((1/Λ) + (1/µ1/2)). Here, V and t are the dimensionless velocity and time scaled
relative to the perfect gas acoustic scale: t = t′c′0/L′ and V = V ′/c′0 where c′0 =
(γR′T ′c)1/2 represents the sonic velocity in an ideal gas and γ is the corresponding
ratio of specific heats.

The small parameter ε is defined by ε = Prt′a/t′d (here, ε = 2.6× 10−8) where Pr
is the ideal gas Prandtl number (here, Pr = ν ′0/κ′0 ≈ 2.27), ν ′0 and κ′0 represent
the kinematic viscosity and thermal diffusivity, respectively, with t′a = L′/c′0 and
t′d = L′2/κ′0. It should be noted that t′d is not the characteristic time for diffusion in
a supercritical fluid. Indeed, if we take into account the vanishing thermal diffusivity
of near-critical fluids, this characteristic time would be of order t′d/µ1/2 which is even
larger (Zappoli 1992).

The dimensionless equations for continuity, momentum, energy and state are then
written:

∂ρ

∂τ
+ ∇ · (ρV τ) = 0,

∂(ρV τ)

∂τ
+ ∇ · (ρV τV τ) = − 1

γc2
τ

∇P +
ε

cτ
[∇2V τ + 1

3
∇(∇ · V τ)] +

1

Frc2
τ

ρg,

∂(ρT )

∂τ
+ ∇ · (ρV τT ) = −(γ − 1)(P + aρ2)(∇ · V τ) +

εγ

P rcτ
∇ · [{1 + Λ(T − 1)−0.5}∇T ]

+εγ(γ − 1)cτφ,

P =
ρT

1− bρ − aρ
2,

where Fr = c′20 /L′g′0 (here, Fr = 8.19× 105) is the acoustic Froude number with
g′0 = 9.8 m s−2 representing the earth gravity and φ = (V τ)i,j(V τ)j,i + (V τ)i,j(V τ)i,j −
2
3
(V τ)i,i(V τ)j,j is the heat dissipation. Here, a = 9

8
and b = 1

3
correspond to the

dimensionless coefficients of a′ and b′ which are calculated from the van der Waals’
equation, i.e. T ′c = 8a′/27b′, ρ′c = 1/3b′, P ′c = a′/27b′2.

The no-slip boundary conditions at the cavity walls and the temperature or insu-
lating conditions are given in figure 1.

3. Criteria for the onset of convection
The problem, which is addressed here, is the stability of a horizontal supercritical

fluid layer, infinite in lateral extent, heated from below in the presence of gravity. Ac-
cording to Rayleigh, above a critical temperature difference, the quiescent system be-
comes unstable and a cellular flow develops. If the variation of density with pressure is
negligible compared to that with temperature, i.e. (∂ρ′/∂P ′)T ′∆P ′ < −(∂ρ′/∂T ′)P ′∆T ′,
the onset of convection is determined by the Rayleigh criterion which for the incom-
pressible case is:

Ra =
ρ′C ′pg′

λ′v′

(
∂ρ′

∂T ′

)
P ′
L′3(T ′L − T ′U) > Rac, (1)

where T ′L and T ′U are the temperature of the lower and upper walls, respectively, C ′P
and λ′ are the specific heat at constant pressure and the thermal conductivity. Rac is
the critical Rayleigh number for the onset of convection and is equal to 657.5, 1707.8
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and 1100.6, respectively, depending on whether the upper and bottom boundaries are
both stress-free, both solid and isothermal boundaries, or one is solid and the other
a free boundary (Chandrasekar 1961).

Another limiting case is also relevant and it can occur when the viscosity and
thermal conductivity are neglected, but when the compressibility is taken into account;
in this case, the stability criterion is that due to Schwarzchild (Landau & Lifschitz
1959):

∂T ′

∂y′
> −g

′ρ′

β′
(χ′T − χ′S ) = −g

′T ′β′

C ′p
, (2)

where χ′T and χ′S are, respectively, the isothermal and isentropic compressibilities
and β′ is the thermal expansion coefficient. The term on the right-hand side of (2)
represents the gradient obtained by moving a fluid particle along the hydrostatic
pressure gradient (Spiegel 1965). The notion is in common use in the atmospheric
sciences. The formula for gases was originally suggested by Jeffreys in 1930 and for
critical fluids by Gitterman & Steinberg (1970a,b) using the hydrodynamic equations
with a mean-field equation of state, similar to that used in this paper. The definition
of the local Rayleigh number which accounts for these two effects in compressible
flows is (Spiegel 1965; Gitterman & Steinberg 1970b):

Ra =
g′L′4β′ρ′Cp[((T ′L − T ′U)/L)− (g′T ′β′/C ′p)]

λ′ν ′
. (3)

It is noteworthy that the second term of this expression (that is, the Schwarzchild
term) is constant as we approach the critical point because β′ and C ′p diverge with
the same critical exponent. The local temperature T ′ (T ′U < T ′ < T ′L) is taken at its
initial value which corresponds to the reference temperature T ′i . The coefficients β
and χ′T correspond to spatially independent properties because low heating cases are
considered; this is consistent with the assumption of a linear regime during the early
stage of the simulation where these quantities are determined.

