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In testing for the cointegrating rank of a vector autoregressive process it is impor-
tant to take into account level shifts that have occurred in the sample period+ There-
fore the properties of estimators of the time period where a shift has taken place
are investigated+ The possible structural break is modeled as a simple shift in the
level of the process+ Two alternative estimators for the break date are considered,
and their asymptotic properties are derived under various assumptions regarding
the size of the shift+ In particular, properties of the shift date estimators are obtained
under the assumption of an increasing or decreasing size of the shift when the
sample size grows+ These results are used to explore the implications for testing
the cointegrating rank of the process+ A previously proposed likelihood ratio type
test for the cointegrating rank and a modified version are considered, and their
asymptotic properties are derived+ It is shown that their asymptotic null distribu-
tions are unaffected by the level shift under the assumptions made for the shift
size+ The performance of the shift date estimators and the cointegrating rank tests
in small samples is investigated by simulations+

1. INTRODUCTION

From the unit root and cointegration testing literature it is well known that
structural shifts in the time series of interest have a major impact on inference
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procedures+ In particular, they affect the small-sample and asymptotic proper-
ties of unit root and cointegrating rank tests ~see, e+g+, Perron, 1989 for unit
root testing; Lütkepohl, Saikkonen, and Trenkler, 2004, for cointegrating rank
testing!+ In the latter article it is assumed that a level shift has occurred in a
system of time series variables at an unknown time+ Lütkepohl et al+ propose to
estimate the shift date in a first step and then apply a cointegrating rank test as
follows+ First the parameters of the deterministic part of the data generation
process ~DGP! are estimated by a feasible generalized least squares ~GLS! pro-
cedure+ Using these estimators, the original series is adjusted for deterministic
terms including the structural shift, and a cointegrating rank test of the Johansen
likelihood ratio ~LR! type is applied to the adjusted series+ They provide con-
ditions under which the asymptotic null distribution of the cointegrating rank
test in this procedure is unaffected by the level shift+ They also show, however,
that in small samples the way the break date is estimated may have an impact
on the actual properties of the cointegrating rank test+ In addition, the size of
the level shift is important for the small-sample properties of the break date
estimators and the tests+

Therefore, in this study we extend the results of Lütkepohl et al+ ~2004! in
several directions+ First of all we also consider another possible break date esti-
mator+ Second, we derive asymptotic properties of two break date estimators
accounting explicitly for the size of the level shift+ More precisely, we make
the size of the level shift dependent on the sample size and provide asymptotic
results for both increasing and decreasing shift sizes when the sample size goes
to infinity+ These results provide interesting new insights into the properties of
the estimators and explain simulation results of Lütkepohl et al+ that are diffi-
cult to understand if a fixed shift size is considered+ Under our assumptions the
null distribution of the cointegrating rank tests is still unaffected by the shift or
the shift size just as in the case of a fixed shift size+We also modify the cointe-
grating rank tests considered by Lütkepohl et al+ In their approach estimators
of all parameters associated with the deterministic part of the model are esti-
mated by the GLS procedure although the level parameters are not fully iden-
tified+ In this paper we propose to estimate the identified parameters only and
modify the cointegrating rank tests accordingly+ Finally, we perform a more
detailed and more insightful investigation of the small-sample properties of the
break date estimators and the resulting cointegrating rank tests by extending
the simulation design of Lütkepohl et al+

Estimating the break date in a system of I ~1! variables has also been consid-
ered by Bai, Lumsdaine, and Stock ~1998!+ These authors consider the asymp-
totic distribution of a pseudo maximum likelihood ~ML! estimator of the break
date+ Although we use a similar estimator, we do not derive the asymptotic
distribution of the estimators but focus on rates of convergence+ Our results are
important for investigating the properties of inference procedures such as cointe-
grating rank tests that are based on a vector autoregressive ~VAR! model with
estimated break date+ Although Bai et al+ ~1998! also discuss shift sizes that
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depend on the sample size, our results go beyond their analysis because we
consider increasing in addition to deincreasing shift sizes+

The study is structured as follows+ In Section 2, the modeling framework of
Lütkepohl et al+ ~2004! is summarized because that will be the basis for our
investigation+ Section 3 is devoted to a discussion of the break date estimators
and their asymptotic properties+ The properties of cointegrating rank tests based
on a model with estimated break date are considered in Section 4, and small-
sample simulation results of the break date estimators and the cointegrating
rank tests are presented in Section 5+ In Section 6, a summary and conclusions
are given+ The proofs of several theorems stated in the main body of the paper
are given in the Appendix+

The following general notation will be used+ The differencing and lag oper-
ators are denoted by D and L, respectively+ The symbol I ~d ! denotes an inte-
grated process of order d, that is, the stochastic part of the process is stationary
or asymptotically stationary after differencing d times whereas it is still non-
stationary after differencing just d � 1 times+ Convergence in distribution is
signified by d

&&, and i+i+d+ stands for independently, identically distributed+ The
symbols for boundedness and convergence in probability are as usual Op~{! and
op~{!, respectively+ Moreover, 7{7 denotes the euclidean norm+ The trace, deter-
minant, and rank of the matrix A are denoted by tr~A!, det~A!, and rk~A!, respec-
tively+ If A is an ~n � m! matrix of full column rank ~n � m!, we denote an
orthogonal complement by A4+ The zero matrix is the orthogonal complement
of a nonsingular square matrix, and an identity matrix of suitable dimension
is the orthogonal complement of a zero matrix+ An ~n � n! identity matrix is
denoted by In+ For matrices A1, + + + ,As, diag@A1 : {{{ : As# is the block-diagonal
matrix with A1, + + + ,As on the diagonal+ LS, RR, and VECM are used to abbre-
viate least squares, reduced rank, and vector error correction model, respec-
tively+As usual, a sum is defined to be zero if the lower bound of the summation
index exceeds the upper bound+

2. THE DATA GENERATION PROCESS

We use the general setup of Lütkepohl et al+ ~2004!+ Hence, yt � ~ y1t , + + + , ynt !
'

~t � 1, + + + ,T ! is assumed to be generated by a process with constant, linear
trend, and level shift terms,

yt � m0 �m1 t � ddtt� xt , t � 1,2, + + + + (2.1)

Here m i ~i � 0,1! and d are unknown ~n � 1! parameter vectors and dtt is a
shift dummy variable representing a shift in period t so that

dtt � 0 for t � t and 1 for t � t+ (2.2)

We make the following assumption for the shift date t+

BREAK DATE ESTIMATION FOR VAR PROCESSES 17

https://doi.org/10.1017/S0266466606060026 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060026


Assumption 1+ Let tl, l, and Nl be fixed real numbers such that 0 � tl� l�
Nl � 1+ The shift date t satisfies

t � @Tl# , (2.3)

where @{# denotes the integer part of the argument+

In other words, the shift is assumed to occur at a fixed fraction of the sample
length+ The shift date may not be at the very beginning or at the very end of the
sample, although tl and Nl may be arbitrarily close to zero and one, respec-
tively+ The condition has also been employed by Bai et al+ ~1998! in models
containing I ~1! variables+ It is obviously not very restrictive+

The term m1 t may be dropped from ~2+1! if m1 � 0 is known to hold and,
thus, the DGP does not have a deterministic linear trend+ The necessary adjust-
ments in the following analysis are straightforward, and we will comment on
this situation as we go along+ Also, seasonal dummies may be added without
major changes to our arguments+ They are not included in our basic model to
avoid more complex notation+

The process xt is assumed to be at most I ~1! and to have a VAR~ p! repre-
sentation+ More precisely, we make the following assumption+

Assumption 2+ The process xt is integrated of order at most I ~1! with cointe-
grating rank r and

xt � A1 xt�1 � {{{� Ap xt�p � «t , t � 1,2, + + + , (2.4)

where the Aj are ~n � n! coefficient matrices+ The initial values xt , t � 0, are
assumed to be such that the cointegration relations and Dxt are stationary+ The
«t are i+i+d+~0,V! with positive definite covariance matrix V and existing moments
of order b � 4+

Under Assumption 2, the process xt has the VECM form

Dxt � Pxt�1 � (
j�1

p�1

Gj Dxt�j � «t , t � 1,2, + + + , (2.5)

where P � �~In � A1 � {{{ � Ap! and Gj � �~Aj�1 � {{{ � Ap! ~ j � 1, + + + ,
p � 1! are ~n � n! matrices+ Because the cointegrating rank is r, the matrix P
can be written as P� ab ' , where a and b are ~n � r! matrices of full column
rank+ As is well known, b 'xt and Dxt are then zero mean I ~0! processes+ Defin-
ing C� In � G1 � {{{� Gp�1 � In �(j�1

p�1 jAj�1 and C � b4~a4
' Cb4 !

�1a4
' , we

have

xt � C(
j�1

t

«j � jt , t � 1,2, + + + , (2.6)
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where jt is an I ~0! process+ These properties follow from Granger’s represen-
tation theorem+ Further details including a precise expression of jt are given in
Johansen ~1995, pp+ 49–52!+

Multiplying ~2+1! by A~L!� In � A1 L � {{{� Ap L p � InD� PL � G1DL �
{{{ � Gp�1DL p�1 yields

Dyt � n� a~b 'yt�1 � f~t � 1!� udt�1,t !

� (
j�1

p�1

Gj Dyt�j � (
j�0

p�1

gj
*Ddt�j,t� «t , t � p � 1, p � 2, + + + , (2.7)

where n � �Pm0 � Cm1, f � b 'm1, u � b 'd, g0
* � d, and gj

* � �Gjd for
j � 1, + + + , p � 1+ The quantity Ddt�j,t is an impulse dummy with value one in
period t � t � j and zero elsewhere+

For given values of the VAR order p and the shift date t, Johansen type
cointegration tests can be performed in our model framework+ In the next sec-
tion we will discuss two different estimators of the break date in detail, and
then we will consider cointegration tests based on a model with estimated break
date in Section 4+

3. SHIFT DATE ESTIMATION

In the following discussion we consider two different estimators of the shift
date t+ The first one is based on estimating an unrestricted VAR model in which
the cointegrating rank and the restrictions for the parameters related to the
impulse dummies are not taken into account+ The latter restrictions are accounted
for by the second estimator+ At the end of this section we briefly mention a
third possible estimator and some of its properties+ For all procedures we assume
that the VAR order p is given or has been chosen by some statistical procedure
in a previous step+ For the time being it is assumed to be known+

3.1. Estimator Based on Unrestricted Model

As discussed previously, our first estimator of t is based on the model

Dyt � n0 � n1 t � d1 dtt� (
j�0

p�1

gj Ddt�j,t�Pyt�1

� (
j�1

p�1

Gj Dyt�j � «t , t � p � 1, + + + ,T, (3.1)
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which is obtained from ~2+7! by imposing no rank restriction on P and rearrang-
ing terms+ Here n0 � n � Pm1, n1 � �Pm1, d1 � �Pd, g0 � d � d1, gj � gj

*

~ j � 1, + + + , p � 1!, and T is the sample size+ The shift date is estimated as

[t � arg min
t�T

det� (
t�p�1

T

[«tt [«tt
' �, (3.2)

where the [«tt are LS residuals from ~3+1! and T � $1, + + + ,T % is the set of all
shift dates considered+ Notice that T cannot include all sample periods if
Assumption 1 is made+ Moreover, there may be nonsample information regard-
ing the possible shift dates that makes it desirable to limit the search to a spe-
cific part of the sample period+

Instead of using the determinant of the residual covariance matrix as a crite-
rion function for estimating the break date, one could consider other criteria
such as the trace+We have chosen the determinant because it is in line with the
Gaussian ML setup ~for unknown cointegration rank!, which can be viewed as
the motivation for the LS estimator of the other parameters+ Note, however,
that we do not assume yt to be Gaussian+

We assume that the size of the shift depends on the sample size and may
increase or decrease when the sample size gets larger+ More precisely, we make
the following assumption for the parameter d+

Assumption 3+ For some fixed ~n � 1! vector d*, d � dT � T ad*, a � 1
2
_ +

Thus, we allow for a decreasing, constant, or increasing shift size with grow-
ing sample size, depending on a being smaller, equal to, or greater than zero,
respectively+ In most cases there will be no need to use the subscript T, and so
the notation d will usually be used instead of dT + The same convention applies
to parameters depending on d ~e+g+, d1! and their estimators+ As mentioned ear-
lier, break date estimation when the shift size decreases with increasing sample
size has also been discussed by other authors ~Bai et al+, 1998!+ For our pur-
poses a lower bound for a is not needed because for a small shift size the break
has no effect on the cointegration tests that will be considered later, even though
the break date may be more difficult to estimate in that situation+ An increasing
shift size is treated here for completeness, and it turns out that it provides inter-
esting insights into the actual behavior of our shift date estimators, as will be
seen in the simulations in Section 5+ Moreover, letting the shift size increase
with the sample size may provide information on problems related to large shifts+
In particular, it is of interest to check whether large shifts may affect the asymp-
totic distribution of the cointegrating rank tests discussed in Section 4+ The upper
bound a � 1

2
_ for the rate of increase of the shift size is chosen for technical

reasons because we need this bound in our proofs+ From a practical point of
view such a bound should not be a problem because there may not be a need to
estimate the shift date by formal statistical methods if the shift size is very
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large+We can now present asymptotic properties of our estimator [t that gener-
alize results presented in Lütkepohl et al+ ~2004!+

THEOREM 3+1+ Suppose Assumptions 1–3 hold.

(i) Let 0 � j0 � p � 1 and suppose there exists an integer j0 such that gj0 �
0 and, when j0 � p � 1, gj � 0 for j � j0 � 1, + + + , p � 1. Then, if a � 0
and d1 � 0 or a � 10b and d � 0,

Pr$t� p � 1 � j0 � [t� t%r 1+

In particular, [t
p
&& t if gp�1 � 0. If gj � 0 for all j � 0, + + + , p � 1, the

preceding convergence result holds with j0 � �1.
(ii) If a � 0 and d1 � 0, then

[t� t � Op~T
�2a0~1�2h! !,

where 10b � h � 1
4
_ . In particular, if a � h � 1

2
_ , Zl � l � op~1! , where

Zl � [t0T.

For d1 � 0 and a � 0, Lütkepohl et al+ ~2004! have shown that [t � t �
Op~1!, which is obviously a special case of our theorem+ In fact, Theorem 3+1~i!
shows that when the size of the break is sufficiently large, that is, a � 10b or
a � 0 and d1 � 0, the break date can be estimated accurately+ More precisely,
asymptotically the break date can then be located at the true break date or just
a few time points before the true break date+ Estimating the break date larger
than the true one cannot occur in large samples+ However, consistent estima-
tion of the break date is not possible without an additional assumption for the
parameters related to the impulse dummies in model ~3+1!+ The required assump-
tion gp�1 � 0 can be seen as an identification condition for the break date+
Indeed, if gp�1 � 0 and gp�2 � 0, Theorem 3+1~i! only tells us that asymptoti-
cally the break date estimator will take a value that is either the true break date
or the preceding time point+ The intuition for this is that one of the p �1 impulse
dummies in ~3+1! can be used to allow for such an incorrect estimation of the
break date+ In this case, even if we choose a break date one smaller than the
true one we can still obtain a correct model specification with white noise errors+
A similar situation occurs when more than one of the parameters gi at the larg-
est lags are zero+ Notice also that gj � 0 for all j � 0, + + + , p � 1 can only occur
if d1 � 0 because d � 0 and g0 � d � d1+

The preceding discussion implies that an overspecification of the VAR order
will always make the break date estimator [t inconsistent+ This observation
explains some of the small-sample results of Lütkepohl et al+ ~2004!+ These
authors fitted VAR~3! models to VAR~1! DGPs and found that [t often under-
estimated the true break date+ In principle the same phenomenon can occur also
in other situations where gp�1 � 0+ However, because g0 is always nonzero
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when d� 0 ~and p � 1! reasoning similar to that used previously explains why
the break date will asymptotically not be estimated larger than the true one+

The second part of Theorem 3+1 deals with the asymptotic behavior of the
estimator [t when the size of the break is “small+” In this case we need to assume
that d1 � 0 or that there is actually a level shift in model ~3+1! and not just
some exceptional observations that can be handled with impulse dummies+ This
assumption is not needed in the first part of the theorem where the size of the
break is “large” ~a � 10b! because then even the impulse dummies can be used
to estimate the break date accurately+ However, even though consistent estima-
tion of the break date is not possible in the case of Theorem 3+1~ii!, consistent
estimation of the sample fraction l is still possible provided the size of the
break is not “too small+” The result obtained in this context is weaker than its
previous counterparts in Bai ~1994!, which, instead of a � h� 1

2
_ , only require

a � � 1
2
_ ~see, e+g+, Proposition 3 of Bai, 1994!+ Complications caused by the

presence of impulse dummies in model ~3+1! are the reason for our weaker result+
In any case, our assumption a � h � 1

2
_ is equivalent to �2a0~1 � 2h! � 1,

which is clearly not very restrictive because [t� t cannot be larger than T and
is hence necessarily Op~T !+

As mentioned in the introduction, Bai et al+ ~1998! considered the asymp-
totic distribution of the break date and found that the resulting interval esti-
mator for the break date depends on the dimension of the system under
consideration+ Such dependence on the dimension of the model is not obtained
with our approach, which provides orders of convergence only+

3.2. Constrained Estimation of t

We shall now consider the constrained estimation of the break date in which
the restrictions between the autoregressive parameters and coefficients related
to the dummies are taken into account+ Instead of ~3+1! it is now convenient to
start with the specification

Dyt � n0 � n1 t � d1 dt�1,t� (
j�0

p�1

gj
*Ddt�j,t�Pyt�1

� (
j�1

p�1

Gj Dyt�j � «t , t � p � 1, + + + ,T, (3.3)

where d1 � �Pd, as before, and the gj
* are as in ~2+7!+ Thus, we can write

~3+3! as

Dyt � n0 � n1 t � �InDdt,t� (
j�1

p�1

Gj Ddt�j,t�Pdt�1,t�d�Pyt�1

� (
j�1

p�1

Gj Dyt�j � «t , t � p � 1, + + + ,T+ (3.4)
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Unlike in the unrestricted model ~3+1!, the impulse dummies do not appear sep-
arately anymore in the representation ~3+4! but are included in the term that
also involves the shift dummy+ Thus, only a single parameter vector d is asso-
ciated with all the dummy variables+ Consequently, the break date can be esti-
mated more precisely, as we will see in the next theorem+

For any given value of the break date t the parameters n0, n1, d, P, and
G1, + + + ,Gp�1 can be estimated from ~3+4! by nonlinear LS+ The estimator of the
break date is then obtained by minimizing an analog of ~3+2! with [«tt replaced
by residuals from this nonlinear LS estimation+ The following theorem presents
asymptotic properties of this break date estimator denoted by [tR+

THEOREM 3+2+ Let Assumptions 1–3 hold and suppose that d � 0.

(i) If a � 0 and d1 � 0 or a � 10b, then [tR � t � op~1! .
(ii) If a � 0 and d1 � 0, then [tR � t� Op~T �2a0~1�2h!! , where 10b � h � 1

4
_ .

The first part of the theorem shows that taking the restrictions into account
is beneficial+ Unlike in Theorem 3+1~i! consistency now obtains without any
additional assumptions about coefficients+ The second part of the theorem, which
deals with the case of a “small” break size, is similar to its previous counter-
part, however+

As a final remark on our two break date estimators we mention that, if the
DGP is known to have no deterministic linear trend ~m1 � 0!, the correspond-
ing terms in ~3+1!, ~3+3!, and ~3+4! may be dropped without changing the con-
vergence rates of our break date estimators+

3.3. Ignoring Dummies in Estimating t

Lütkepohl et al+ ~2004! also considered estimating the break date based on the
VAR model ~3+1! without including the impulse dummies+ Thus the resulting
break date estimator, say, It, is actually based on a misspecified model+ In the
present model framework, where the shift size depends on the sample size,
it can in fact be shown that the estimator It works well, provided d1 � 0+
More precisely, for 0 � a � 1

2
_ , It � t � op~1!, and for a � 0, It � t �

Op~T �2a0~1�2h!!, where h � 0 ~for details see Saikkonen, Lütkepohl, and Trenk-
ler, 2004!+ Thus, although It is based on a misspecified model, its convergence
rate is equally as good as that of the other two estimators, provided d1 � 0+
Clearly, d1 � �ab 'd� 0 may hold even if d� 0+ In fact, d1 � 0 always holds
if the cointegrating rank is zero+ If d1 � 0, there is co-breaking, and the process
b 'yt has no break+ For such processes, It can find the shift date only by chance,
whereas [t and [tR can still find the true break date with some likelihood in large
samples, if the shift size is large+ Thus, using only the estimator It may be prob-
lematic, unless the case d1 � 0 can be ruled out+ In the next section we con-
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sider the consequences of using a model with estimated break date for testing
the cointegrating rank of a system of time series variables+

4. TESTING THE COINTEGRATING RANK

For given VAR order p and some estimator of the shift date, the cointegrating
rank of the DGP can be tested as discussed by Lütkepohl et al+ ~2004!+ In the
following discussion it is assumed that the break date estimator is either [t or
[tR+ The objective is to test a pair of hypotheses

H0~r0 ! : rk~P! � r0 vs+ H1~r0 ! : rk~P! � r0 +

Lütkepohl et al+ propose using the tests suggested by Saikkonen and Lütkepohl
~2000a!+ In their procedure, first-stage estimators for the parameters of the error
process xt , that is, for a, b, Gj ~ j � 1, + + + , p � 1!, and V are determined by RR
regression applied to ~2+7!+ Using these estimators, Lütkepohl et al+ apply a
feasible GLS procedure to ~2+1! to estimate all the parameters of the determin-
istic part+ The observations are then adjusted for deterministic terms, and LR
type cointegration tests can be formed in the usual way by solving the related
generalized eigenvalue problem based on the adjusted series ~for details see
Johansen, 1995, Thm+ 6+3!+ The resulting test statistic will be denoted by
LRGLS~r0! in the following discussion+

The levels parameter m0 is not identified in the direction of b4 in our model
setup, and its estimator is partly determined by the initial values in the proce-
dure underlying the LRGLS test+ In fact, the dependence of the LRGLS test on
initial values was sometimes found to be relevant in preliminary simulations+ A
detailed theoretical analysis of the impact of initial values on related unit root
tests is provided by Müller and Elliott ~2003!+ Given the dependence of the
LRGLS tests on initial values, one may hope to improve the performance of the
tests by avoiding the estimation of m0+ Therefore we shall also consider another
approach in which only the parameters m1 and d in the deterministic part are
estimated+ The effect of the level parameter will be taken into account when
the test is performed+

We present the estimation procedure of the parameters m1 and d for a given
VAR order p, cointegration rank r, and break date t+ First consider the estima-
tion of the parameter m1+ Recall the identity n � �Pm0 � Cm1, which can be
written as

n � �Pm0 �Cb~b 'b!�1b 'm1 �Cb4~b4
' b4 !

�1b4
' m1

or, more briefly,

n � �Pm0 �Cbf�Cb4f*,
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where f � b 'm1, f* � b4
' m1 , Cb � Cb~b 'b!�1, and Cb4 � Cb4~b4

' b4 !
�1 +

Because a4
' P� a4

' ab ' � 0, a multiplication of this identity from the left by a4
'

yields a4
' ~n � Cbf! � a4

' Cb4f*+ The matrix a4
' Cb4 is nonsingular, and its

inverse is ~a4
' Cb4 !

�1 � b4
' b4~a4

' Cb4 !
�1+ Thus, we can solve for f* as follows:

f*� b4
' C~n�Cbf!, where C � b4~a4

' Cb4 !
�1a4

' as before+ Thus, if DC and ECb
are sample analogs of C and Cb, respectively, based on the RR estimation of
~2+7!, an estimator of f* is given by

Ef* � Db4
' DC~ In� ECb Ef!+

Here In, Ef, and Db4 are also based on the RR estimation of ~2+7!+ Using the esti-
mators Ef and Ef* together we can form an estimator for m1 as

Im1 � Db~ Db ' Db!�1 Ef� Db4~ Db4
' Db4 !�1 Ef*+

The parameter d can be estimated in a similar way+ From the definitions we
find that

�
g0
*

g1
*

I

gp�1
*
� � �

In

�G1

I

�Gp�1

� d+
Multiplying this equation from the left by the matrix @a4

' : {{{ : a4' # yields

a4
' (

j�0

p�1

gj
* � a4

' Cd� a4
' Cbu� a4

' Cb4u*,

where u* � b4
' d and u � b 'd as in ~2+7!+ From the foregoing equation we can

solve for u* in the same way as for f*+ The result is u* � b4
' C~(j�0

p�1 gj
* �

Cbu!, from which we form an estimator for u* as

Du* � Db4
' DC�(

j�0

p�1

Jgj
*� ECb Du�+

Here Jgj
* and Du are again based on the RR estimation of ~2+7!+ Thus, an estima-

tor of d is obtained as

Dd � Db~ Db ' Db!�1 Du� Db4~ Db4
' Db4 !�1 Du*+

The test will be based on the series

Iyt
~0! � yt � Im1 t � Dddt [t�m0 � xt � ~ Im1 �m1!t � Dddt [t� ddtt , (4.1)
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which are adjusted for the deterministic trend and the shift term+ Thus, apart
from estimation errors we have Iyt

~0! ; m0 � xt + This suggests that we can base
a test on this approximation or on the auxiliary model

D Iyt
~0! � P� Iyt�1

~�! � (
j�1

p�1

Gj D Iyt�j
~0! � et [t , (4.2)

where Iyt�1
~�! � @ Iyt�1

~0!' ,1# ' and P� is defined by adding an extra column to the
matrix P in ~2+5!+ This auxiliary model can be treated as a true model, and a
LR test statistic for a specified cointegrating rank can be formed by solving the
related generalized eigenvalue problem, as before+ We will denote the LR sta-
tistic for the null hypothesis rk~P! � r0 by LRPAR~r0! in the following discus-
sion because only a partial set of parameters associated with the deterministic
part is estimated in the first step+ Its limiting distribution differs from that of
LRGLS~r0! and also from the one given in Theorem 6+3 of Johansen ~1995! for
the corresponding LR test statistic+ We have the following result for the case
where the shift occurs in the cointegrating relations ~d1 � 0! and the shift size
increases with the sample size+ A proof is also given in the Appendix+

THEOREM 4+1+ Suppose Assumptions 1–3 hold. If d1 � 0, 0 � a � 1
2
_ , and

H0~r0! is true,

LRGLS~r0 !
d
&& tr���

0

1

B*~s! dB*~s!
'�'��

0

1

B*~s!B*~s!
' ds��1

� ��
0

1

B*~s! dB*~s!
'��

and

LRPAR~r0 !
d
&& tr���

0

1

B�~s! dB*~s!
'�'��

0

1

B�~s!B�~s!
' ds��1

� ��
0

1

B�~s! dB*~s!
'�� ,

where B*~s! � B~s! � sB~1! is an ~n � r0!-dimensional Brownian bridge,
B�~s! � @B*~s!',1# ', and dB*~s! � dB~s! � dsB~1! , that is, *0

1 B�~s! dB*~s!
'

abbreviates *0
1 B�~s! dB~s!' � *0

1 B�~s! dsB~1!', for example+

Several remarks are worth making regarding this theorem+ First, a similar
result for their break date estimators and cointegrating rank test was obtained
by Lütkepohl et al+ ~2004! under more restrictive assumptions regarding the
break size+ The limiting distribution of LRGLS~r0! in Theorem 4+1 is the same
as its earlier counterpart in Lütkepohl et al+, whereas the limiting distribution
of LRPAR~r0! differs in that the process B�~s! appears in place of the Brownian
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bridge B*~s!+ The reason is of course that an intercept term is included in the
auxiliary model on which LRPAR~r0! is based+ On the other hand, the limiting
distribution of LRPAR~r0! is formally similar to its counterpart in Theorem 6+3
of Johansen ~1995!, where a standard Brownian motion appears in place of the
Brownian bridge in our Theorem 4+1+ Notice that the term *0

1 B�~s! dB*~s!
'

consists of two components+ The first one is

�
0

1

B*~s! dB*~s!
' ��

0

1

B~s! dB~s!' � B~1!�
0

1

sdB~s!'

��
0

1

B~s! dsB~1!' �
1

2
B~1!B~1!',

and the second one is

�
0

1

1dB*~s!
' ��

0

1

dB~s!' ��
0

1

dsB~1!' � 0+

Second, in the case without trend in the model, that is, m1 � 0 a priori and
hence Im1 � 0, the processes B�~s! and B*~s! in the limiting distributions in
Theorem 4+1 can be replaced by @B~s!',1# ' and B~s!, respectively+ Then the
limiting distribution of the test statistic LRPAR~r0! is the same as the limiting
distribution of the corresponding LR test statistic in Theorem 6+3 of Johansen
~1995!+ This result can be proved by making appropriate modifications to the
proof of Theorem 4+1 in the Appendix+ Moreover, in this case the limiting dis-
tribution of LRGLS~r0! is the same as that of an LR test based on a model with-
out any deterministic terms+

Third, from the proof of Theorem 4+1 it is apparent that the same limiting
distributions are obtained if the shift date is assumed known or if it is known
that there is no shift in the process+ In the latter case d� 0 and only m0 and m1

are estimated in the first step leading to LRGLS~r0!, whereas only m1 is esti-
mated in the first step of the LRPAR~r0! procedure+ Thus, in our framework,
including a shift dummy in the model and estimating its coefficients and the
shift date as described in the foregoing discussion has no effect on the limiting
distributions of the cointegration tests+ The same result was obtained by Lütke-
pohl et al+ ~2004! for LRGLS~r0! in a more limited model framework+ It may be
worth emphasizing that such a result will not be obtained if instead of our esti-
mation procedures for the deterministic parameters, the Johansen ~1995! ML
approach is applied to a model with estimated shift date ~see also Johansen,
Mosconi, and Nielsen, 2000, for a discussion of the case when the break date is
known!+

Extensions of our results in different directions are conceivable+ In particu-
lar, limiting results as in Theorem 4+1 can also be obtained under other assump-
tions for the shift size+ For example, if d1 � 0, the theorem holds more generally
for a � 1

2
_ + In particular, it holds for a � 0, where the shift size does not depend
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on the sample size, and for a � 0, where the shift size decreases with increas-
ing sample size+ In fact, a � 1

2
_ is the only case where a different result for the

limiting distributions of the cointegration tests may be obtained+ To get the same
distributions as in Theorem 4+1, we then need the additional assumption that
the break date estimator is consistent+ This condition is satisfied for [tR but
requires further assumptions for [t ~see Theorem 3+1~i!!+ Proofs for other assump-
tions regarding the shift are not given here because they require a separate treat-
ment of different cases, which complicates the presentation+ For details see,
however, the discussion paper version of this article ~Saikkonen et al+, 2004!+
We have treated the case where the shift actually occurs in the cointegrating
relations and the shift size may be large because in this case our theory can
help to explain some simulation results of Lütkepohl et al+ ~2004!, as we will
see in Section 5+

It also seems likely that our results can be extended by including more than
one shift dummy or other dummy variables in model ~2+1!+ In fact, an addi-
tional impulse dummy and seasonal dummies were considered by Saikkonen
and Lütkepohl ~2000a!+ The result in Theorem 4+1 remains valid with addi-
tional dummies if the corresponding shift dates are known and the parameters
of the additional deterministic terms are estimated in a similar way as m1 or d+
If the dates of further shifts are unknown, it may be more difficult to construct
suitable shift date estimators+ This issue may be an interesting project for future
research+

An extension of our framework to the case where a break occurs not only in
the levels of the series but also in the trend slopes may be desirable for applied
work+ However, such an extension is not straightforward, and the limiting dis-
tribution of the cointegrating rank tests is likely to be affected by the break
date in this case+

To apply the cointegrating rank tests we need critical values for the second
limiting distribution in Theorem 4+1+ The limiting distribution of LRGLS~r0! is
the same as in Lütkepohl et al+ ~2004!, and critical values are available in Lütke-
pohl and Saikkonen ~2000, Table 1!+ The second limiting distribution in Theo-
rem 4+1 is simulated numerically by approximating the standard Brownian
motions with T-step random walks of dimension n � r0, as in Johansen ~1995,
Sect+ 15+1!+ The percentiles in Table 1 are based on sample lengths of T � 1,000
using independent standard normal variates for the error terms and 100,000
replications of the simulation experiment+ The computations are done with
GAUSS V5+

In the next section we will discuss small-sample properties of the break date
estimators and cointegration tests+