Gitterman & Steinberg (1970b) have developed a model based on asymptotic
analyses applicable to the onset of convection in compressible and dissipative fluids
and which is here extended to near-critical fluid conditions. They determined an
approximation to the critical Rayleigh number which has the following form:

Rac = γ0

1 + (L′/L′1)4 + (L′/L′1)2(L′2/L′1)2

1 + (L′3/L′1)4(L′2/L′)2
, (4)

where L′ is the lengthscale of the cavity and L′i=1,2,3 are characteristic lengths explicitly
derived from Gitterman & Steinberg’s pioneering works as:

L′1 =

[
γ0ν
′κ′

g′2(∂ρ′/∂P ′)T ′(1− C ′v/C ′p)
]1/4

,

L′2 =

[
γ1ν
′κ′

(1− C ′v/C ′p)
(
∂ρ′

∂P ′

)
T ′

]1/2

,

L′3 =

[
γ0ν
′κ′

g′2(∂ρ′/∂P ′)T ′

]1/4

.

The magnitudes of γ0 and γ1 depend on the conditions at the boundaries of the
fluid layer. For two solid walls, γ0 is the incompressible critical Rayleigh number
(γ0 = 1707.8). The value of γ1 is approximated from the case with both solid surfaces
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(γ1 = 70.5). Following Zhong & Meyer (1995), we consider that the value also holds
for the solid-free configuration.

From Gitterman & Steinberg’s analysis, the onset of Rayleigh–Bénard instability in
a near-critical fluid layer is characterized by the local Rayleigh number, derived from
equation (1), which has to be compared to the critical Rayleigh number derived from
equation (4). Nevertheless, Carlès & Ugurtas (1999) have discussed the approximations
in Gitterman & Steinberg’s model and have concluded that their developments led
to heuristic criteria, but with equations which are not strictly correct. However, for
the present case, both these teams’ results differ by less than 0.1% over a relatively
large region near the critical point. Moreover, it appears that Gitterman & Steinberg’s
model is more complex than required (see equation (4)) and that the results of the
asymptotic analyses show that classical criteria (as taken from Spiegel 1965) can be
used to estimate the threshold of convection in near-critical fluids. If the Rayleigh
number defined by equation (3) exceeds the critical Rayleigh number derived for a
Boussinesq fluid, then instability arises and otherwise the initial quiescent fluid layer
remains stable.

Different stable and unstable regimes are predicted, depending on the proximity to
the critical point and on the height of the cell. Without any lateral confinement and
at a distance from T ′c (in particular at 1 K and higher), the onset of the convection
regime is governed only by the classical Rayleigh number. However, near the critical
point, the onset occurs later in terms of dimensional δT ′ and the transition is then
governed by the Schwarzchild criterion. From equation (3), the critical temperature
gradient at which convection arises is:

(δT ′)onset = Rac
λ′ν ′

g′L′3β′ρ′C ′p
+
g′T ′β′L′

C ′p
. (5)

The second term on the right-hand side (corresponding to the adiabatic gradient)
shows small variations regardless of the proximity to the critical point. The first
term becomes asymptotically small close to the critical point, whereas it is dominant
far from it. Thus, as concluded by Gitterman & Steinberg (1970b) and by Carlès
& Ugurtas (1999), if a supercritical fluid at critical density is confined between
two infinite plates and subjected to an adverse temperature gradient, its convective
stability will be characterized by Rayleigh’s criterion far from the critical point and
by Schwarzchild’s criterion close to the critical point. For a comprehensive overview
of all the pioneering works, refer to the paper by Gitterman (1978).

4. Stability in terms of existing analyses
4.1. Topology of the cavity and basic phenomena

We simulate numerically the onset of convection from rest and thermodynamic equi-
librium in a two-dimensional cavity model by increasing progressively the temperature
T ′i of the bottom surface of ∆T ′ (of some mK) over about one second and from
its initial value. Owing to the vanishing thermal diffusivity, a thin initial thermal
boundary layer forms and is associated with a very large, localized density gradient
which expands upwards very slowly at the vanishing heat diffusion speed. Owing to
the piston effect, a homogeneous bulk region is established in the core of the cavity.
Bulk density (ρ′bulk) and temperature (T ′bulk) can be derived from the one-dimensional
asymptotic analyses of Zappoli & Carlès (1995). The bulk region settles in the core
up to the vicinity of the upper cold wall which is maintained at T ′i . As the bulk
temperature is much higher than the initial temperature, a second thermal boundary
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layer then forms. The layer which is generated corresponds to the so-called cold
piston effect (see Zappoli et al. 1996).

The resulting configuration comprises three major flow regions that are shown in
figure 1:

(i) The stratified density layer confined below by the hot rigid wall. Its upper edge
corresponds to a free, isothermal (T ′ ≈ T ′bulk) and iso-density (ρ′ ≈ ρ′bulk) boundary
through which the layer merges with the bulk; its thickness h′ grows at the thermal
diffusion speed; the layer is open on the bulk at its upper boundary and corresponds to
free conditions that are only governed by continuity; the corresponding temperature
difference is denoted δT ′L = T ′i − T ′bulk + ∆T ′. The variable h′ is a reference height of
the temperature (or density) boundary layer at the bottom wall and it is determined
as the distance to the wall where the local temperature (or density) reaches the
bulk temperature (or density) within an estimate of about 1% of the variation: so
(T ′ − T ′bulk)/(T ′L − T ′bulk) ≈ 0.99. The height h′ is determined subsequently from the
numerical data and at each timestep. Typical computed profiles for the density are
shown in figure 4 for ∆T ′ = 0.1 mK (before the threshold) and they show that the
boundary-layer profile then sharply matches at the border the value in the core. This
makes it obvious that the relevant magnitudes of h′ can be computed from these
profiles.

(ii) The bulk region corresponding to a homogeneous density and temperature
fields.

(iii) The upper layer bounded above by the upper, rigid wall and below by the
homogeneous bulk region. The characteristic local temperature difference is denoted
by δT ′U = T ′bulk − T ′0.