5. MONTE CARLO SIMULATIONS

A Monte Carlo experiment was performed to compare our break date estima-
tors and to explore the finite-sample properties of the corresponding cointegra-
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tion test procedures+ The simulations are based on the following xt process from
Toda ~1994!, which was also used by a number of other authors for investigat-
ing the properties of cointegrating rank tests ~see, e+g+, Hubrich, Lütkepohl,
and Saikkonen, 2001!:

xt � A1 xt�1 � «t ��c 0

0 In�r
	xt�1 � «t ,

«t ; i+i+d+ N��0

0
	 ,� Ir Q

Q' In�r
	�, (5.1)

where c� diag~c1, + + + ,cr ! and Q are ~r � r! and ~r � ~n � r!! matrices, respec-
tively+ As shown by Toda, this type of process is useful for investigating the
properties of LR tests for the cointegrating rank because other cointegrated
VAR~1! processes of interest can be obtained from ~5+1! by linear transforma-
tions that leave such tests invariant+ Obviously, if 6ci 6 � 1 ~i � 1, + + + , r! we
have r stationary series, and, thus, the cointegrating rank is equal to r+ Hence,
Q describes the contemporaneous error term correlation between the stationary
and nonstationary components+We have used three- and four-dimensional pro-
cesses for simulations and report some of the results in more detail here+ For
given VAR order p and break date t, the test results are invariant to the param-
eter values of the constant and trend because we allow for a linear trend in our
tests+ Therefore we use m i � 0 ~i � 0,1! as parameter values throughout with-
out loss of generality+ In other words, the intercept and trend terms are actually
zero although we take such terms into account, and thereby we pretend that
this information is unknown to the analyst+ Hence, yt � ddtt� xt , and we have
performed simulations with different d vectors+ Rewriting xt in VECM form

Table 1. Percentiles of limiting distribution of LRPAR~r0!

n � r0 50% 75% 80% 85% 90% 95% 97+5% 99%

1 3+578 5+356 5+893 6+576 7+509 9+046 10+589 12+645
2 11+694 14+658 15+498 16+508 17+855 20+010 22+073 24+623
3 23+712 27+857 28+972 30+316 32+125 34+897 37+431 40+447
4 39+569 44+895 46+320 47+955 50+121 53+612 56+690 60+570
5 59+341 65+776 67+457 69+473 72+080 76+015 79+667 84+117
6 83+090 90+760 92+704 95+025 98+069 102+705 106+916 112+106
7 110+856 119+613 121+884 124+552 128+014 133+253 137+840 143+404
8 142+276 152+287 154+833 157+881 161+719 167+556 172+820 179+112
9 177+780 188+799 191+638 194+971 199+236 205+784 211+621 218+775

10 217+039 229+419 232+616 236+300 241+029 248+043 254+424 262+249
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~2+5! shows that P � �~In � A1! � diag~c � Ir : 0! and, thus, d1 � �Pd can
only be nonzero if level shifts occur in stationary components of the DGP+

Samples are simulated by starting with initial values of zero and discarding
the first 50 observations+ We have considered a sample size of T � 100+ The
number of replications is 1,000+ Thus, the standard error of an estimator of
a true rejection probability P is sP � MP~1 � P !01,000, for example, s0+05 �
0+007+ Moreover, we use different VAR orders p, although the true order is
p � 1, to explore the impact of this quantity on the estimation and testing results+
In all simulations the search procedures are applied to all possible break points
t from the fifth up to and including the 96th observation+ This choice corre-
sponds to the situation where no prior knowledge on the break date is avail-
able+ Therefore a search is performed over the full sample period except for
some observations at the beginning and at the end+ Recall that our theoretical
results exclude the possibility of a break at the very beginning or at the very
end of the sample+ Leaving out 4% of the observations at both ends is to some
extent arbitrary+ Because we will consider VAR orders up to p � 3, a break
closer than three periods to the end of the sample results in one or more impulse
dummies in ~3+1! being zero throughout the sample period and therefore can
not be handled in our setup+ We decided to stop the search close to the end of
the feasible period and treat the beginning and the end of the sample symmet-
rically in this respect+ In practice, some prior knowledge on the break date may
be available that can be used to narrow the period where a search is necessary+
In that case it may be easier for an estimator to find the true break date, and,
hence, the results for the break date estimation and cointegration testing may
improve relative to those obtained in our simulations+

To compute the estimator [tR we use a nonlinear LS estimation method by
applying the Gauss–Newton algorithm to minimize the sum of squared residu-
als corresponding to ~3+4!+ The iterations of the algorithm stop if the change
in D [tR � det@~T � p!�1 (t�p�1

T [«tt
R [«tt

R ' # from iteration i to i � 1 is less than
~T � p!�n , where [«tt

R ~t � p � 1, + + + ,T ! are the residual vectors from the non-
linear estimation of ~3+4!+ Thus, the precision is about 10�6 for a three-
dimensional process+ In addition, the maximum number of iterations is set to
25+We have also worked with smaller values of our stopping criterion and higher
maximum numbers of iterations for a subset of our simulation experiments but
did not obtain different results+

The interpretation of the simulation results is done in two steps+ First, we
analyze the ability of the shift date estimators to locate the true break point+
Second, we discuss the small-sample properties of the corresponding cointegra-
tion tests based on these estimators+ This discussion includes a comparison of
the LRPAR and LRGLS test procedures+

As a basis for the comparison of the shift date estimators we start with a
three-dimensional DGP with r � 1 ~c1 � 0+9!, Q � ~0+4, 0+8!, and t � 50+
Afterward, we comment briefly on the importance of the value of t, the inno-
vation correlation, and the results of a four-dimensional DGP with two cointe-
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gration relations without presenting detailed results+ The latter DGP has been
considered to study the properties of the procedures in the case of more com-
plicated processes+ Finally, we examine situations where d1 � �Pd � 0 and,
hence, according to Theorems 3+1~i! and 3+2~i!, consistent estimation requires
larger shift sizes+

The break date estimates with respect to our three-dimensional basis DGP
with r � 1 and a VAR order p � 1 are reported in Table 2 and Figure 1a+ We
consider a shift d � ~d~1!,d~2!,d~3!!' with d~1! ranging from 1 to 10 and d~2! �
d~3! � 0+ Hence, the shift occurs in the first component of the DGP, which is
stationary according to ~5+1!+ Thus, as discussed before, we have d1 � Pd �
ab 'd � 0 in ~3+1! and, hence, u � b 'd � 0 in ~2+7!+

The performance of the estimators [tR and [t is very similar, although the for-
mer estimator is more successful in finding the correct break date for small
shift magnitudes+ Only if d~1! � 3 and d~1! � 5 does [t perform slightly better+
For large values of d~1! both estimators perform identically+ In fact, the cases of
d~1! � 3 and d~1! � 5 represent the few exceptions in all our simulation experi-
ments where [t outperforms [tR+ These observations also hold if one considers
the small band @t � 2; t � 2# instead of the single true value of t only to
evaluate the break date estimator+ The frequency of break date estimates [t and
[tR in the interval @t � 2; t � 2# is denoted by [t~band! and [tR~band!, respec-

tively, in Figure 1+ Obviously, the frequency of finding the true t increases for

Table 2. Break date estimates for three-dimensional DGP with r � 1 ~c1 �
0+9!, Q � ~0+4, 0+8!, VAR order p � 1, true break point t � 50, sample size
T � 100, d~2! � d~3! � 0

Break date
estimates d~1! � 1 d~1! � 2 d~1! � 3 d~1! � 5 d~1! � 7 d~1! � 10

[t ~Ignoring nonlinear restrictions!

,48 0+425 0+205 0+011 0+000 0+000 0+000
�48049 0+031 0+030 0+003 0+000 0+000 0+000
�50 0+092 0+572 0+967 1+000 1+000 1+000
�51052 0+015 0+003 0+000 0+000 0+000 0+000
.52 0+437 0+190 0+019 0+000 0+000 0+000

[tR ~Considering nonlinear restrictions!

,48 0+417 0+172 0+023 0+000 0+000 0+000
�48049 0+023 0+010 0+001 0+000 0+000 0+000
�50 0+109 0+641 0+947 0+999 1+000 1+000
�51052 0+016 0+007 0+003 0+000 0+000 0+000
.52 0+435 0+170 0+026 0+001 0+000 0+000
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larger shift magnitudes+ This result is not surprising given the asymptotic prop-
erties of the estimators and the fact that d1 � 0 in the present situation+ Because
T is fixed, changing d~1! from 1 to 10 may be interpreted as changing a or d* in
Assumption 3 accordingly+

Next, we have fitted a VAR~3! model although the true DGP has only an
order p � 1, and we give the results in Table 3 and Figure 1b+ In this case j0 � 0
in Theorem 3+1~i! because g1 � g2 � 0+ Thus, under the conditions of that
theorem, Pr$48 � [t� 50%r 1+ In line with this result, [t does not find the true
break point t � 50 even if d~1! is large+ In fact, we observe in Table 3 that in
about two-thirds of the replications the break date is located too early+ How-
ever, the estimates converge to the stated range for [t, in line with our asymp-
totic results+ Interestingly, focusing on the band @t � 2; t � 2# , [t is slightly
more successful than [tR for d~1! � 2 and 3 ~see Figure 1b!+

To analyze possible effects of the location of t we also studied break points
t � 10, 25, 75, and 90 using the same three-dimensional DGP as before+ We
found that it is only slightly more difficult to detect the more extreme break
points if small shift magnitudes are considered+ In the case of large shift mag-
nitudes the location of the break date becomes even less important for the esti-
mation results+ These observations were made for both break date estimators
and both VAR orders p � 1 and 3+

Next, we studied the effect of the error term correlation between the station-
ary and nonstationary components by considering a three-dimensional DGP as
before but with Q� ~0,0! and comparing the outcomes with the previous find-
ings+ The absence of instantaneous error term correlation made it more difficult
for both estimators to locate the true break point regardless of the lag order+
This outcome can be explained by the fact that we considered a shift only in
one of the three components so that a weaker link of the components owing to
Q � ~0,0! complicated the break date search+ In this situation, [tR was always

Figure 1. Relative frequency of true break point estimates ~ [t, [tR! or of estimates in
interval t 6 2 ~ [t ~band!, [tR ~band!! for three-dimensional DGP with r � 1 ~c1 � 0+9!,
Q � ~0+4, 0+8!, sample size T � 100, true break point t � 50, d~2! � d~3! � 0+
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the most successful procedure, and usually its advantage was even more pro-
nounced than in the case of Q � ~0+4, 0+8!+

Our results with respect to the more complicated four-dimensional DGP with
a cointegrating rank r � 2 ~c1 � c2 � 0+7! and Q � ~ @0+4 : 0+4# ' : @0+4 : 0+4# '!
clearly indicated that the performance of the break date estimators deteriorates
in the case of smaller level shifts+ We chose a shift vector of the form d �
~d~1!,d~2!,d~3!,d~4!!' with d~1! ranging again from 1 to 10 and d~2!� d~3!� d~4!� 0+
By adding a further dimension to the process the importance of the break in
only one component is weakened, which may explain the lower number of cor-
rect break date estimates+ The relative rankings of the two estimation proce-
dures did not change, however+

Finally, we examined two DGPs for which d1 � Pd � 0+ For this situation,
Theorems 3+1 and 3+2 state that compared to the case d1 � 0 “larger” shift
magnitudes are needed to ensure that [t and [tR can estimate the break date con-
sistently+ First, we considered a three-dimensional process as in the base case
but with d~3! ranging from 1 to 10 and d~1!� d~2!� 0+ Because the shift occurs
in the third component, which is nonstationary, the level shift is orthogonal to
the cointegration space in line with our DGP design ~5+1!+ Thus, we simulated
a case of co-breaking+ Second, we used a three-dimensional process with c1 � 1
so that the cointegrating rank is r � 0+ In the case of r � 0, all components of
the DGP are nonstationary, and therefore no error term correlation is present
because Q vanishes+

Table 3. Break date estimates for three-dimensional DGP with r � 1 ~c1 �
0+9!, Q � ~0+4, 0+8!, VAR order p � 3, true break point t � 50, sample size
T � 100, d~2! � d~3! � 0

Break date
estimates d~1! � 1 d~1! � 2 d~1! � 3 d~1! � 5 d~1! � 7 d~1! � 10

[t ~Ignoring nonlinear restrictions!

,48 0+436 0+226 0+028 0+000 0+000 0+000
�48049 0+083 0+353 0+595 0+629 0+640 0+626
�50 0+042 0+194 0+350 0+371 0+360 0+374
�51052 0+014 0+002 0+000 0+000 0+000 0+000
.52 0+425 0+225 0+027 0+000 0+000 0+000

[tR ~Considering nonlinear restrictions!

,48 0+400 0+231 0+060 0+004 0+000 0+000
�48049 0+023 0+010 0+005 0+000 0+000 0+000
�50 0+091 0+510 0+866 0+993 1+000 1+000
�51052 0+015 0+014 0+006 0+000 0+000 0+000
.52 0+471 0+235 0+063 0+003 0+000 0+000
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The results for the shift date estimators are depicted in Figure 2+ Clearly, it
was more difficult for both procedures to locate t in this situation+ In par-
ticular, the case of no cointegration is much more difficult to deal with than
co-breaking ~compare Figures 2c and 2d with Figures 2a and 2b!+ The poor
performance of the shift date estimation procedures for small shift sizes rela-
tive to DGPs with d1 � 0 is in accordance with the finding in Section 3 that
precise estimation requires large shift magnitudes if d1 � 0+

To sum up, the constrained estimator [tR is usually at least as good as [t and
often superior in finding the true break date+ The small-sample results for [t are
in line with our asymptotic derivations, which say that this procedure may esti-
mate the break date too early when the VAR order is overspecified+

So far we have just analyzed the small-sample properties of the break date
estimators in terms of their ability to locate the true shift date+ If one is primar-
ily interested in the cointegrating rank of the system the focus should be on the
small-sample properties of the cointegration tests based on these different esti-
mators+ Our main conclusion is that the tests’ small-sample size and power dif-
fer very little even in those cases where the break date estimators perform
differently+ Therefore, we only discuss the outcomes for our three-dimensional
base DGP for which we have d1 � Pd � 0, the case treated in Theorem 4+1+

Figure 2. Relative frequency of true break point estimates ~ [t, [tR! or of estimates in
interval t 6 2 ~ [t ~band!, [tR ~band!! for three-dimensional DGPs with Q � ~0+4,0+8! ~a
and b!, Q � ~0,0! ~c and d!, sample size T � 100, true break point t � 50+
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The results are given in Tables 4 and 5+ To be precise, we present the rejection
frequencies for the null hypothesis H0 : r � r0 when the LRPAR and LRGLS tests
are applied to a process with known or estimated shift date+ The rejection fre-
quencies for the case r0 � 1 should give an indication of the tests’ sizes in
small samples+ Therefore we use the term size in the following discussion when
we refer to this case+

In Table 4 we see for fitted VAR~1! models that in particular the sizes of
LRPAR are clearly higher than the nominal 5% level in cases of small shift
magnitudes, for which we obtain many incorrect break date locations+ For
increasing shift magnitudes the sizes approach the values for a known shift
date in line with the greater success of the estimators to locate t+ The small-
sample powers ~not adjusted for the variations in the sizes! are roughly con-
stant if [t is used whereas an increase in power for small values of d~1! can be
observed for [tR+

Table 4. Relative rejection frequencies of cointegration rank tests for three-
dimensional DGP with r � 1 ~c1 � 0+9!, Q� ~0+4, 0+8!, VAR order p � 1, true
break point t � 50, sample size T � 100, nominal significance level 0+05,
d~2! � d~3! � 0

Estimated break dateKnown
break
date d~1! � 1 d~1! � 2 d~1! � 3 d~1! � 5 d~1! � 7 d~1! � 10

LRPAR cointegration rank test based on [t
r0 � 0 0+596 0+610 0+597 0+598 0+596 0+596 0+596
r0 � 1 0+065 0+116 0+095 0+067 0+065 0+065 0+065
r0 � 2 0+010 0+018 0+009 0+010 0+010 0+010 0+010

LRGLS cointegration rank test based on [t

r0 � 0 0+544 0+546 0+544 0+543 0+544 0+544 0+544
r0 � 1 0+026 0+058 0+046 0+028 0+026 0+026 0+026
r0 � 2 0+003 0+003 0+001 0+003 0+003 0+003 0+003

LRPAR cointegration rank test based on [tR

r0 � 0 0+596 0+672 0+628 0+603 0+596 0+596 0+596
r0 � 1 0+065 0+104 0+085 0+070 0+065 0+065 0+065
r0 � 2 0+010 0+015 0+011 0+010 0+010 0+010 0+010