4.2. The context of the existing stability theories

The only model available among the analytical stability analyses for unconfined layers
considers a lower, rigid wall with a stress-free upper boundary. We will thus assume
that the difference of dynamic boundary conditions between the analytical model and
the actual layer is limited and should not strongly affect the location of the threshold.
The stability criterion exhibits two strong and opposite variations of δT ′onset as a
function of the vertical height h′ of the layer. Far from T ′c , the Rayleigh criterion
gives a (1/h′3)-dependence while the Schwarzchild limit close to T ′c reveals a linear
h′-dependence (see figure 3).

The stability of the upper layer – confined on top by a rigid cold wall and in contact
with the bulk, below – has not yet been performed analytically, i.e. no result from
a model involving an upper rigid wall and a stress-free boundary below is available.
The upper layer proves, in fact, to be slightly more stable than the lower one. Several
solutions can be postulated: both layers are stable; the lower layer is unstable and
the upper one is stable; the upper one can be destabilized by the rising vortices issued
from the lower layer after crossing the bulk region; and also when both layers are
unstable. In the present work, some of these situations are discussed with respect to
the stability analysis which focuses mainly on the threshold.

Figures 2 and 3 display the results of linear stability analyses of Gitterman &
Steinberg (1970b) and Carlès & Ugurtas (1999). The results illustrate clearly that the
variation of the critical δT ′onset for fluids close to the critical point and with respect to
the height h′ of the density layer, is significant. Figure 2 shows the gradual transition
from the adiabatic gradient condition, i.e. the Schwarzchild criterion, for inviscid,
compressible fluids, near the critical point, to the Rayleigh condition corresponding
to the onset of viscous convection flow far from the critical point. The stability limits
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Figure 2. Critical δT ′onset (K) at the onset of convection as derived from Rayleigh and Schwarzchild
criteria, Equation (5), versus µ, the distance to the critical temperature T ′c . The characteristic
lengthscales are the local height of the hot layer h′, 0 < h′ < L′, and also at the limit the total
height of the cavity L′. The respective contributions of the Rayleigh and Schwarzchild criteria are
identified and zoomed at the left top-hand side of the figure for h′ = 6 mm.

on δT ′onset are displayed in terms of µ for several values of the height h′ of the layer
ranging from 0.8 mm to 10 mm. These values are chosen in order to correspond to
actual heights of the bottom layer during the simulations at times ranging over a
few seconds after the start of heating. The values corresponding to the full height,
L′ = 10 mm, of the cavity are cited as a reference. At this value of h′ = L′, the δT ′onset
curve corresponds to the stability of the layer confined by the two rigid walls. We
notice from figure 2 that the values of the asymptotic δT ′onset limit derived from the
Schwarzchild criterion at small µ grow linearly with h′ whereas the δT ′onset from the
Rayleigh criterion decreases as 1/h′3 at large values of µ. The contributions of the
two criteria to the actual stability of the system are shown in the top left-hand corner
of figure 2 for h′ = 6 mm. Figure 2 exhibits a narrow zone of 0.1 < µ < 1 where the
actual criterion can differ by about 100% from either the Rayleigh or Schwarzchild
criterion if considered separately.

During the process for T ′i − T ′c as large as 1 K (µ ≈ 0.003), the growth of the
thermal layer is very slow and the magnitude of the local height h′ at the onset of
vortices is nearly 0.8 mm, and this remains about the same value over a large number
of PE timescales. This height is the relevant h′ value that corresponds to the threshold
criterion. Figure 2 suggests that through the mixing process due to convection or due
to the growth of the layer height h′, the characteristic local δT ′L can decrease and
become smaller than δT ′onset for some h′. Thus, the possibility of the damping of the
convection exists.
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Conditions β (K−1) χT (Pa−1) λ (W m−1 K−1) Cp (J kg−1 K−1)

Supercritical fluid 0.66 0.5× 10−5 0.23 5.8× 104

Perfect gas 3× 10−3 9.8× 10−8 3.85× 10−2 660

Table 1. Thermo-physical properties for CO2: supercritical fluid conditions and the
perfect gas conditions.

10–1

10–2

10–3

10–4

10–5

10–4 10–3 10–2

äT ′ (K)

äT ′
onset = 0.065 mK

0.1 mK

0.5 mK

0.8 mK

1 mK

∆T ′= 5 mK

äT ′
L

äT ′onset

h′ (m)

Figure 3. Theoretical critical, δT ′onset (K), as a function of the local height, h′, of the hot bottom
layer as given by equation (5). The curves with arrows represent the evolution with time of the
successive local δT ′L computed between the edge of the hot bottom layer and the wall and for
different values of the total temperature difference ∆T ′ applied between the two horizontal walls of
the cavity: ∆T ′ = 0.1, 0.5, 0.8, 1 and 5 mK. The arrows indicate the sense of the variation of δT ′L
with h′, then with time. The crossing of the theoretical stability curve gives the theoretical estimate
of δT ′L and h′ at the onset of instabilities in the hot layer. The minimum of theoretical δT ′onset is
indicated, 0.065 mK.

Figure 3, as directly derived from (5), gives the critical δT ′onset as a function of
h′ over a range of h′ which is relevant to the size of the cavity, h′ < 10 mm. The
physical coefficients in (5) were evaluated at temperature T ′i that we recall being 1 K
above the critical temperature. They are reported in table 1. The curve confirms a
cubic dependence, i.e. 1/h′3, following the Rayleigh criterion at small h′, and a linear
dependence in h′ following the Schwarzchild criterion at larger h′ < L′ = 10 mm.

5. The numerical approach
5.1. The numerical method

We consider the two-dimensional square cavity with 10 mm sides filled with CO2 on
the critical isochore and initially at 1 K above its critical temperature. Table 1 gives
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(∆T ′) Boundary-layer (δT )L Ra Ra Rac
(mK) thickness h′ (mm) (mK) (from (1)) (from (3)) (from (4))

10.0 0.80 5.732 70 055 69 719 1435
5.0 0.70 3.008 24 626 24 431 1296
2.5 0.60 1.285 6625 6519 1206
1.0 0.55 0.726 2883 2808 1175
0.8 0.52 0.62 2081 2021 1160
0.5 0.50 0.45 1342 1291 1151
0.1 0.35 0.09 92 80 1112

0.50 0.09 269 217 1151
0.75 0.09 906 646 1360
1.0 0.09 2148 1328 1920

Table 2. The computed Rayleigh numbers are determined from equation (1) as derived from the
incompressible case, from the local Ra relation (3) which takes the compressible flow effects into
account and from (4) which is derived from Gitterman & Steinberg (1970b) stability analysis. The
estimates of the boundary-layer thicknesses at the bottom of the cavity and of the local temperature
difference at the edge of the layer are derived from the computed solutions at several given ∆T ′.

the corresponding physical properties as well as those for CO2 for an ideal gas. These
properties differ by several orders of magnitude.

The governing equations are solved numerically by a finite-volume method using the
SIMPLER algorithm (Patankar 1980). The time discretization is of implicit Euler type
and first-order accurate, and the discretization in space uses the power-law scheme
(Patankar 1980). When approaching the critical point, the boundary layer becomes
thinner and thinner, and a fine grid size is required in order to ensure a sufficiently
small grid Péclet number. A non-uniform staggered mesh has then been used, and
numerical stability has been tested carefully in terms of timestep and grid size. In
order to reduce computational time, an acoustic filtering procedure has been used
(Paolucci 1982) when the description of the acoustic wave is not required. Zappoli et
al. (1996) and Amiroudine et al. (1997) provide more details on the numerical solver.

Mesh-independent numerical solutions are considered using graded meshes of
101 × 81 to 121 × 121 in which about 50% of the grid comprises points inside
the thin layers to be studied. In particular, we concentrate about 30 points in the
vertical direction within the layers, 0.5–1 mm thick, that play a dominant role in the
phenomenon. The mesh size near the walls is as small as 2 × 10−4 mm in the finer
mesh. The timestep is kept constant at about 1.25× 10−3 s which corresponds to 800
timesteps to compute the heating stage of about 1 s. The accuracy of the numerical
solution has been studied by Amiroudine (1995) and Amiroudine et al. (1997). The
control of the accuracy is very important in the investigation of this time-dependent
phenomenon.

5.2. The numerical investigation

The onset of convective vortices arising from the hot bottom layer is simulated for
several linear temperature increases of the bottom wall, 10, 5, 2.5, 1, 0.8, 0.5 and
0.1 mK, over time periods of 0.1 –1 s. The temperature gap is initiated over the two
first grid points near the bottom wall. Here, we mainly detail the determination of the
threshold value and give some insights into the flow structure. The conditions that
have been investigated are given in table 2.
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0.0683

0.00051y

–0.0711
–0.0046

t ′ = 10.0 s

t ′ = 5.3 s

–0.0716

t ′ = 0.5 s

–0.0021

–0.0002

ò

∆T ′ = 0.1 mK

(ò′–ò′
0) = 0.0674 kg m–3

Figure 4. The density patterns and the respective density profiles along the vertical axis are given at
several time stages during the heating process for ∆T ′ = 0.1 mK. Stable iso-density configurations
(that do not exhibit any convection effect) display the growth of the density layers at given timesteps.
The density is given as the (ρ′ − ρ′0) in kg m−3 units in the pattern displays. The values are printed
in the patterns at their respective locations and at some instants: at the top and bottom walls and
on two iso-density lines of interest, at the borders between the core zone and the density layers.
Successive instants and (ρ′ − ρ′0) values are: t′(ρ′top − ρ′0, ρ′bottom − ρ′0) = 0.5 s, 5.3 s (0.0674 kg m−3,

−0.0716 kg m−3) and 10 s (0.0683 kg m−3, −0.0711 kg m−3).

In order to interpret our results within the framework of existing theories, we
measure from the output files, when the instability starts, the parameters such as the
height h′ of the layer and the temperature drop δT ′L that must be considered in the
analogy with the ideal situations quoted earlier. The time at which the instability
is triggered is determined by noting when the isotherms become disturbed by the
flow field, in other words, when the deformations that first appear in the two bottom
corners show the effect of vertical convective transport. The height of the layer
to be considered to interpret the numerical results is taken as the average value
between the height where the extension of the linear temperature drop reaches the
bulk temperature and the height of the bulk isotherm. This is a good approximation
since the matching between the boundary-layer temperature drop and the bulk is
of very small spatial extent (see density profiles in figure 4). The measurement of
the lengths themselves are given by the numerical code without any further errors
other than that coming from the numerical method and the model. It should also be
noted that accounting for the thermo-acoustic effect is essential to estimate the actual
temperature drop in the layer since the bulk temperature changes with time.

The use of the stability criterion for layers that are subjected to a steady gradient
implies the assumption that the slowest growing mode still grows at a faster rate than
the diffusion timescale that governs the expansion of the unperturbed pure diffusion
layer. The better this criterion is, the smaller is the heat diffusivity, which is indeed
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the case for a near-critical fluid. It would be possible to check this hypothesis a
posteriori by measuring the growth exponent as a function of the wavenumber of
the perturbations. However, the outputs of the numerical simulation confirm that the
instability grows much faster than the growth of the thermal boundary layer. In fact,
the thermal boundary-layer thickness, h′, evolves as

√
t′ in time via a thermal diffusion

process. The relative timewise amplification of the perturbation near the threshold,
as given by the computations at 1 K above the critical point, is approximately 0.3–
0.7 s−1 when ∆T ′ is 0.5–5 mK. The relative expansion in the thermal layer thickness,
h′−1dh′/dt′, decreases as 1/t′ in s−1. We consider that the thermal layer height is nearly
frozen just before the onset of convection when the comparison is made with the
stability analyses.