LRGLS cointegration rank test based on [tR

r0 � 0 0+544 0+618 0+579 0+549 0+545 0+544 0+544
r0 � 1 0+026 0+058 0+045 0+027 0+026 0+026 0+026
r0 � 2 0+003 0+003 0+002 0+003 0+003 0+003 0+003
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The impact of the shift magnitude on the small-sample properties of the cointe-
gration tests is similar if VAR~3! models are fitted and [tR is used ~see Table 5!+
Note, however, that the tests’ small-sample power is clearly lower than in the
VAR~1! case even if the true shift date is known+ Regarding [t we observe some
differences if VAR~3! models are applied ~compare Table 5!+ Here, the sizes of
LRGLS and powers of both tests fall below the values for a known shift date
when d~1! is large+ Obviously, the effect of the wrong locations on the small-
sample properties becomes important if the shift magnitude is large+

Three important observations can be made with respect to the relative small-
sample properties of the two cointegration tests LRPAR and LRGLS + First, the
new test LRPAR rejects somewhat too often if the null hypothesis is true
~r � 1!, even if the shift date is known+ These higher rejection frequencies were
also found for other DGPs+ Thus, it may be worth exploring small-sample cor-

Table 5. Relative rejection frequencies of cointegration rank tests for three-
dimensional DGP with r � 1 ~c1 � 0+9!, Q� ~0+4, 0+8!, VAR order p � 3, true
break point t � 50, sample size T � 100, nominal significance level 0+05,
d~2! � d~3! � 0

Estimated break dateKnown
break
date d~1! � 1 d~1! � 2 d~1! � 3 d~1! � 5 d~1! � 7 d~1! � 10

LRPAR cointegration rank test based on [t
r0 � 0 0+412 0+450 0+441 0+409 0+379 0+366 0+375
r0 � 1 0+062 0+099 0+084 0+078 0+073 0+072 0+067
r0 � 2 0+017 0+017 0+018 0+019 0+021 0+020 0+017

LRGLS cointegration rank test based on [t

r0 � 0 0+337 0+339 0+323 0+287 0+253 0+241 0+228
r0 � 1 0+030 0+038 0+041 0+028 0+024 0+019 0+015
r0 � 2 0+005 0+005 0+004 0+004 0+005 0+006 0+004

LRPAR cointegration rank test based on [tR

r0 � 0 0+412 0+484 0+448 0+421 0+412 0+412 0+412
r0 � 1 0+062 0+093 0+069 0+062 0+062 0+062 0+062
r0 � 2 0+017 0+016 0+012 0+016 0+017 0+017 0+017

LRGLS cointegration rank test based on [tR

r0 � 0 0+337 0+419 0+381 0+348 0+337 0+337 0+337
r0 � 1 0+030 0+038 0+043 0+032 0+030 0+030 0+030
r0 � 2 0+005 0+004 0+003 0+004 0+005 0+005 0+005
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rections for the new tests in future work+ Second, for increasing shift magni-
tudes the relative performance of LRPAR and LRGLS based on the estimator [tR
is in general similar+ Third, using [t the drop in small-sample power in the case
of large shift magnitudes when the VAR order is overspecified is more pro-
nounced for LRGLS than for LRPAR + Thus, our new test proposal appears to be
less affected by the incorrect break date estimates+

The overall conclusion from our simulations is that the estimator [tR is gen-
erally preferable to [t+ Taking account of the nonlinear restrictions is beneficial
to both locating the shift date and testing for the cointegrating rank+ In fact,
estimating the shift date does not worsen the small-sample properties of the
cointegration tests much relative to the case of a known break point if [tR is
used+ Given the size distortions of LRPAR even if the shift date is known, size
correcting procedures may be worth exploring for this test in the future+

6. CONCLUSIONS

We have analyzed the asymptotic properties of two estimators for the shift date
in a cointegrated VAR process with level shift+ The shift is modeled by a sim-
ple shift dummy variable+ The first estimator is based on an unrestricted VAR
model, and the second one is obtained by taking into account the relation between
the parameters of the stochastic and deterministic parts of the model+ Asymp-
totic properties of both estimators are given under the assumption that the shift
may depend on the sample size+ Both a growing and a declining shift size when
the sample size tends to infinity are considered+ These results extend previous
results of Lütkepohl et al+ ~2004!, who also consider the first estimator assum-
ing a fixed shift size+ Our results shed new light on previously unexplained
small-sample phenomena+ We have also considered the implications of using
models with estimated instead of true shift dates in testing for the cointegrating
rank, and we have proposed new variants of cointegrating rank tests+ These
tests differ from those considered by Lütkepohl et al+ in that they avoid esti-
mating the nonidentified part of the levels parameter and proceed otherwise in
a similar manner+ More precisely, the trend and shift parameters are estimated
in a first step, and then rank tests of the LR type are applied to the adjusted
series+ The asymptotic distributions of the tests are derived+

In addition to providing asymptotic results, we have also investigated the
small-sample properties of the procedures using a Monte Carlo simulation exper-
iment+ It is found that the estimator that takes the restrictions into account is
the most successful one in locating the true shift date+ Moreover, a superior
break date estimator tends to improve the small-sample properties of sub-
sequent cointegration tests+ Generally it pays to account for a shift in testing
for the cointegrating rank of a system of variables when such a shift is actually
present+

A comparison of the tests considered by Lütkepohl et al+ ~2004! and the new
tests of the present paper shows, however, that the latter tend to reject a true
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null hypothesis more often than the Lütkepohl et al+ tests+ Generally the new
tests tend to reject true null hypotheses too often, and hence in future research
it may be of interest to develop small-sample corrections to ensure a test size
close to the nominal level+

Another direction for extending our results may be to develop a joint proce-
dure for determining the break date and the cointegrating rank+ Our two-step
procedure, where the break date is estimated in the first stage and then tests for
the cointegrating rank are performed, is easy to use in practice and therefore
has some appeal in applied work+ An alternative approach may be to determine
the break date and cointegrating rank jointly, for instance by minimizing a model
selection criterion+ We leave such extensions for future research+
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APPENDIX: Proofs

Some parts of the proofs are similar to those of the corresponding results stated in Lütke-
pohl et al+ ~2004! under more restrictive conditions+ Because these authors provide brief
sketches of the proofs only, we also present more detailed and more complete versions
of the similar parts here+

The following notational conventions are used in addition to the notation defined ear-
lier+ Right-hand side and left-hand side will be abbreviated by r+h+s+ and l+h+s+, respec-
tively+ The smallest and largest eigenvalues of a matrix are denoted by lmin~{! and lmax~{!,
respectively+ The complement of a set B is signified by Bc + The dependence of quanti-
ties on the sample size T is not indicated+ The symboln signifies weak convergence in
a product space of D~ @ tl, Nl#! or D~ @0,1# !+ The former is relevant for random functions
depending on the parameter l, whereas the latter is used when the weak limit is a Brown-
ian motion+ Unless otherwise stated, all limits assume that T r `+ When obtaining
weak convergences in a product space of D~ @ tl, Nl#! we frequently make use of results
given in Appendix A+1 of Gregory and Hansen ~1996!+ It is straightforward to check
that these results are applicable despite the differences in assumptions+

In the proofs we assume the model and conditions described in Sections 2 and 3,
where the parameters m0, m1, d* � Rn and the true a, b, P, and Gj ~ j � 1, + + + , p � 1!
satisfy the restrictions that ensure that the observed variables are at most I ~1!, whereas
these restrictions are not imposed in the estimation+

The true DGP is one specific process from our model class+ It is occasionally helpful
to be more explicit about its particular parameter values+ In these cases they will be
indicated with a subscript o ~e+g+, m0o, m1o, to, etc+!+ For the break date we assume for
convenience that tl � lo � Nl and T � @T tl,T Nl# + We begin by proving Theorem 3+1+

A.1. Proof of Theorem 3.1. Instead of the series yt it will be convenient to use the
mean adjusted series

xt � yt �m0o �m1o t � do dtto , t � 1,2, + + + +

Solving the preceding equation for yt and inserting the result into ~3+1! yields

Dxt � n0
~0!� n1

~0! t � d1 dtt� rg tdtt� d1
~0! dtto � rg~0! tdtto �Pxt�1

� (
j�1

p�1

Gj Dxt�j � «t , t � p � 1, p � 2, + + + + (A.1)

Here

n0
~0! � n0 �Pm0o �Cm1o �Pm1o ,

n1
~0! � n1 �Pm1o ,

rg � @g0 : {{{ : gp�1# ,

tdtt � @Ddtt : {{{ : Ddt�p�1,t #
',

d1
~0! � �Pdo ,
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and

rg~0! � @g0
~0! : {{{ : gp�1

~0! # with gj
~0!� �do � d1

~0! , j � 0

�Gj do , j � 1, + + + , p � 1+

Note that the true values of n0
~0! and n1

~0! are zero+
It will also be convenient to use the transformation Pxt�1 � a~0!ut�1

~0! � r~0!vt�1
~0! ,

where ut�1
~0! � bo

' xt�1 , vt�1
~0! � bo4

' xt�1 , a~0! � ab 'bo~bo
' bo !

�1, and r~0! �
ab 'bo4~bo4

' bo4 !
�1 + Clearly, the true values of a~0! and r~0! are ao and zero, respec-

tively+With this transformation the preceding error correction form can be expressed as

Dxt � n0
~0!� n1

~0! t � d1 dtt� rg tdtt� d1
~0! dtto � rg~0! tdtto � a~0!ut�1

~0! � r~0!vt�1
~0!

� (
j�1

p�1

Gj Dxt�j � «t , t � p � 1, p � 2, + + + (A.2)

Denote qtt � @dtt : tdtt
' # ' and

wt
~0! � �1 :

t

T
: T �102vt�1

~0!' : ut�1
~0!' : Dxt�1

' : {{{ : Dxt�p�1
' 	 '+

With this notation ~A+2! becomes

Dxt � Fwt
~0!�Jqtt�J~0!qtto � «t , t � p � 1, p � 2, + + + , (A.3)

where F � @n0
~0! : Tn1

~0! : T 102r~0! : a~0! : G1 : {{{ : Gp�1# , J � @d1 : rg# , and J~0! �
@d1
~0! : rg~0! # +
Let Q� @F :J# contain the freely varying parameters in ~A+3! or ~A+2! ~J~0! is not a

freely varying parameter because it is determined by a~0! , r~0!, and G1, + + + ,Gp�1!+ Set

«tt~Q! � Dxt �Fwt
~0!�Jqtt�J~0!qtto +

Then

lT ~Q,t,V! � ~T � p! log detV� tr�V�1 (
t�p�1

T

«tt~Q!«tt~Q!
'�

is �2 times the ~conditional! Gaussian log-likelihood function of the parameters in ~A+3!+
Minimizing this function yields Gaussian ML estimators of the parameters Q, t, and V+
It is not difficult to see that the resulting estimators of Q and t can alternatively be
obtained by minimizing the concentrated counterpart of lT ~Q,t,V!, that is,

lT
~c!~Q,t! � ~T � p! log det� (

t�p�1

T

«tt~Q!«tt~Q!
'�+

The definition of «tt~Q! ~and the fact that J~0! is not a freely varying parameter! makes
it clear that the value of t that minimizes the function lT

~c!~Q,t! is identical to [t defined
by ~3+2!+ Thus, ~asymptotic! properties of [t can be studied by using the Gaussian ML
estimator of t discussed previously+ Before turning to this issue we note that the preced-
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ing discussion also makes clear that a minimizer of lT ~Q,t,V! exists ~for every T larger
than some constant!+

The proof of Theorem 3+1 consists of several steps+ In the first one we consider a
subset of the parameter space of ~Q,V! defined by

0 � uv� lmin~V!� lmax~V!� Tv � ` (A.4)

and

7F72 � 7d1 � d1
~0!72 � RM � `+ (A.5)

Note that here RM does not depend on T although F and d1
~0! do+ We now prove the

following lemma+

LEMMA A+1+ Let B1 � B1~ RM, uv, Tv! be the part of the parameter space of ~Q,t,V!
in which conditions (A.4) and (A.5) hold. Then there exist choices of RM, uv, and Tv such
that

inf
~Q,t,V!�B1

c
lT ~Q,t,V!� lT ~Qo ,to ,Vo ! � 0

with probability approaching one.

Proof. First note that

T �1lT ~Qo ,to ,Vo ! � �1 �
p

T
� log detVo � tr�Vo

�1 T �1 (
t�p�1

T

«t «t
'�� Op~1!, (A.6)

where the latter equality is justified by the weak law of large numbers+
Next, because @T tl# � t, to � @T Nl# , we find from the definitions that

«tt~Q! � Dxt �Fwt
~0! , t � p � 1, + + + , @T tl#� 1,

and

«tt~Q! � Dxt �Fwt
~0!� ~d1 � d1

~0! !, t � @T Nl#� p, + + + ,T+

Hence,

T �1lT ~Q,t,V! � �1 �
p

T
� log detV

� tr�V�1T �1 (
t�p�1

@T tl#�1

@Dxt �Fwt
~0! # @Dxt �Fwt

~0! # '�
� tr�V�1T �1 (

t�@T tl#�p

T

@Dxt �F~0!wt
~0! # @Dxt �F~0!wt

~0! # '�, (A.7)
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where F~0! � F � @d1 � d1
~0! : 0# + Here

lmin�T �1 (
t�p�1

@T tl#�1�Dxt

wt
~0!	@Dxt

' :wt
~0!'#� � e*, (A.8)

where e*� 0 is a suitable real number and the inequality holds with probability approach-
ing one+ This fact can be justified in the same way as Lemma A+4 of Saikkonen ~2001!+
A similar result is also obtained by changing the range of summation on the l+h+s+ of
~A+8! to t � @T Nl# � p, + + + ,T+ When these two eigenvalue conditions are assumed, argu-
ments entirely similar to those in Saikkonen ~2001, pp+ 320–321! show that, with suit-
able choices of RM, uv, and Tv, the r+h+s of ~A+7! can be made arbitrarily large whenever
~Q,t,V! � B1~ RM, uv, Tv!+ The assertion of the lemma follows from this and ~A+6!+ �

Lemma A+1 implies that a minimizer of lT ~Q,t,V! will asymptotically satisfy inequal-
ity restrictions of the form ~A+4! and ~A+5!+ In what follows, the set B1 is always assumed
to be defined in such a way that the conclusion of Lemma A+1 holds+ We shall now
proceed in the same way as in Saikkonen ~2001! and express the function lT ~Q,t,V! as
a sum of two components+ To this end, define

w1t
~0! � �1 :

t

T
: T �102vt�1

~0!'	 ' and w2 t
~0!� @ut�1

~0!' : Dxt�1
' : {{{ : Dxt�p�1

' # '+

Then wt
~0! � @w1t

~0!' :w2 t
~0!'# ', and we also partition the parameter matrix F conformably

as F� @F1 :F2# where F1 � @n0
~0! : Tn1

~0! : T 102r~0! # and F2 � @a ~0! : G1 : {{{ : Gp�1# +With
these definitions,

«tt~Q! � «1tt~Q!� «2 t ~F2 !,

where «1tt~Q! � �F1 w1t
~0! � Jqtt � J~0!qtto and «2 t~F2! � Dxt � F2 w2 t

~0!+ Clearly,
«1tto~Qo ! � 0 and

lT ~Q,t,V! � l1T ~Q,t,V!� l2T ~F2 ,V!,

where

l1T ~Q,t,V! � tr�V�1 (
t�p�1

T

«1tt~Q!«1tt~Q!
'�� 2tr�V�1 (

t�p�1

T

«1tt~Q!«2 t ~F2 !
'�

and

l2T ~F2 ,V! � ~T � p! log detV� tr�V�1 (
t�p�1

T

«2 t ~F2 !«2 t ~F2 !
'�+

For l2T ~F2,V! we have the following result+

LEMMA A+2+

inf
~F2 ,V!

l2T ~F2 ,V!� l2T ~F2o ,Vo ! � Op~1!,

where the infimum is over unrestricted values of F2 and V � 0.
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Proof. Because we can treat Dxt as a zero mean stationary process and because
l2T ~F2,V! can be interpreted as �2 times the logarithm of the Gaussian likelihood func-
tion associated with the regression model Dxt � F2 w2 t

~0! � «t , the stated result follows
from standard regression theory ~cf+ Saikkonen, 2001, p+ 321!+ �

Next consider the function l1T ~Q,t,V!+ Our treatment will be divided into several
steps in which the time index t is suitably restricted+ This means considering the func-
tion l1T ~Q,t,V! with the sample size T replaced by appropriate quantities smaller than
T+Most of the subsequent results will explicitly be formulated for t� to and only briefly
discussed in the case t � to ~cf+ Bai et al+, 1998!+

In the following results about the function l1T ~Q,t,V!, c1, c2, + + + denote positive con-
stants and a1T ,a2T , + + + are nonnegative random variables that depend on the sample size
but not on the parameters Q, t, or V+ First we prove the following lemma+

LEMMA A+3+ There exists a constant c1 � 0 such that, with probability approach-
ing one and uniformly in @T tl# � t � to and ~Q,t,V! � B1,

l1,t�1~Q,t,V! � c17T 102F172 � a1T7T 102F17,

where a1T � 0 and a1T � Op~1! .