6. Results and discussion
6.1. The threshold at the hot bottom layer

The evolution of the local temperature difference between the bottom wall and the
edge of the thermal boundary layer, δT ′L = T ′i + ∆T ′ −T ′bulk , is represented in figure 3
for several ∆T ′. We note that the evolution of the gradient remains regular over a
certain period of time because the shape of the layer remains unaffected immediately
after the threshold of convection. The curves f(δT ′L, h′) in figure 3 represent the
evolution in time of the hot layer in the cavity and they obviously cross the stability
curve corresponding to a Rayleigh instability for several ∆T ′. The arrows indicate
the direction of elapsed time. For ∆T ′ = 0.1 mK, no convection is observed in the
simulation and the corresponding curve in figure 3 is below the stability extremum
near the changeover point between the Rayleigh and Schwarzchild instability modes.

We notice from figure 3 that for small h′, i.e. close to the beginning of the heating
(consider h′ = 0.1 mm as reference), the theoretical critical local δT ′onset corresponding
to the temperature drop in the layer (see the thick curve in the figure which starts
at δT ′onset ≈ 45 mK for h′ = 0.1 mm), is larger than the total temperature differences
∆T ′ itself (for the present we have imposed 0.1 mK < ∆T ′ < 10 mK at the bottom
wall with respect to the upper wall at T ′i ). In figure 3, the curve corresponding to
the variation of the temperature drops in the lower layer, δT ′L, for ∆T ′ = 5, 1, 0.8,
0.5 mK crosses the stability curve, δT ′onset, at h′ ≈ 0.25 mm then over a range of h′
roughly between 0.4 and 0.5 mm. We note that this first threshold is determined by
Rac. Thus, the first stages of the heating process would be expected to be stable
before these values of h′ are reached at the onset of convection, at Rac. Then, the
configuration should become unstable at about h′ = 0.4 mm when ∆T ′ ≈ 1 mK. The
layer can grow at the thermal diffusion velocity rate, but it will then remain unstable
as long as the local temperature difference δT ′L = T ′i + ∆T ′ − T ′bulk remains larger
than approximately 0.065 mK, which is the minimum of the stability curve δT ′onset at a
height of about 1.5 mm. Moreover, we note in the second part of the curve (right-hand
side with respect to this height) that there is a second change of stability, the relevant
threshold of which is determined by the Schwarzchild criterion, when h′ > 1.5 mm
and δT ′L > δT ′onset > 0.065 mK. It is seen that in the case of the 10 mm high cavity
with ∆T ′ of 1 mK, the process should remain unstable throughout. Since the local δT ′
in the hot and cold layers consists of two parts, it is possible when the ∆T ′ between
the walls is less than about 0.5 mK, that the local δT ′L falls below the Schwarzchild
limit during the process, which would then determine a reverse transition back to a
stable configuration.
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The local critical Rayleigh number is deduced from measurements of the height h′.
In the calculation of the critical Rayleigh number we have used the hot wall condition
at the solid bottom boundary and the temperature at the free top isothermal surface
that limits the layer that is known from the simulation. The characteristic length h′ is
defined by the height of the thermal layer whereas the magnitude of the temperature
gradient is derived from the linear part of the profile. Table 2 gives the values of the
different physical parameters obtained from the numerical solution, i.e. the thickness
of the thermal boundary, the local temperature gradient and the corresponding
local and critical Rayleigh numbers derived from equations (1), (3) (including the
Schwarzchild correction) and (4), respectively.

In the present unsteady configuration, the Rayleigh number increases because
of the heating process. Consequently, if at the beginning of the heating, the flow
configuration is unstable, it may remain unstable or become stable at subsequent
times (see figure 3) even if the boundary-layer thickness increases during the slow
diffusive process. Nevertheless, in the case where the configuration is stable at the
beginning, it could become unstable later because the Rayleigh number increases
continuously up to the end of the diffusion process.

The height, h′, evolves with time, as αt1/2, α depending on the physical fluid
properties at T ′i and more weakly on the temperature step ∆T ′. Its variation has
been checked over the first 1–20 s of simulation, which corresponds to a period where
no disturbance has arisen. In the case of ∆T ′ = 0.1 mK, there is no onset and the
behaviour covers the entire simulation. At larger ∆T ′ the growth is broken by the
rise of plumes inside the layer. We note that an estimate of the speed of the growth
of the thermal layer is nearly 0.03 mm s−1.

As shown in figure 3, the stability for layers of small height at 1K from the
critical point (which is relatively far away) is determined mainly by the Rayleigh
criterion. This is confirmed in table 2 since nearly the same values of the Rayleigh
number are obtained from equations (1) and (3) which means that the Schwarzchild
term is negligible. The critical Rayleigh number has been obtained from equation
(4) with solid-free boundary conditions. In most cases, the comparison confirms the
simulation of an unstable numerical solution because the local Ra is above Rac. This
is the case for ∆T ′ down to 0.5 mK where Ra = 1291 is the closest to Rac = 1151.
At ∆T ′ = 0.1 mK no convection was predicted; we evaluated the stability conditions
for increasing h′. The critical Rac was always above the local Ra and, moreover, the
contribution of the Schwarzchild criterion near h′ = 1 mm started to be dominant. We
note that this contribution significantly decreases the local Ra that would be larger
than Rac if only the Rayleigh criterion was used, equation (1).

The computed local Rayleigh number derived from equation (3) and the critical
Rac from equation (4) confirm the analysis of table 2 as local Ra are above the critical
Rac curve for all the cases except for the case ∆T ′ = 0.1 mK with h′ considered up
to 1 mm. The time elapsed from the start of heating until the convection arises and
significantly disturbs the stratified density and temperature profiles in the hot layer
(as seen in figure 4 et seq.) has been considered for the different values of ∆T ′. We
note that the elapsed time decreases rapidly with increasing ∆T ′ and tends toward an
asymptotic limit of about 5 s when ∆T ′ is larger than 4 mK. We have estimated the
growth rate of the convection immediately after its onset using a linear approximation.
At a given point, we note that the rate, (v′−1dv′/dt′), varies from 0.3 s−1 at 0.5 mK to
about 0.7 s−1 at 5 mK, which suggests a variation of approximately (∆T ′)1/2. We have
also studied the wavelength of the instability in all the situations considered, and have
found an aspect ratio with respect to the height h′ of the thermal layer of about 1.6.
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4.5 mK

–0.0046

t ′ = 8.8 s

t ′ = 8.3 s

t ′ = 6.9 s

∆T ′ = 10 mK

t ′ = 7.8 s

t ′ = 7.3 s

t ′ = 6.4 s

T ′–T ′
0 = 0 mK

4.7 mK

T ′ – T ′
0 = 10 mK

t ′ = 3.6 s

Figure 5. Temperature patterns at several time stages after the heating of the bottom wall for
∆T ′ = 10 mK. Timesteps are: t′ = 3.6 s, 6.4 s, 6.9 s, 7.3 s, 7.8 s, 8.3 s and 8.8 s. Some isotherm values,
defined as (T ′ − T ′0) in mK, are given at t′ = 8.3 s. The patterns display the onset of 9 thermal
plumes after the threshold of convection.

This is nearly independent of ∆T ′ in the range 0.5–10 mK. Another measure of the
scale of the instability is the period of time which separates the rise of two successive
thermal plumes in the numerical solution. The timescale reduces from 7 to 2 s as
∆T ′ increases from 2.5 to 5 mK and it becomes much larger at about 9–11 s as we
become closer to the threshold for 0.8 and 0.5 mK. The proximity to the lower ∆T ′
that produces the onset of convection plumes is assessed by the two following features
when considering the properties of the convection process at neighbouring ∆T ′ = 1,
0.8 and 0.5 mK: (i) the elapsed time at the onset of convection steeply increases when
diminishing ∆T ′; (ii) the timescale between two successive plumes becomes much
larger when ∆T ′ becomes closer to 0.5 mK. From this behaviour, we estimate the
proximity to the threshold to be bounded by 0.1 and 0.5 mK. Additional secondary
oscillations of shorter periods subsequently appear after the onset of the preliminary
oscillations at these two ∆T ′. The variation with ∆T ′ of the frequency is nearly linear
in this range.

6.2. Flow-field description

Flow, density and temperature patterns are displayed during significant stages of
the convection process in figures 4 to 8. The growth of both hot and cold thermal
layers remains unperturbed by the convection when ∆T ′ = 0.1 mK. Significant density
patterns are shown in figure 4 at several times over about 10 s of the initial heating
period. The vertical density profiles show the temporal variation of the density
gradients near the horizontal walls. The height of the hot layer grows by a factor of
four during the process. The history of δT ′ versus h′(t′) is displayed for various ∆T ′
in figure 3. It is noteworthy that for this case, i.e. ∆T ′ = 0.1 mK, δT ′ remains just
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0.0246

t ′ = 10.5 s

t ′ = 5.7 s

∆T ′ = 5 mK

t ′ = 8.6 s

t ′ = 8.1 s

–0.0957

–0.9281
–0.8926

–0.8827

–0.8177

(ò′ – ò′
0) = 0.8444 kg m–3

0.7794

0.7695

0.7330

Figure 6. Density patterns at several stages after the heating of the bottom wall for ∆T ′ = 5 mK.
Several iso-density values, given as (ρ′ − ρ′0) in kg m−3 units, are given at the walls and
around the plumes. Timesteps and respective (ρ′ − ρ′0) given at the top and bottom walls are:
t′(ρ′top−ρ′0, ρ′bottom−ρ′0) = 5.7 s (0.7330 kg m−3, −0.9281 kg m−3), 8.1 s (0.7695 kg m−3, −0.8926 kg m−3),

8.6 s (0.7794 kg m−3, −0.8827 kg m−3) and 10.5 s (0.8444 kg m−3, −0.8177 kg m−3). The patterns dis-
play the onset of 7 thermal plumes after the threshold of convection.

below the stability limit. The (h′) histories for the other computed cases, ∆T ′ = 0.5,
0.8, 1 and 5 mK, cross the stability curve and this is consistent with the fact that they
generate instabilities.

When δT ′L is sufficiently high and the height h′ exceeds the threshold value,
convection can start slowly and increase progressively inside the hot layer. During a
time which can be of a few seconds, convection remains weak and does not affect the
density and temperature isocontours. The larger the magnitude of ∆T ′, the smaller is
the magnitude of the critical height h′. Then, since the aspect ratio of the instability
is scaled (with respect to h′) to be constant and nearly 1.6 (as introduced earlier), the
instability is smaller at large ∆T ′ than at small ∆T ′. This suggests that the rate of
convection is also smaller near the onset. We notice that at ∆T ′ > 2.5 mK, there is a
balance between the magnitude of convection and the height h′, since the time of the
onset of disturbances at the edge of the hot layer is nearly constant and remains at
about 5 s. Later, after the onset, the motion moves into the whole cavity and exhibits
strong convective structures at large ∆T ′. We may also point out that, owing to the
larger critical h′ at larger ∆T ′, the layer generates for the same width L′ a larger
number of disturbances than it does for smaller ∆T ′. This has a great impact on the
thermal homogenization of the cell.