Proof. For t � t � 1, «1tt~Q! � �F1 w1t
~0! and, consequently,

l1,t�1~Q,t,V! � tr�V�1F1 (
t�p�1

t�1

w1t
~0!w1t

~0!'F1
'�

� 2tr�V�1F1 (
t�p�1

t�1

w1t
~0! «2 t ~F2 !

'� �
def

L1 � L2 +

For L1 we have

L1 � lmin~V
�1 !tr�F1 (

t�p�1

t�1

w1t
~0!w1t

~0!'F1
'�

� lmin~V
�1 !lmin�T �1 (

t�p�1

t�1

w1t
~0!w1t

~0!'�7T 102F172+

For ~Q,t,V! � B1, the first eigenvalue in the last expression is bounded away from
zero+ That the same holds with probability approaching one and uniformly in @T tl# �
t � to for the second eigenvalue can be seen by using an analog of ~A+3! of Gregory
and Hansen ~1996, p+ 118!+ Thus, we have shown that L1 � c17F172 , c1 � 0, with prob-
ability approaching one+

It remains to show that L2 � �a1T7T 102F17 with a1T having the properties stated in
the lemma+ To demonstrate this, notice that

6L2 6 � 27V�1 7

F1 (
t�p�1

t�1

w1t
~0! @Dxt �F2 w2 t

~0! # '


� 27V�1 7

T �102 (

t�p�1

t�1

w1t
~0! @Dxt �F2 w2 t

~0! # '

7T 102F17+
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Here we have used the definition of «2 t~F2!, the Cauchy–Schwarz inequality, and the
norm inequality+ By an analog of ~A+4! of Gregory and Hansen ~1996, p+ 118!, the norm
in the middle of the last expression is of order Op~1! uniformly in @T tl#� t� t0 and for
any fixed value of F2+ Thus, because the parameters F2 and V belong to bounded sets
when ~Q,t,V! � B1, it can similarly be shown that the last expression as a whole has
an upper bound a1T7T 102F17 with a1T as required+ This completes the proof+ �

Our next result deals with the contribution of l1,to�1~Q,t,V! � l1,t�1~Q,t,V! to
l1T ~Q,t,V!+ Here the relevant expression of «1tt~Q! is

«1tt~Q! � �C1 w1t
~0!� rg tdtt , t � t, + + + ,to � 1,

where C1 � F1 � @d1 : 0# +

LEMMA A+4+ Let e be any real number with the property 0 � e � lo � tl. Then, for
tl � l � lo � e there exists a constant c2 � 0 such that, with probability approaching

one and uniformly in @T tl# � t � @T ~lo � e!# and ~Q,t,V! � B1,

l1,t0�1~Q,t,V!� l1,t�1~Q,t,V! � c27T 102C172 � c27 rg72 � a2T7T 102C17� a3T7 rg7,

where aiT � 0 ~i � 2,3! , a2T � Op~1! , and a3T � op~T h! with 10b � h � 1
4
_ .

Proof. By the definitions,

l1,to�1~Q,t,V!� l1,t�1~Q,t,V!

� tr�V�1 (
t�t

to�1

«1tt~Q!«1tt~Q!
'�� 2tr�V�1 (

t�t

to�1

«1tt~Q!«2 t ~F2 !
'� �

def

L3 � L4 +

First consider L3 and for simplicity denote tC1 � @C1 : rg# and sz1tt
~0! � @w1t

~0!' : tdtt
' # ' + Then

L3 � tr�V�1 tC1 (
t�t

to�1

sz1tt
~0! sz1tt

~0!' tC1
'�

� lmin~V
�1 !tr� tC1 D1T�D1T

�1 (
t�t

to�1

sz1tt
~0! sz1tt

~0!'D1T
�1�D1T tC1

'�, (A.9)

where D1T � diag@T �102In�r�2 : Ip# +
Next note that

T �102 (
t�t

to � 1

w1t
~0! Ddt�i,t � Op~T

�102 !, i � 0, + + + , p � 1,

uniformly in @T tl# � t � to+ Because w1t
~0! � @1 : t0T : T �102vt�1

~0!'# ' this is obvious for
the first and second components of w1t

~0!+ For the third component the same is true
because T �102max1�t�to7vt�1

~0! 7 � T �102max1�t�T 7bo4
' xt�17 � Op~1!, where the equal-

ity follows from the fact that T �102bo4
' x@Ts# obeys an invariance principle+ Thus, we can

conclude that
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D1T
�1 (

t�t

to�1

sz1tt
~0! sz1tt

~0!'D1T
�1 � diag�T �1 (

t�t

to�1

w1t
~0!w1t

~0!' : Ip	� op~1! (A.10)

uniformly in @T tl# � t � to � p+
The next step is to observe that

T �1 (
t�@Tl#

@Tlo #�1

w1t
~0!w1t

~0!'
n M11~lo !� M11~l!, tl� l � lo ,

where M11~l! is the weak limit of T �1 (t�p�1
@Tl#�1 w1t

~0!w1t
~0!' ~cf+ ~A+3! of Gregory and

Hansen, 1996, p+ 118!+ It is straightforward to check that the difference M11~lo!� M11~l!
is positive definite and its smallest eigenvalue is bounded from below by a positive
constant when tl � l � lo � e+

The preceding discussion implies that, with probability approaching one, the smallest
eigenvalue of the matrix on the l+h+s+ of ~A+10! is bounded away from zero uniformly in
@T tl# � t � @T ~lo � e!# + Thus, with probability approaching one and in the required
uniform sense,

L3 � c2tr~ tC1 D1T D1T tC1
'!� c27T 102C172 � c27 rg72,

where c2 � 0 is a ~small! constant+ This implies that it only remains to show that L4 �
�a2T7T 102C17 � a3T7 rg7 with a2T and a3T as stated in the lemma+

To show the previously mentioned inequality about L4, conclude from the definitions
that

L4 � �2tr�V�1C1 (
t�t

to�1

w1t
~0! «2 t ~F2 !

'�� 2tr�V�1 rg (
t�t

t0�1

tdtt «2 t ~F2 !
'� �

def

L41 � L42 +

Arguments similar to those already used in the proof of Lemma A+3 show that

6L416 � 27V�1 77T 102C17

T �102 (
t�t

to�1

w1t
~0! @Dxt �F2 w2 t

~0! # '

 � a2T7T 102C17,

where a2T � Op~1! in the required uniform sense+
Regarding L42, one similarly obtains

6L42 6 � 27V�1 77 rg7

 (
t�t

to�1

tdtt @Dxt �F2 w2 t
~0! # '

 � a3T7 rg7,

where a3T � op~T h!, 10b � h � 1
4
_ , in the required uniform sense+ The latter inequality

follows if the last norm in the preceding expression can be replaced by op~T h!+ To jus-
tify this, recall that Dxt and w2 t

~0! are stationary processes with finite moments of order
b � 4 and that F2 can be assumed to belong to a bounded set+ Thus, it suffices to show
that max1�t�T 7Dxt7 � op~T h! and similarly with Dxt replaced by w2 t

~0!+ This, however,
can be done by using an argument entirely similar to that in ~A+14! of Saikkonen and
Lütkepohl ~2002!+ The inequalities obtained for 6L416 and 6L426 show that L2 has the
required lower bound, and the proof is complete+ �
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Our next result describes the contribution of l1,to�p�1~Q,t,V! � l1,to�1~Q,t,V! to
l1T ~Q,t,V!+ We introduce the notation

ztt
~0! � ~dtt� dtto !d1

~0!� rg tdtt� rg~0! tdtto +

In the following lemma the relevant values of «1tt~Q! can then be written as

«1tt~Q! � �C2 w1t
~0!� ztt

~0! , t � to , + + + ,to � p � 1,

where C2 � F1 � @d1 � d1
~0! : 0# + Note that here the first term in the definition of ztt

~0!

vanishes, but the general definition is convenient in later derivations+ Now we can for-
mulate the following lemma+

LEMMA A+5+ There exists a constant c3 � 0 such that, with probability approach-
ing one and uniformly in @T tl# � t � to and ~Q,t,V! � B1,

l1,to�p�1~Q,t,V!� l1,to�1~Q,t,V! � c3 (
t�to

to�p�1

7ztt
~0!72 � a4T� (

t�to

to�p�1

7ztt
~0!72�102

� a5T ,

where aiT � 0 and aiT � Op~1! ~i � 4,5! .

Proof. By the definitions,

l1,to�p�1~Q,t,V!� l1,to�1~Q,t,V!

� tr�V�1 (
t�to

to�p�1

«1tt~Q!«1tt~Q!
'�� 2tr�V�1 (

t�to

to�p�1

«1tt~Q!«2 t ~F2 !
'� �

def

L5 � L6 +

Assuming ~Q,t,V! � B1 we find that

L5 � lmin~V
�1 ! (

t�to

to�p�1

7«1tt~Q!72

� Tv�1 (
t�to

to�p�1

7C2 w1t
~0!72 � Tv�1 (

t�to

to�p�1

7ztt
~0!72 � 2 Tv�1 (

t�to

to�p�1

ztt
~0!'C2 w1t

~0! +

Because we can here assume that C2 is bounded ~see ~A+5!!, an application of the trian-
gle inequality and the Cauchy–Schwarz inequality shows that the absolute value of the
third term in the last expression can be bounded from above by

const � � (
t�to

to�p�1

7ztt
~0!72�102� (

t�to

to�p�1

7w1t
~0!72�102

+

Here the latter square root is of order Op~1! ~see the argument leading to ~A+10!!+ Hence,
we can conclude that

L5 � c3 (
t�to

to�p�1

7ztt
~0!72 � a41T� (

t�to

to�p�1

7ztt
~0!72�102

, (A.11)
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where c3 � Tv�1 � 0 and a41T � Op~1! in the required uniform sense+
Now consider L6+ Arguments similar to those used in previous derivations combined

with the present definition of «1tt~Q! yield

6L6 6 � 27V�1 7

C2 (
t�to

to�p�1

w1t
~0! «2 t ~F2 !

'

� 27V�1 7

 (t�to
to�p�1

ztt
~0! «2 t ~F2 !

'

+
It is easy to see that the first term on the r+h+s+ can be used to define the term a5T in the
lemma+ The arguments needed are similar to those used to obtain ~A+11!, and they can
also be applied to the second term so that we can write

6L6 6 � a5T � a42T� (
t�to

to�p�1

7ztt
~0!72�102

, (A.12)

where also a42T � Op~1! in the required uniform sense+ The result of the lemma now
follows from ~A+11! and ~A+12! by defining a4T � a41T � a42T + �

The next lemma is concerned with the contribution of l1T ~Q, t,V! �
l1,to�p�1~Q,t,V! to l1T ~Q,t,V!+ Here «1tt~Q! is given by

«1tt~Q! � �C2 w1t
~0! , t � to � p, + + + ,T+

LEMMA A+6+ There exists a constant c4 � 0 such that, with probability approach-
ing one and uniformly in @T tl# � t � to and ~Q,t,V! � B1,

l1T ~Q,t,V!� l1,to�p�1~Q,t,V! � c47T 102C272 � a6T7T 102C27,

where a6T � 0 and a6T � Op~1! .

Proof. The proof is similar to that of Lemma A+3+ �

Our next lemma is used as an alternative to Lemma A+4 in some of the subsequent
derivations+ The formulation of this lemma makes use of the notation ztt

~0! employed in
Lemma A+5+

LEMMA A+7+ There exists a constant c5 � 0 such that with probability approaching
one and uniformly in @T tl# � t � to � 1 and ~Q,t,V! � B1,

l1,to�1~Q,t,V!� l1,t�1~Q,t,V!

� c5 (
t�t

to�1

7ztt
~0!72 � �a7T ~to � t!h � a8T�to � t

T
�102

7T 102C27�� (
t�t

to�1

7ztt
~0!72�102

� a9T7T 102C27,

where 10b � h � 1
4
_ , aiT � 0, and aiT � Op~1! ~i � 7,8,9! .
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Proof. By the definitions,

l1,to�1~Q,t,V!� l1,t�1~Q,t,V!

� tr�V�1 (
t�t

to�1

«1tt~Q!«1tt~Q!
'�� 2tr�V�1 (

t�t

to�1

«1tt~Q!«2 t ~F2 !
'� �

def

L7 � L8 +

Recall that C1 � F1 � @d1 : 0# and C2 � F1 � @d1 � d1
~0! : 0# + For t � t, + + + ,to � 1, we

thus have «1tt~Q! � �C1 w1t
~0! � rg tdtt � �C2 w1t

~0! � ztt
~0!+ Hence,

L7 � tr�V�1C2 (
t�t

to�1

w1t
~0!w1t

~0!'C2
'�� tr�V�1 (

t�t

to�1

ztt
~0! ztt

~0!'�
� 2tr�V�1 (

t�t

to�1

ztt
~0!w1t

~0!'C2
'� �

def

L71 � L72 � L73 +

Assume that ~Q,t,V! � B1+An application of the Cauchy–Schwarz inequality, the norm
inequality, and the triangle inequality yields

6L73 6 � 27V�1 77T 102C27

T �102 (
t�t

to�1

ztt
~0!w1t

~0!'


� 27V�1 7�to � t

T
�102

7T 102C27�~to � t!�1 (
t�t

to�1

7w1t
~0!72�102� (

t�t

t0�1

7ztt
~0!72�102

+

Because max1�t�T 7w1t
~0!7 � Op~1! ~see the arguments leading to ~A+10!!, the second

square root in the last expression is of order Op~1! uniformly in @T tl# � t � to+ Hence,

6L73 6 � a8T�to � t

T
�102

7T 102C27� (
t�t

to�1

7ztt
~0!72�102

, (A.13)

where a8T � Op~1! in the required uniform sense+
Next note that L71 � 0 and lmin~V

�1! � Tv�1 for ~Q,t,V! � B1+ Consequently,

L71 � L72 � Tv�1 (
t�t

to�1

7ztt
~0!72+ (A.14)

Now consider L8, for which we have

L8 � �2tr�V�1C2 (
t�t

to�1

w1t
~0! «2 t ~F2 !

'�� 2tr�V�1 (
t�t

to�1

ztt
~0! «2 t ~F2 !

'� �
def

L81 � L82 +
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Arguments similar to those used for L73 show that

6L816 � 27V�1 77T 102C27

T �102 (
t�t

to�1

w1t
~0! «2 t ~F2 !

'

 � a9T7T 102C27, (A.15)

where a9T � Op~1! in the required uniform sense+ The latter inequality is obtained because,
for ~Q,t,V! � B1, the last norm in the second expression can be replaced by Op~1! by
an analog of ~A+4! of Gregory and Hansen ~1996, p+ 118!+

As for L82, assume first that t � to � p and use the Cauchy–Schwarz inequality to
conclude that

6L82 6 � 27V�1 7

 (
t�t

to�1

ztt
~0! «2 t ~F2 !

'


� 27V�1 7

 (

t�t

t�p�1

~d1
~0!� rg tdtt !«2 t ~F2 !

'

� 27V�1 7

d1
~0! (

t�t�p

t0�1

«2 t ~F2 !
'



� 27V�1 7� (
t�t

t�p�1

7d1
~0!� rg tdtt72�102� (

t�t

t�p�1

7«2 t ~F2 !72�102

� 27V�1 77d1
~0!7

 (

t�t�p

to�1

«2 t ~F2 !

+
Here the second inequality is based on the definitions and the triangle inequality, whereas
the third one also makes use of the Cauchy–Schwarz inequality and the norm inequality+

In the last expression

~to � t� p!�2h (
t�t

t�p�1

7«2 t ~F2 !72 � Op~1!,
1

b
� h �

1

4
,

and

~to � t� p!�102

 (
t�t�p

to�1

«2 t ~F2 !

 � Op~1!

uniformly in @T tl# � t � to � p and ~Q,t,V! � B1+ Here the latter result can be con-
cluded from the Hájek–Rényi inequality given in Proposition 1 of Bai ~1994!+ The for-
mer can be obtained by an argument similar to that used to prove ~A+14! of Saikkonen
and Lütkepohl ~2002!+

Combining the preceding discussion of L82 shows that

6L82 6 � a71T�� (
t�t

t�p�1

7d1
~0!� rg tdtt !72�102

� ~to � t� p!102 7d1
~0!7	

� a71T�� (
t�t

t�p�1

7ztt
~0!72�102

� � (
t�t�p

to�1

7ztt
~0!72�102	 ,
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where a71T � Op~~to � t!h! in the required uniform sense and the equality follows
from definitions+ Because for any real numbers a � 0 and b � 0 we have a � b �
M2~a2 � b2!102 , it follows that

6L82 6 � M2a71T� (
t�t

to�1

7ztt
~0!72�102

+ (A.16)

In the proof of this result it was assumed that t � to � p, but it also holds for to � p �
t � to+ In that case arguments similar to those used for L73 give

6L82 6 � 27V�1 7� (
t�t

to�1

7ztt
~0!72�102� (

t�t

to�1

7«2 t ~F2 !72�102

,

and ~A+16! holds with a71T � Op~1!+ The result of the lemma is obtained from the def-
initions of L7 and L8 in conjunction with ~A+13!–~A+16! by defining c5 � Tv�1 , a7T �
M2a71T 0~to � t!h, and a8T and a9T as done in ~A+13! and ~A+15!, respectively+ �

In the proof of the next lemma and also in subsequent proofs, frequent use will be
made of the elementary inequality

a2 x 2 � a1 x � a0 � �
a1

2

4a2

� a0 , x � 0, (A.17)

which holds for a0,a1 � 0, and a2 � 0+

LEMMA A+8+ Let e � 0 and B2 � $~Q,t,V! : 7T 102�hF172 � 7T 102�hC272 � e2%,
where 10b � h � 1

4
_ is the same as in Lemma A.7. Then,

inf
~Q,t,V!�B2

c
lT ~Q,t,V!� lT ~Qo ,to ,Vo ! � 0

with probability approaching one and uniformly in @T tl# � t � to.

Proof. By the definitions and Lemma A+2,

lT ~Q,t,V!� lT ~Qo ,to ,Vo ! � l1T ~Q,t,V!� l2T ~F2 ,V!� l2T ~F2o ,Vo !

� l1T ~Q,t,V!� inf
~F2 ,V!

l2T ~F2 ,V!� l2T ~F2o ,Vo !

� l1T ~Q,t,V!� Op~1!+ (A.18)

Thus, it suffices to show that, for some e* � 0,

inf
~Q,t,V!�B2

c
T �2hl1T ~Q,t,V! � e* (A.19)

with probability approaching one and uniformly in @T tl# � t � to+
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From Lemma A+1 it follows that we only need to prove ~A+19! with the set B2
c

replaced by B1 � B2
c+ Let 0 � e1 � lo � tl and define the sets

B21 � B1 � B2
c � $~Q,t,V! : @T tl#� t� @T ~lo � e1!#%

and

B22 � B1 � B2
c � $~Q,t,V! : @T ~lo � e1!# � t� to %+

According to what was said previously, it suffices to establish ~A+19! separately with B2
c

replaced by B21 and B22+ Here we are free to choose the value of e1+ Whatever our
choice, Lemma A+4 can be applied on the set B21, on which we shall first concentrate+

From Lemmas A+4 and A+5 and ~A+17! we first find that, uniformly in B21,

T �2hl1,to�1~Q,t,V!� T �2hl1,t�1~Q,t,V! � �~a2T
2 � a3T

2 !04c2T 2h � op~1!

and

T �2hl1,to�p�1~Q,t,V!� l1,to�1~Q,t,V! � �
a4T

2

4c3T 2h
�

a5T

T 2h
� op~1!+

Combining these inequalities with those obtained from Lemmas A+3 and A+6 shows that,
uniformly in B21,

T �2hl1T ~Q,t,V! � c17T 102�hF172 � T �ha1T7T 102�hF17

� c47T 102�hC272 � T �ha6T7T 102�hC27� op~1!+ (A.20)

Denote c* � min~c1, c4! and aT
* � M2 max~a1T ,a6T !+ Then the preceding inequality

implies that, uniformly in B21,

T �2hl1T ~Q,t,V! � c*~7T 102�hF172 � 7T 102�hC272 !

�
1

M2
T �haT

* ~7T 102�hF17� 7T 102�hC27!� op~1!+

For simplicity, denote wT
2 � 7T 102�hF172 � 7T 102�hC272 and note that the sum of the

two norms in the last expression is at most M2wT + Thus, uniformly in B21,

T �2hl1T ~Q,t,V! � c*wT
2 � T �haT

* wT � op~1!� c*wT
2�1 �

aT
*

c*T hwT
�� op~1!+ (A.21)

Because wT � e on B21 and aT
* � Op~1! uniformly in B21, this shows that ~A+19! holds

with B2
c replaced by B21+

Now consider proving ~A+19! with B2
c replaced by B22+ Here we can use Lemmas

A+3,A+5,A+6, and A+7 to conclude that, with probability approaching one and uniformly
in B22,
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T �2hl1,T ~Q,t,V! � c17T 102�hF172 � T �ha1T7T 102�hF17

� c47T 102�hC272 � T �h~a6T � a9T !7T 102�hC27

� c3T �2h (
t�to

to�p�1

7ztt
~0!72 � T �ha4T�T �2h (

t�to

to�p�1

7ztt
~0!72�102

� T �2ha5T � c5T �2h (
t�t

to�1

7ztt
~0!72

� �a7T�to � t

T
�h � a8T�to � t

T
�102

7T 102�hC27	
� �T �2h (

t�t

to�1

7ztt
~0!72�102

+ (A.22)

Here it is understood that a9T and the last two terms on the r+h+s+ are deleted if t � to
because then Lemma A+7 becomes redundant+ By ~A+17! the sum of the fifth, sixth, and
seventh terms on the r+h+s+ is of order op~1! uniformly in B22, and the sum of the last two
terms can be bounded from below by �~104c5!@a7T ~~to � t!0T !h� a8T ~~to � t!0T !102

7T 102�hC27# 2 + Thus, expanding the square and inserting the result on the r+h+s+ of the
preceding inequality yields, uniformly in B22,

T �2hl1T ~Q,t,V! � c17T 102�hF172 � T �ha1T7T 102�hF17

� c4T ~t!7T 102�hC272 � a10T ~t!7T 102�hC27� a11T ~t!� op~1!,

(A.23)

where

c4T ~t! � c4 �
a8T

2

4c5
�to � t

T
�,

a10T ~t! � T �ha6T � T �ha9T �
a7T a8T

2c5
�to � t

T
�102�h

,

and

a11T ~t! �
a7T

2

4c5
�to � t

T
�2h

+

Note that here a6T , + + + , a9T are of order Op~1! uniformly in B22 and that, on B22 ,
~to � t!0T � 2e1, say+ Because we are free here to choose the value of e1 we can choose
it so small that the following two conditions hold with probability approaching one and
uniformly in B22: ~i! c4T ~t! � c402 and ~ii! a10T ~t! and a11T ~t! become smaller than
any preassigned positive number+ Taking these facts into account and comparing the
inequality ~A+23! with ~A+20! shows that there are only two points that make the previ-
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ous proof based on inequality ~A+20! directly inapplicable in the present context+ These
points are that instead of the terms T �ha6T � op~1! and op~1! we have in ~A+23! a10T ~t!
and a11T ~t!� op~1!, respectively, which are not of order op~1! but can only be replaced
by an arbitrarily small positive number independent of parameters+ However, this is suf-
ficient for the application of essentially the same proof as previously+ Indeed, we can
conclude that, uniformly in B22, an analog of ~A+21! holds except that in the last expres-
sion T h is replaced by a fixed positive number that can be assumed as large as we wish
and op~1! is replaced by a fixed negative number that, in absolute value, can be assumed
as small as we wish+ In particular, we can assume that T h and op~1! in ~A+21! are replaced
by M0e and �e0M, respectively, where M can be chosen arbitrarily large+ This shows
that we can make the r+h+s+ of the present version of ~A+21! larger than some e* � 0 with
probability approaching one+ Thus, there is a choice of e1 such that ~A+19! holds with B2

c

replaced by B21 and B22+ This completes the proof+ �

The next lemma is similar to Lemma A+8 except that it deals with the short-run param-
eter F2+

LEMMA A+9+ Let e � 0 and B3 � $~Q,t,V! : 7T 102�h~F2 �F2o!7� e%, where 10b �
h � 1

4
_ is the same as in Lemma A.7. Then,

inf
~Q,t,V!�B3

c
lT ~Q,t,V!� lT ~Qo ,to ,Vo ! � 0

with probability approaching one and uniformly in @T tl# � t � to.

Proof. By Lemma A+1 it suffices to prove the result with B3
c replaced by B1 � B3

c+
First consider the break dates @T tl# � t � @T ~lo � e1!# and note that the derivation of
the inequality in ~A+21! is valid for these break dates and for all ~Q,t,V! � B1 � B3

c+ It
is also valid for every e1 � 0+ Thus, an application of ~A+17! shows that in this part of
the parameter space T �2hl1T ~Q,t,V!� op~1! holds uniformly+ Next note that the inequal-
ity ~A+23! is valid for @T ~lo � e!# � t � to and for all ~Q,t,V! � B1 � B3

c+ Moreover,
as the discussion after that inequality reveals, we can, with a suitable ~small! choice of
e1, use ~A+17! to obtain an analog of ~A+21! from which we conclude that, with proba-
bility approaching one and uniformly in the considered part of the parameter space,
T �2hl1T ~Q,t,V! � �e2, where e2 � 0 can be chosen arbitrarily small+ From the pre-
ceding discussion and the first equality in ~A+18! it thus follows that we need to show
that, for some e* � 0,

inf
~Q,t,V!�B3

c
T �2hl2T ~F2 ,V!� T �2hl2T ~F2o ,Vo ! � e*

with probability approaching one+ Arguments needed to show this are similar to those
used in previous proofs and also very similar to those used to prove the consistency of
the LS estimators of the parameters F2 and V in the standard regression model Dxt �
F2 wt

~0! � «t + Details are straightforward and are omitted+ �

The next lemma again makes use of the notation ztt
~0! introduced for Lemma A+5+

BREAK DATE ESTIMATION FOR VAR PROCESSES 53

https://doi.org/10.1017/S0266466606060026 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060026


LEMMA A+10+ Let B4 � $~Q,t,V! : ~to � t!�2h (t�t
to�p�17ztt

~0!72 � M 2%, where
t � to and 10b � h � 1

4
_ is the same as in Lemma A.7. Then, there exists a real number

M0 � 0 such that, for all M � M0,

inf
~Q,t,V!�B4

c
lT ~Q,t,V!� lT ~Qo ,to ,Vo ! � 0

with probability approaching one and uniformly in @T tl# � t � to � 1. If the quantity
~to � t!�2h in the definition of the set B4 is replaced by T �2h the same conclusion
holds.

Proof. From ~A+18! it follows that it suffices to show that there exists a real number
M0 � 0 such that, for all M � M0 and any M1 � 0,

inf
~Q,t,V!�B4

c
l1T ~Q,t,V! � M1 (A.24)

with probability approaching one and uniformly in @T tl# � t � to � 1+ From Lemmas
A+1, A+8, and A+9 it further follows that here the set B4

c can be replaced by B1 � B2 �
B3 � B4

c+ From ~A+19! it can be seen that the value of e in the definition of B2 can be
chosen arbitrarily small+

We wish to apply Lemmas A+3, A+5, A+6, and A+7 to obtain a lower bound for
l1T ~Q,t,V!+ This lower bound can be obtained by multiplying both sides of the inequal-
ity ~A+22! by T 2h + By ~A+17! the contribution of the first four terms to the r+h+s+ of the
resulting inequality can be replaced by Op~1!+ This is also the case for the seventh term+
Hence, we can write

l1T ~Q,t,V! � c3 (
t�to

to�p�1

7ztt
~0!72 � a4T� (

t�to

to�p�1

7ztt
~0!72�102

� c5 (
t�t

to�1

7ztt
~0!72

� ~a7T ~to � t!h � a8T ~to � t!102 7C27!� (
t�t

to�1

7ztt
~0!72�102

� Op~1!+

This holds uniformly in B1 � B2 � B3 � B4
c and @T tl# � t � to � 1+ In this part of the

parameter space we also have

~to � t!102 7C27 � ~to � t!h�to � t

T
�102�h

7T 102�hC27� e~to � t!h

and a4T � a4T ~to � t!h ~see Lemma A+8!+ Denote c* � min~c3, c5!, aT
* � max~a4T ,

a7T � ea8T !, and for simplicity, jt2 � (t�t
to�p�17ztt

~0!72 + From the lower bound obtained
for l1T ~Q,t,V! previously we can then further obtain

l1T ~Q,t,V! � c*jt
2 � aT

* ~to � t!hjt� Op~1!

� c*jt
2�1 �

aT
* ~to � t!h

c*jt
�� Op~1!+ (A.25)

54 PENTTI SAIKKONEN ET AL.

https://doi.org/10.1017/S0266466606060026 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060026


Again, this holds uniformly in B1 � B2 � B3 � B4
c and @T tl# � t � to � 1+ Now, on B4

c ,
jt � M~to � t!h so that, for all M large enough and with probability approaching one,
we can make the r+h+s+ of ~A+25! larger than any preassigned number M1 � 0+ Thus, we
have established ~A+24! and thereby the first assertion of the lemma+ The second asser-
tion is obvious by ~A+25! and the discussion thereafter+ �

Before proceeding to new proofs we discuss how Lemmas A+3–A+10 are formulated
when t � to+

The counterpart of Lemma A+3 is concerned with the time points t � p � 1, + + + ,to � 1
and break dates to � t � @T Nl# but is otherwise similar to Lemma A+3+

The next time points of interest are now t � to, + + + ,to � p � 1 so that we need to
consider a counterpart of Lemma A+5+ Here we write

«1tt~Q! � �F1 w1t
~0!� dtto~d1 � d1

~0! !� ~dtt� dtto !d1 � rg tdtt� rg~0! tdtto

� �C2 w1t
~0!� ztt , t � to , + + + ,t� p � 1,

where C2 � F1 � @d1 � d1
~0! : 0# as before and ztt � ~dtt � dtto !d1 � rg tdtt � rg~0! tdtto +

In other words, in place of ztt
~0! we now use an analogous variable defined by using the

parameter d1 instead of d1
~0!+ However, replacing ztt

~0! in Lemma A+5 by ztt is clearly
possible, as can be seen from the given proof+

Instead of the time points t � to � p, + + + ,t � 1 it is next reasonable to consider the
time points t � to � p, + + + ,t � p � 1+ Then the number of time points is the same as in
Lemmas A+4 and A+7+ Changes in parameters have to be made, though+ Now

«1tt~Q! � �F1 w1t
~0!� dttod1

~0!� dtt d1 � rg tdtt

� �C1
~0!w1t

~0!� ~dtt d1 � rg tdtt !, t � to � p, + + + ,t� p � 1,

where C1
~0! � F1 � @d1

~0! : 0# + Thus, we now have the matrix C1
~0! in place of C1 used in

Lemma A+4, and, as before, the former is defined by using d1
~0! instead of d1 in C1+ The

parameter rg used in Lemma A+4 is also changed by adding d1 to its columns+With these
replacements the counterpart of Lemma A+4 applies with @T ~lo � e!# � t � @T Nl# +

Next consider the counterpart of Lemma A+7, which is also concerned with time points
t � to � p, + + + ,to � p � 1+ Here the preceding expression of «1tt~Q! is modified to the
form

«1tt~Q! � �C2 w1t
~0!� ztt , t � to � p, + + + ,t� p � 1,

where C2 is as defined in the proof of Lemma A+7+ In the counterpart of Lemma A+7 we
then have ztt in place of ztt

~0! and to � 1 � t � @T Nl# + The proof can again be obtained
basically by following the previous proof+

The counterpart of Lemma A+6 is straightforward+ The relevant time points are t �
t, + + + ,T, and the obtained lower bound is as before except for the obvious change in
the values of t, which become to � t � @T Nl# + The proof is similar to the proof of
Lemma A+3+

It is not difficult to check that the modified versions of Lemmas A+3–A+7 can be used
to show that the results of Lemmas A+8 and A+9 also apply for to � t � @T Nl# + Regard-
ing Lemma A+10, when to � 1 � t � @T Nl# , the set B4 is defined as
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B4 � �~Q,t,V! : ~to � t!�2h (
t�to

t�p�1

7ztt72 � M 2� ,
but otherwise the same result obtains+

Now we can turn to our next lemma, which is central in studying asymptotic proper-
ties of the break date estimator+ Recall that d1o � �Podo � �aobo

' do , where do � T ad*+
Thus, d1o � 0 if and only if bo

' do � 0+ Note also that we shall use the convention that
the infimum over an empty set is `+

LEMMA A+11+ Let M � 0. Assume that d1o � 0 and define B5 � $~Q, t,V! :
~6to � t6 � p!7d1o720~1�2h! � M %, where 10b � h � 1

4
_ is the same as in Lemma A.7 or

its counterpart when t � to. Then there exists a real number M0 � 0 such that, for all
M � M0,

inf
~Q,t,V!�B5

c
lT ~Q,t,V!� lT ~Qo ,to ,Vo ! � 0

with probability approaching one. If d1o � 0 the same result holds with the set B5 replaced
by B50 � $~Q,t,V! : T �2h (t�p�1

T 7 rg tdtt � rgo tdtto7
2 � M %.