Convection inside the cavity can be inferred from the temperature (and density)
patterns. There is an upward and downward movement of hot plumes of gas from
the hot layer below and of cold ones from the cold layer above into the bulk in the
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t ′ = 21.8 s

∆T ′ = 1 mK

0.01104

0.2063(a)

–0.02390

–0.2133

t ′ = 39.2 s

T ′– T ′
0 = 0.5 mK

0.2 mK

(b)

0.3

T ′– T ′
0 = 0 mK

Figure 7. Density and temperature patterns together with the velocity fields – represented near
one side-wall and in the bottom layer – for ∆T ′ = 1 mK and 0.5 mK at two timesteps after the
threshold of convection. (a) At ∆T ′ = 1 mK, the patterns display the onset of 5 thermal plumes.
Density values are printed as (ρ′ − ρ′0) in kg m−3. The magnitude of the velocity, |Vmax|, is given
in mm s−1: t′(|Vmax|) = 21.8 s (0.94 mm s−1). Associated local Reynolds numbers, Re = |Vmax|h′/ν ′0,
is about Re ≈ 12.8. Respective (ρ′top − ρ′0, ρ′bottom − ρ′0) are (0.2063 kg m−3, −0.2133 kg m−3). (b) At
∆T ′ = 0.5 mK, the patterns display the onset of 6 thermal plumes. The maximal velocity magnitudes,
|Vmax| in mm s−1, on the mesh points, and the corresponding local Re are: t′ = 39.2 s (0.61 mm s−1,
Re ≈ 8.3). Characteristic temperature values, defined as (T ′ − T ′0) in mK, are given in the figure at
the walls and at the edges of the two boundary layers.

middle of the cavity. Convection cells also transport cold eddies of gas to the heated
wall that constrain the thermal layer by restricting its height. This can be observed
by comparing temperature patterns before and after the initiation of convection in
figures 5 to 8. The velocity fields exhibit a vortex motion evident in figures 7 and 8,
for ∆T ′ = 1 mK, 0.8 mK and 0.5 mK. The first case has five structures of instability,
the other two have six. These structures that develop along the edge of the thermal
boundary layer result from the motion originating near the lateral insulated walls.
The disturbances generate a similar number of cells in the cold layer, but thus is
relatively weak and delayed. Successive cells grow progressively and fill the entire
layer. They grow in magnitude and in size and move upward in the bulk region. The
local Reynolds number is estimated as Re = |Vmax|h′/ν ′0 from the maximum velocity
in the vortices, |Vmax|, and from the boundary-layer thickness, h′, as the lengthscale.
Their values remain small and range from about 1 to 13 for the three configurations
and during the considered time of the process. Figures 7 and 8 cover about 20–40 s of
the scenario of the growth until plumes of hot gas break away from the hot layer and
migrate up into the bulk. Secondary vortices are shown to arise below the primary
corner vortices for 1 mK. We notice on that time period that there is no real bulk
interaction between the vortices originating from either layer.

We may notice in the temperature and density patterns for 10 and 5 mK (figures 5
and 6) that the vortices grow and expand more quickly at larger ∆T ′. The vortex-
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t ′ = 25.1 s

(a)

t ′ = 27.9 sT ′– T ′
0 = 0.8 mK

0.3 mK

0.3

T ′– T ′
0 = 0 mK

0.4 mK

t ′ = 23.6 s

t ′ = 20.8 s

t ′ = 19.4 s

t ′ = 27.9 s

(b)

t ′ = 25.1 s

t ′ = 23.6 s

t ′ = 20.8 s

Figure 8. Temperature patterns (a) and relevant velocity fields (b) for ∆T ′ = 0.8 mK at several time
stages after the heating of the bottom wall. Timesteps are t′ = 19.4 s, 20.8 s, 23.6 s, 25.1 s and 27.9 s.
The patterns display the onset of 6 thermal plumes after the threshold of convection. Characteristic
temperature values, defined as (T ′−T ′0) in mK, are given with the isotherm pattern at time t′ = 27.9 s
(a). The maximal velocity magnitudes, |Vmax| in mm s−1, and corresponding local Re are computed
on the mesh points for the velocity fields (b) at the successive t′ = 20.8 s (0.37 mm s−1, Re ≈ 5),
23.6 s (0.85 mm s−1, Re ≈ 11.5), 25.1 s (0.78 mm s−1, Re ≈ 10.6), 27.9 s (0.70 mm s−1, Re ≈ 9.5).

generating layers are much thinner and the 10 and 5 mK runs exhibit respectively 9
and 7 cells for elapsed times as small as 9 s and 10.5 s. (We may recall that 25–40 s
are needed to generate 5 to 6 cells for ∆T ′ 6 1 mK).