Proof. Assume first that t � to � p and d1o � 0+ From Lemmas A+1, A+8, and A+9 it
follows that we can replace the set B5

c by B1 � B2 � B3 � B5
c+

By the definitions, d1
~0! � �Pdo � �a~0!bo

' do � r~0!bo4
' do , where bo

' do � 0+ On B3,
7a~0! � ao7 � eT h�102 and, on B2, 7r~0!7 � eT h�1 ~see Lemmas A+8 and A+9!+ Thus,
because d1o � �aobo

' do and do � T ad*,

7d1
~0!� d1o7 � 7a~0! � ao77bo

' do7� 7r~0! 77bo4
' do7

� T a 7d*7e~7bo7T h�102 � 7bo47T h�1 !

� cT h�a�102e

for some positive and finite constant c+ Hence, because ztt
~0!� ~dtt� dtto !d1

~0!� d1
~0! for

t � t � p, + + + ,to � 1, we have on B1 � B2 � B3 � B5
c ,

�~to � t!�2h (
t�t

to�p�1

7ztt
~0!72�102

� �~to � t!�2h (
t�t�p

to�1

7ztt
~0!72�102

� ~to � t!�h~to � t� p!102 7d1
~0!7

� �1 �
p

to � t
�h~to � t� p!102�h 7d1

~0!7

� � 1

p � 1
�h ~~to � t� p!7d1o720~1�2h! !102�h�1 �

7d1
~0!� d1o7

7d1o7
�

�
M 102�h

~ p � 1!h �1 �
ceT h�102

7aobo
' d*7

�+ (A.26)
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Here the fourth relation makes use of the triangle inequality+ For all T and M large
enough the last expression can be made larger than the real number M0 in Lemma A+10+
Thus, the stated result follows from Lemma A+10+

Now consider the case t � to � p but maintain the assumption d1o � 0+ Then, using
the counterparts of Lemmas A+8 and A+9 we can proceed in the same way as in the case
t � to � p until the relations ~A+26!, which start now as

�~t� to !
�2h (

t�to

t�p�1

7ztt72�102

� �~t� to !
�2h (

t�to�p

t�1

7ztt72�102

� ~t� to !
�h~t� to � p!102 7d17+

Thus, in place of d1
~0! we now have d1+ However, from the counterpart of Lemma A+8

we find that, on B2, 7d1 � d1
~0!7 � eT h�102 and a straightforward modification of the

arguments in the latter part of ~A+26! combined with the present version of Lemma A+10
give the desired result+

Next assume that d1o � 0 and t � to+ In this case we use the inequality

T �2h (
t�t

to�p�1

7ztt
~0!72 � T �2h (

t�Tt,to
7ztt
~0!72, (A.27)

where Tt,to � $t 6 t � $t, + + + ,to � p � 1% and ~Ddtto � 0 or Ddtt � 0!% , that is, the sum-
mation on the r+h+s+ is over the values of t for which Ddtto � 0 or Ddtt � 0+ Clearly the
number of such time points is at most 2p+

From the definitions it follows that

ztt
~0! � ~dtt� dtto !d1

~0!� Ddttod1
~0!� (

j�1

p�1

Ddt�j,to~Gj � Gjo !do

� (
j�0

p�1

Ddt�j,tgj � Ddttodo � (
j�1

p�1

Ddt�j,toGjodo +

Notice that here Gjodo � �gjo ~ j � 1, + + + , p � 1! and, because now d1o � 0, do � g0o+
Thus, the sum of the last three terms equals rg tdtt� rgo tdtto , and we wish to show that the
contribution of the first three terms to the r+h+s+ of ~A+27! can be ignored+ To this end,
note that now d1

~0!� �r~0!bo4
' do so that, on B2, 7d1

~0!7� ceT h�a�1 for some 0 � c � `
~see Lemma A+8!+ Furthermore, on B3, 7~Gj � Gjo!do7� 7Gj � Gjo77do7� eT h�a�1027d*7
~ j � 1, + + + , p � 1! ~see Lemma A+9!+ Using these facts and the triangle inequality we
find that

�T �2h (
t�Tt,to

7ztt
~0!72�102

� �T �2h (
t�Tt,to

7 rg tdtt� rgo tdtto7
2�102

� const � T a�102e+

On the r+h+s+ the summation can be extended to all t � p � 1, + + + ,T+ This means that on
B1 � B2 � B3 � B50

c the last expression becomes larger than the real number M0 in
Lemma A+10 for all T and M large enough+ Thus, the stated result follows from the
latter part of Lemma A+10+

Finally, assume that d1o � 0 and t � to+ In place of ~A+27! we then have a similar
inequality with t � to, + + + ,t � p � 1 and ztt

~0! replaced by ztt+ However, using the fact
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that 7d1 � d1
~0!7 � eT 102�h on B2 it is straightforward to show that the proof can be

reduced to a form entirely similar to that in the case t� to+ This completes the proof of
the lemma+ �

Now we can prove Theorem 3+1+ As discussed earlier, the estimator [t can also be
obtained by minimizing �2 times the Gaussian log-likelihood function lT ~Q,t,V!+ First
consider the case a � 0 and d1o � 0+ By Lemma A+11 we can then concentrate on the
break dates to � p � t � to � p+ First consider the case to � p � t � to+ If gjo � 0 for
all j � 0, + + + , p � 1, Lemma A+11 shows that, asymptotically, to � p � [t� to, as required+
Next suppose that gj0 ,o � 0 and consider the break dates to � p � t � to � p � j0+ For
any of these break dates we have

ztt
~0! � �(

j�j0

p�1

gj
~0! Ddt�j,to , t � to � j0 , + + + ,to � p � 1+

Suppose first that j0 � 0+ Then, because gj0
~0! � gj0 ,o � �~Gj0 � Gj0 ,o !do , we have for

~Q,t,V! � B3,

�~to � t!�2h (
t�t

to�p�1

7ztt
~0!72�102

� ~to � t!�h 7gj0
~0!7

� 7gj0 ,o7� eT
h�102 7do7

� T a~7Gj0 ,od*7� eT
h�102 7d*7!+

Because gj0 ,o � �T aGj0 ,od*� 0, the last quantity tends to infinity as Tr `+ Hence, we
can conclude from Lemmas A+9 and A+10 that asymptotically the function lT ~Q,t,V! is
not minimized for t � to � p � j0+ Now consider the case j0 � 0+ From the definitions
it follows that go

~0! � g0o � d1o � d1
~0! , where 7d1o � d1

~0!7 � cT h�a�102e on B2 � B3

~see the beginning of the proof of Lemma A+11!+ Hence, because g0o � T a~d* �
aobo

' d* ! � 0, the proof given in the case j0 � 0 applies with obvious changes and
shows that asymptotically [t � to � p cannot occur+

To complete the proof of the first assertion, consider the case to � 1 � t � to � p+
By the definitions we then have ztot � �d1 � g0

~0! � �do � ~d1
~0! � d1!, where do � 0

and 7d1
~0! � d17 � eT h�102 for ~Q,t,V! � B2 � B3 ~see Lemma A+8 and the definition

of C2 given before Lemma A+5!+ In the same way as in the preceding case we can thus
conclude from Lemmas A+8–A+10 that asymptotically [t � to cannot occur+ This com-
pletes the proof of the first assertion in the case a � 0 and d1o � 0+

Next assume that a � h � 10b and d1o � 0+ Then, if t � to � p � j0 and j0 � 0,

T �2h (
t�p�1

T

7 rg tdtt� rgo tdtto7
2 � T �2h 7gj0 ,o7

2 � T 2a�2h 7Gj0 ,od*7
2+ (A.28)

Because the last quantity tends to infinity as T r ` it follows from the latter part of
Lemma A+11 that asymptotically [t � to � p � j0 cannot occur+ If j0 � 0, we have g0o �
do � d1o � do � 0, and ~A+28! holds with Gj0 ,od* replaced by d*+ Hence the same con-
clusion also obtains for j0 � 0+

If t � to the l+h+s+ of ~A+28! can be bounded from below by T �2h 7g0o72 �
T �2h7do72 � T 2a�2h7d*72 , and the situation is similar to the case j0 � 0+
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Finally, the second part of the theorem follows directly from the first part of
Lemma A+11+ This completes the proof of Theorem 3+1+

A.2. Proof of Theorem 3.2. The break date estimator [tR can also be obtained by
minimizing the objective function lT ~Q,t,V! over the relevant restricted part of the
parameter space+ Compared to the previous unrestricted estimation, the parameters d1

and rg in ~A+2! are no more freely varying but ~smooth! functions of the parameters d,
r~0! , a~0!, and G1, + + + ,Gp�1+ Specifically, d1 � �Pd � �a~0!bo

' d � r~0!bo4
' d, g0 �

d� d1, and gj � �Gjd ~ j � 1, + + + , p � 1!+ Unlike with the unconstrained estimation it is
not quite obvious that these restricted estimators exist+ This fact will therefore be justi-
fied first+ After that the proof follows straightforwardly from the results used to prove
Theorem 3+1+

Define

yt
~t! � xt � ~dtt� dtto !do + (A.29)

Using yt
~t! in place of xt we can obtain an analog of ~A+2! in which dtto and tdtto are

replaced by dtt and tdtt, respectively, and ut�1
~0! and vt�1

~0! are replaced by analogs defined
in terms of yt

~t! instead of xt + In other words, in place of ut�1
~0! and vt�1

~0! we use ut�1
~t! �

bo
' yt�1
~t! and vt�1

~t! � bo4
' yt�1
~t! , respectively+ In place of ~A+3! we then have

Dyt
~t! � Fwt

~t!� ~J�J~0! !qtt� «t , t � p � 1, p � 2, + + + ,

where wt
~t! is an obvious modification of wt

~0!+
Clearly, we can express the vector «tt~Q! as

«tt~Q! � Dyt
~t!�Fwt

~t!� ~J�J~0! !qtt

and use this expression in the previous definition of lT ~Q,t,V!+ To demonstrate the
existence of a minimizer of the objective function lT ~Q,t,V! it also appears convenient
to use the reparameterization Q r Q~0! � @F :J � J~0! # + Thus, if for simplicity we
denote szt

~t! � @Dyt
~t!' :wt

~t!' : qtt
' # ' and R~Q~0! ! � @In :� F :J � J~0! # we can write the

relevant objective function as

lT ~Q
~0!,t,V! � ~T � p! log detV� tr�V�1R~Q~0! ! (

t�p�1

T

szt
~t! szt

~t!'R~Q~0! !'�+ (A.30)

Note that in the present context the parameter Q has the same meaning as before except
that it is treated as a ~smooth! function of the parameters n0

~0! , n1
~0! , d, r~0! , a~0!, and

G1, + + + ,Gp�1+ Because the parameter J~0! is also a ~smooth! function of ~some of ! these
parameters the same is true for the parameter Q~0! + All these parameter restrictions are
taken into account when the minimization of the objective function lT ~Q

~0!,t,V! is con-
sidered+ Notice that, because the objective function is expressed as a function of the
“reduced form” parameter Q~0! , the role of the parameter restrictions is to define the
permissible space of Q~0! + A similar idea, of course, applies to the previous parameter-
ization of the objective function, that is, to lT ~Q,t,V! ~cf+ Saikkonen, 2001, and the
references therein for a similar approach!+

A useful consequence of the fact that we can still interpret the objective function
lT ~Q,t,V! as a function of the “reduced form” parameter Q and only restrict its permis-
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sible space is that results obtained to prove Theorem 3+1 can be applied straightfor-
wardly even here+ In particular, we wish to apply Lemma A+11 to conclude that, when
the existence of a minimizer of the objective function lT ~Q,t,V! is studied in the present
setup, values of the break date parameter t can be restricted as implied by this lemma+
Of course, this conclusion also holds when the objective function is parameterized as
lT ~Q

~0!,t,V!+
To justify the application of Lemma A+11, we first discuss how Lemmas A+1–A+10

have to be modified to match the present setup+ Notice that the existence of a minimizer
of the objective function lT ~Q,t,V! is not needed to prove Lemmas A+1–A+11 and the
same is also true for their modified versions to be discussed subsequently+

First note that Lemma A+2 is still used in its previous form and, because it is con-
cerned with unrestricted values of F2 and V, it obviously applies in the present context+
Lemma A+1 is simply modified by replacing B1 by the intersection of the restricted param-
eter space of ~Q,t,V! and values for which the inequality constraints in ~A+4! and ~A+5!
hold+ This restricted version of the parameter space B1 is then used to replace B1 in
Lemmas A+3–A+7+ It is straightforward to check that the previous proofs of these lem-
mas apply in essence despite the differences in parameter spaces+

Next consider Lemmas A+8–A+10, where, in addition to B1, also the parameter spaces
B2, B3, and B4 are redefined to allow for the employed restrictions+ Again, it is not
difficult to check that the previous proofs carry over+ It is also easy to see that the mod-
ifications needed for Lemmas A+3–A+10 can be done in the case t � to+

Because analogs of Lemmas A+1–A+10 hold in the present context, it is further straight-
forward to show that the result of Lemma A+11 also holds with the parameter space B5

redefined to account for the employed restrictions+ Thus, we can conclude that when
searching for a minimizer of the objective function lT ~Q

~0!,t,V!, the value of the break
date parameter t can be restricted as implied by Lemma A+11+ Specifically, if d1o � 0,
Lemma A+11 directly shows that to � p � t � to � p can be assumed+ If d1o � 0 and
a � b, we can even assume to � p � 1 � t� to � p � 1, as the argument used to prove
the corresponding case of Theorem 3+1~i! readily shows+

We shall now show that the function lT ~Q
~0!,t,V! and hence lT ~Q,t,V! have a min-

imizer with probability approaching one+ In what follows, reference to Lemmas A+1–
A+11 will be understood to mean the present restricted setup+We first show the following
intermediate result, where the matrix DT � diag@T �102I : Ip# is used+ Its dimension equals
the dimension of the vector szt

~t!+

LEMMA A+12+ There exists an e* � 0 such that

lmin�DT
�1 (

t�p�1

T

szt
~t! szt

~t!'DT
�1� � e* (A.31)

with probability approaching one and uniformly in t, when the value of the break date
parameter t can be restricted as implied by Lemma A.11.