For about 10 s the two families of hot and cold vortices still remain within their
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T ′– T ′
0
 = 5 mK

–0.0720

–0.8074

2.7 mK

(a)

2.7 mK

t ′ = 10.5 s

t ′ = 19.9 s

t ′ = 29.4 s

T ′–T ′
0
 = 5 mK

t ′ = 41.2 s

–0.8724

(ò′– ò′
0) =

–0.1146 kg m–3

T ′– T ′
0
 = 0 mK

0.1160

(b)

2.1 mK

t ′ = 19.9 s

t ′ = 41.2 s

(ò′– ò′
0) = 0.8547 kg m–3

t ′ = 29.4 s 0.7896

0.1431

Figure 9. Typical temperature and density patterns for ∆T ′ = 5 mK at several time stages:
t′ = 10.5 s, 19.9 s, 29.4 s and 41.2 s. (a) Plume structures initially arising from the hot layer below
at t′ = 10.5 s; large-scale structures expanding up close to the top wall of the cavity at t′ = 19.9 s;
asymmetric small-scale structures arising after the break of symmetry near the bottom at t′ = 29.4 s
and t′ = 41.2 s. (b) Associated structures resulting from the interaction of the ascending plumes
with the cold layer above. The iso-values, that are displayed, correspond to a large range of the
variation of the variables – of about 40% – inside the cavity. They are concentrated with respect
to the closest local extrema near (a) the lower and (b) the upper walls. Characteristic values of the
temperature, defined as (T ′ − T ′0) in mK, and of the density heterogeneities, defined as (ρ′ − ρ′0) in
kg m −3, are given around the plumes and the structures.

respective half cavities. We have tracked particular convective structures in the case
∆T ′ = 5 mK by simulating the motion for up to 45 s (175 timescales). The size of the
vortices grows rapidly up to 60 to 70% of the cavity height. Some of the structures
cross the bulk and reach the upper layer that is much less active than the lower one.
These structures are apparent in figure 9 by displaying the density and temperature
isocontours (which are close to each other) from the bottom to within about 45%
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of their total variation. We note: (i) first the small plumes arise from the hot layer
and move upward at about t′ = 10.5 s; (ii) then the central large structure enlarges
and reaches the cold wall at t′ = 19.9 s; (iii) after this stage, a break of symmetry
occurs that precedes the impact on the upper wall at t′ = 25 s. This is illustrated
with two patterns at t′ = 29.4 s and t′ = 41.2 s. In figure 9(a) we note that the
structures are then very thin and vertically elongated. They are very unstable but
seem to remain confined to the lower half cavity. Figure 9(b) concerns the upper layer
and shows the isocontours corresponding to about 42% variation of the temperature
and density with respect to the cold wall. The patterns for t′ = 19.9 s reflect the
interaction of the stronger structure, see figure 9(b), and the two others, t′ = 29.4 s
and 41.2 s, the corresponding states following the break of symmetry. The patterns
reflect similar features to those in the hot zone but are characterized by smaller
structures and weaker disturbances. For 10 mK, the break of symmetry (resulting
from the symmetry of the boundary conditions) occurs earlier at 12.5 s. For 0.5 mK,
the vortices are still confined inside the first 1

3
L′ of the height after 70 s and the first

vortex–vortex interaction occurs without a break of symmetry after 89 s. At 0.8 mK
the initial confinement stage was also confirmed up to 56 s of simulation time.

7. Conclusion
A two-dimensional unsteady numerical simulation has been performed for the

highly compressible, low-heat diffusing fluid together with a van der Waals equation
of state. This has been applied to the Rayleigh–Bénard problem for near-critical fluids.
Owing to the vanishing of the thermal diffusivity near the critical point, the diffusive
process is very slow. The heating process at the bottom wall produces a piston effect
that drives the convection inside narrow thermal layers near the horizontal walls on
the low heat-diffusing timescale. The first results of this study are in agreement with
the theoretical predictions of Gitterman & Steinberg (1970a,b) for Rayleigh numbers
ranging below and above the critical value. In the asymptotic limit, we note that these
authors have shown that classical criteria still hold for near-critical fluids.

We have noted that if the local Rayleigh number is above the critical value, the
flow will become unstable after a long diffusive process which depends on the local
temperature difference δT ′. On the other hand, even if the flow field is initially stable,
it can be unstable later because the diffusive length increases with time whereas
the temperature difference reaches a maximum. We have shown that the Rayleigh
criterion determines the first instability at 1 K from T ′c whereas the Schwarzchild
criterion could determine a reverse transition to no-flow if δT ′ is small enough
and if the height of the layer still increases regularly after the Rayleigh convection
threshold. Work is in progress on this point (Raspo et al. 1999) and also concerning
the homogenizing process following the break of symmetry of the convection pattern
(Larroudé et al. 1997) and the effect of the distance to the critical point (Gilly et al.
1999).

We have shown that the unstable hot and cold diffusive layers lead to plume-type
flows. A surprising result was that the upper wall also exhibits thermal instabilities.
However, this result is consistent with earlier analyses (Zappoli & Carlès 1995; Carlès
1995) which have shown that when a closed one-dimensional cell initially at an
uniform temperature is heated at one end, the opposite wall exhibits a cold thermal
diffusive boundary layer owing to a (cold) piston effect. This feature has also been
observed experimentally (Garrabos et al. 1998). In our two-dimensional simulation,
this diffusive layer which is heavier than the bulk fluid located below, gives birth to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

49
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001004967


Instabilities in a near-critical fluid layer 139

‘drops’ by a gravitational instability reminiscent of that of Rayleigh–Taylor (Zappoli
et al. 1997). In fact, Kurowski, Misbah & Tchourkine (1995) showed the stability of
two incompressible, miscible, density mismatched fluid layers, to be dominated by a
dispersion relation where diffusion plays a role analogous to surface tension in non-
miscible fluids. This led them to call this instability process a ‘Rayleigh–Taylor-like’
instability. We recently showed that a similar situation exists in near-critical pure
fluids where heat diffusion associated with the diverging compressibility plays the role
of mass diffusion between miscible fluids (Zappoli et al. 1997). In the present situation,
the growing upper layer instability mechanism that produces ‘drops’ is reminiscent
of that kind of instability for a vanishing thickness of the upper, cooler and heavier,
layer. We shall attempt to show in a forthcoming paper that near-critical fluids exhibit
a continuum of situations between the Rayleigh–Taylor-like instability process and
the present cooled-from-the-top Rayleigh–Bénard configuration for vanishing upper
layer heights.
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