Proof. The values of t can be restricted depending on the value of a and whether
d1o � 0 or not+ Different cases will therefore be discussed separately+

Case (i). a � 0 and d1o � 0 or a � h � 10b+

From Lemma A+11 we can then conclude that, if a minimizer of lT ~Q
~0!,t,V! exists,

in large samples it must be such that the corresponding t is in the interval @to � p,to � p# +
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If d1o � 0 this follows directly from the first part of Lemma A+11+ If d1o � 0 ~and a �
h � 10b! the same conclusion can be drawn from the second part of the lemma by the
argument used in the proof of Theorem 3+1 to obtain ~A+28!+

To justify ~A+31!, assume first that a � 1
2
_ + Then the moment matrix in ~A+31! behaves

asymptotically in the same way as in the proof of Theorem 3+1 in that the vectors Dyt
~t!

and wt
~t! in the definition of szt

~t! can be replaced by analogs defined in terms of xt + This
follows by observing that, when 6to � t6 � p, the latter term on the r+h+s+ of ~A+29!
satisfies



T �1 (
t�p�1

T

~dtt� dtto !
2dodo

' 

 � const � T 2a�1 (
t�p�1

T

6dtt� dtto 6

� const � T 2a�1+ (A.32)

When a � 1
2
_ the last quantity converges to zero, and the desired conclusion is readily

obtained+
If a � 1

2
_ the latter term on the r+h+s+ of ~A+29! has an impact, but ~A+31! still obtains+

To see this, suppose first that d1o � 0+ Then, as 6t� to6 � p, the latter term on the r+h+s+
of ~A+29! behaves like an impulse dummy+ Because now do � T 102d* this term affects
the asymptotic behavior of the moment matrix in ~A+31!, but, as can be readily seen,
it only affects the diagonal and off-diagonal elements related to ut�1

~t! and Dyt�j
~t! ~ j �

0, + + + , p � 1!+ Moreover, the impact is such that asymptotically the moment matrix in
~A+31! only differs from that obtained in the previous case by an additive positive semi-
definite matrix+ Thus, from this fact and the result of the previous case one again obtains
~A+31!+

Next assume that d1o � 0 and a � 1
2
_ + Here the situation is similar to the preceding

case except for being simpler because now ut�1
~t! � bo

' xt�1 � ut�1
~0! + Thus, we again get

~A+31!, and, thus, we have justified ~A+31! in the case of the first part of the theorem+ It
remains to consider the second part, for which the following assumption is made+

Case (ii). a � 0 and d1o � 0+

If a � 0 it follows from the first part of Lemma A+11 that we can assume 6t� to6 to
be bounded, and arguments similar to those in the case 0 � a � 1

2
_ and d1o � 0

show ~A+31!+ If a � 0 we cannot restrict the values of t+ However, from ~A+32! it can be
seen that the vectors Dyt

~t! and wt
~t! in the definition of szt

~t! can be replaced by analogs
defined in terms of xt +Arguments similar to those used in the proof of Theorem 3+1 then
show that ~A+31! also holds in the present case+ ~In particular, analogs of ~A+3! and
~A+4! of Gregory and Hansen, 1996, and ~A+14! of Saikkonen and Lütkepohl, 2002, can
be used to handle sums of cross products between @Dxt

' :wt
~0!' # ' and qtt+! �

We have now shown that when searching for a minimizer of the function lT ~Q
~0!,t,V!

we can in both parts of Theorem 3+2 restrict the values of the break date t in such a way
that ~A+31! holds with probability approaching one and uniformly in t+

Using Lemma A+12 we can analyze the function lT ~Q
~0!,t,V! in the same way as in

the proof of Proposition 3+1 of Saikkonen ~2001, pp+ 320–321! and conclude that it
suffices to search for a minimizer of lT ~Q

~0!,t,V! in that part of the parameter space
where, in addition to the restrictions on t, we also have 0 � uv� lmin~V!� lmax~V!�
Tv � ` and 7Q~0!7 � RM � `+
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We shall demonstrate that the parameter space defined by all these restrictions is
compact+ To this end, note first that the restrictions imposed on Q~0! are of the form
h~Q~0! !� 0, where h~{! is a continuous function+ Thus, because the unrestricted param-
eter space of Q~0! is the whole euclidean space, it follows that the restricted space is
closed and its intersection with parameter values restricted by 0 � uv � lmin~V! �
lmax~V! � Tv � ` and 7Q~0!7 � RM � ` is compact+ The continuity of the function
lT ~{,t,{! therefore ensures that, for every relevant value of t, a minimizer exists with
probability approaching one+ This proves the ~asymptotic! existence of the nonlinear LS
estimators of Q~0! , t, and V and hence also that of Q+

To prove part ~i! of Theorem 3+2, first consider the case d1o � 0 and assume that t �
to � 1+ As noted previously, we can also assume that to � p � t+ Using the definitions
we can express the vector ztt

~0! as

ztt
~0! � d1

~0! dtt� dDdtt� d1Ddtt� (
j�1

p�1

Gj dDdt�j,t� d1
~0! dtto � doDdtto

� d1
~0! Ddtto � (

j�1

p�1

Gj doDdt�j,to +

Taking the assumed restrictions into account we can write this further as

ztt
~0! � �~d1 � d1

~0! !dtt� �Ddtt� (
j�1

p�1

Gj Ddt�j,t� ~a ~0!bo
' � r~0!bo4

' !dt�1,t�d
� �Ddtto � (

j�1

p�1

Gj Ddt�j,to � ~a ~0!bo
' � r~0!bo4

' !dt�1,to�do + (A.33)

Here we have also made use of the facts that d1 � �Pd and d1
~0! � �Pdo with P �

a~0!bo
' � r~0!bo4

' +
To show that asymptotically the function lT ~Q,t,V! cannot be minimized for to �

p � t � to � 1, we consider two cases separately+ In the first case it is assumed that
d � T ae*, where e* � 0 is arbitrary+ The second case will then assume that d � T ae*+

Now consider parameter values for which to � p � t� to � 1 and d� T ae* hold for
some e* � 0+ By Lemma A+8 we can also assume that 7d1 � d1

~0!7 � eT h�102 + Using
this, ~A+33!, and the previously mentioned parameter restrictions, we find that

�~to � t!�2h (
t�t

to�p�1

7ztt
~0!72�102

� p�h 7ztt
~0!7

� p�h 7d� ~d1 � d1
~0! !7

� p�h~7d7� 7d1 � d1
~0!7!

� p�hT a 7e*7� ep�hT h�102+

Because the last quantity tends to infinity with T, it follows from Lemma A+10 that
asymptotically to � p � [tR � to � 1 cannot occur+

For parameter values to � p � t � to � 1 and d � T ae* we can also use ~A+33! and
Lemma A+10+ First note that, by Lemma A+8, the norm of the first term on the r+h+s+ of
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~A+33! can be bounded by eT h�102 + Next, from Lemmas A+8 and A+9 it follows that the
term in front of d in the second term on the r+h+s+ of ~A+33! can be assumed bounded,
and so the norm of the whole term can be bounded by a quantity of the form c1e*T a ,
where 0 � c1 � `+ Similar arguments can also be used to show that, at least for t � to,
the norm of the third term on the r+h+s+ of ~A+33! can be bounded from below by a
quantity of the form c27d*7T a , where 0 � c2 � ` and 7d*7 � 0+ Thus, because e* can
be chosen arbitrarily small, the asymptotic behavior of ~to � t!�2h (t�t

to�p�17ztt
~0!72 �

p�2h (t�t
to�p�17ztt

~0!72 is dominated by the third term on the r+h+s+ of ~A+33!, and the pre-
ceding discussion implies that this sum tends to infinity with T+ From this and Lemma
A+10 we can conclude that asymptotically to � p � [tR � to � 1 cannot occur+

Thus, we have shown that, when d1o � 0, asymptotically [tR � t0 cannot occur+ A
similar argument with ztt

~0! replaced by ztt and with Lemma A+10 replaced by its corre-
sponding counterpart shows that asymptotically [tR � to cannot occur either+

Now suppose that d1o � 0 and consider the break dates to � p � t � to � 1+ Instead
of ~A+33! we use a slightly different representation of ztt

~0! given by

ztt
~0! � �Ddtt~d1 � d1

~0! !� dt�1,tod1
~0!� dt�1,t d1

~0!� (
j�1

p�1

Ddt�j,to~Gj � Gjo !do

� �Ddtt� (
j�1

p�1

Gj Ddt�j,t�d� �Ddtto � (
j�1

p�1

GjoDdt�j,to�do + (A.34)

This representation can be obtained from the definitions ~cf+ the similar representation
used in the proof of Lemma A+11!+ As with the case d1o � 0, our treatment will be
divided into two separate cases+

In the first one the parameter d is restricted as d � T ae*, where e* � 0 is arbitrary
and a � h � 10b+ From the preceding representation of ztt

~0! it then follows that

�T �2h (
t�p�1

T

7ztt
~0!72�102

� T �h 7ztt
~0!7

� T �h 7d� ~d1 � d1
~0! !7

� T �h~7d7� 7d1 � d1
~0!7!

� T a�h 7e*7� eT �102+

Here the last inequality makes use of the fact that 7d1 � d1
~0!7 � eT h�102 can be

assumed by Lemma A+8+ Because the last quantity tends to infinity with T, it follows
from the latter result of Lemma A+10 that asymptotically to � p � [tR � to � 1 cannot
occur+

When d � T ae* ~a � h � 10b! is assumed, ~A+34! and Lemma A+11 give the desired
result much in the same way as in the case d1o � 0, where ~A+33! was used instead of
~A+34!+ First note that the norm of the first four terms on the r+h+s+ of ~A+34! can be
bounded by a quantity of the form ecT h�a�102 , where 0 � c � `+ This follows from
Lemma A+8 and arguments used to prove Lemma A+11 for d1o � 0+ Next, in the same
way as in the case d1o � 0 one can show that the term in front of d in the fifth term on
the r+h+s+ of ~A+34! can be assumed bounded and, hence, the norm of the whole term can
be bounded by a quantity of the form c1e*T a , where 0 � c1 � `+ By similar arguments
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we finally find that, at least for t � to, the norm of the last term on the r+h+s+ of ~A+34!
can be bounded below by a quantity of the form c27d*7T a , where 0 � c2 � ` and
7d*7 � 0+ Thus, because e* can be chosen arbitrarily small, the asymptotic behavior of
~T �2h (t�p�1

T 7ztt
~0!72 !102 is dominated by the last term on the r+h+s+ of ~A+34!, and it

follows from the latter result of Lemma A+10 that asymptotically to � p � [tR � to � 1
cannot occur+

Thus, we have shown that, when d1o � 0, we asymptotically cannot have [tR � to+
Again a similar proof with ztt

~0! replaced by ztt and Lemma A+10 replaced by its corre-
sponding counterpart shows that asymptotically [tR � to cannot occur either+ This com-
pletes the proof of part ~i! of the theorem in the case d1o � 0+ Part ~ii! is a consequence
of the ~asymptotic! existence of [tR and Lemma A+11+ Hence, the proof of Theorem 3+2
is complete+

A.3. Proof of Theorem 4.1. For simplicity we will denote the break date estimator
by [t+ This estimator can be either of the two estimators considered in Section 3 unless
explicit distinctions are made+ From the assumptions d1 � 0 and 0 � a � 1

2
_ and Theo-

rems 3+1 and 3+2 it follows that asymptotically to � p � [t � to can be assumed+ This
fact will be used in several arguments of the proof without explicit notice+

Properties of RR Estimators. We shall first show that the RR estimators of
the parameters based on equation ~2+7! with the unknown break date to replaced by the
estimator [t satisfy appropriate consistency properties+ This replacement changes the
VECM ~2+7! to

Dyt � n� a~b 'yt�1 � f~t � 1!� udt�1, [t !� (
j�1

p�1

Gj Dyt�j � (
j�0

p�1

gj
*Ddt�j, [t� «t [t , (A.35)

where

«t [t � «t � aobo
' do~dt�1, [t� dt�1,to !� (

j�0

p�1

gjo
* ~Ddt�j, [t� Ddt�j,to !+ (A.36)

Write

yt � m0o �m1o t � do dt [t� yt
~ [t! , (A.37)

where yt
~ [t! � xt � do~dt [t � dtto !+ Using the transformation yt r m0o � m1o t �

do dt [t � yt
~ [t! we can transform the preceding VECM to the form

Dyt
~ [t! � n~0! � a~b 'yt�1

~ [t! � f~0! ~t � 1!� u~0!dt�1, [t !

� (
j�1

p�1

Gj Dyt�j
~ [t!� (

j�0

p�1

gj
*~0! Ddt�j, [t� «t [t , (A.38)

where n~0! � n� ab 'm0o � Cm1o, f~0! � f� b 'm1o, u~0! � u� b 'do, g0
*~0!� d� do,

and gj
*~0! � gj

* � Gjdo ~ j � 1, + + + , p � 1!+ Note that the true values of these parameters
are zero+ RR estimators of the parameters in ~A+38! are obtained by transforming the
RR estimators based on ~A+35! in the same way as the corresponding parameters ~e+g+,
Ef~0! � Ef � Db 'm1o!+ Asymptotic properties of these transformed estimators are derived
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subsequently+ We denote by Ja0 and Db0 normalized versions of the estimators Ja and Db,
respectively, such that Db0 � Db~~bo

' bo !
�1bo

' Db!�1 +

LEMMA A+13+ Under the conditions of Theorem 4.1, Db0 � bo � Op~T �1! , Ef~0! �
Op~T �302! , Du~0! � Op~T �102! , Ja0 � ao � Op~T �102! , EGj � Gjo � Op~T �102! , In~0! �
Op~T �102! , Jgj

*~0! � Op~1! , j � 0, + + + , p � 1, EV � V � Op~T �102! .

Proof. We first note that the result of Lemma A+13 also holds when the break date is
assumed known+A formal proof of this can be obtained by following the proof of Lemma
2+1 of Saikkonen and Lütkepohl ~2000a! and observing that the omission of some impulse
dummies from the model considered by Saikkonen and Lütkepohl is of no significance
and that the same is true for the dependence of the parameter d on the sample size+ The
latter fact is clear because the results of Lemma A+13 are formulated by using the trans-
formed model ~A+38! in which the true values of the deterministic parameters are zero+

Because the result of Lemma A+13 holds when the break date is assumed known it
also holds when the break date can be consistently estimated, that is, when [t � to �
op~1!+ Indeed, then the analysis can be restricted to that part of the sample space where
[t � to holds and the probability of this can be made arbitrarily close to unity for all T

large enough+ This proves the results of the lemma for the constrained estimator [tR+
If j0 � p � 1 in Theorem 3+1~i! the preceding argument also applies to the uncon-

strained estimator [t+ For other values of j0 further arguments are needed+ By Theo-
rem 3+1~i! it suffices to consider any value of the break date such that to � p � 1 � j0 �
t � to+ For simplicity, consider the case j0 � p � 2 and t� to � 1+ It is easy to see that
even though the break date is misspecified by one we can still consider ~2+7! a correctly
specified model if we only redefine the parameters g0

*, + + + ,gp�1
* as g0

* � ab 'd, g1
* � d,

and gj
* � �Gj�1d, j � 2, + + + , p � 1+ By assumption we then have gp�1

* � 0 whereas
Gp�1d � 0+ With these new definitions the error term of model ~2+7! is still «t , and the
analysis given in the case of a known break date can be used+ Because the other param-
eters of the model are not affected by the redefinition of the parameters gj

* ~ j �
0, + + + , p � 1! the obtained consistency results will be the same as in the case where the
true break date is known+ The same argument can clearly be extended to other values of
j0+ This completes the proof+ �

Properties of the new estimators of the deterministic parameters. We shall now
consider asymptotic properties of the estimators Im1 and Dd by assuming that the break
date t in ~2+7! is replaced by one of the estimators [t or [tR+

LEMMA A+14+ Under the conditions of Theorem 4.1, the estimators Im1 and Dd have
the following properties:

b '~ Im1 �m1o ! � Op~T
�302 !, (A.39)

T 102b4
' ~ Im1 �m1o !

d
&& N~0,b4

' CVC 'b4 !, (A.40)

b '~ Dd� do ! � Op~T
�102 !, (A.41)

b4
' ~ Dd� do ! � Op~1!+ (A.42)
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Proof. We start with the results ~A+39! and ~A+40!+ Recall the definitions n �
�ab 'm0 � Cm1, n~0! � n� ab 'm0o � Cm1o, and f~0! � f� b 'm1o, which imply that

n~0! � �ab '~m0 �m0o !�C~m1 �m1o !

� �ab '~m0 �m0o !�Cbf
~0! �Cb4b4

' ~m1 �m1o !+

Here the latter equality is obtained by arguments similar to those used to define the
estimator Ef*+ These arguments further show that b4

' ~m1 � m1o!� b4
' C~n ~0! � Cbf~0! !,

and the same relation applies to estimators+ Thus, we have

Db4
' ~ Im1 �m1o ! � Db4

' DC~ In~0! � ECb Ef~0! !+

Here and in what follows the subscript 0 is omitted from the estimators of a and b to
simplify the notation+ By Lemma A+13, one obtains from the previous equality

Db4
' ~ Im1 �m1o ! � Db4

' DC In~0! � op~T
�102 !+

Note that the estimator In~0! can be viewed as the LS estimator of the parameter n~0! in
the auxiliary regression model obtained by replacing b 'yt�1

~ [t! � f~0!~t � 1! � u~0!dt�1, [t

in ~A+38! by its observed analog Db 'yt�1
~ [t! � Ef~0!~t � 1! � Du~0!dt�1, [t+ This implies that

Db4' DC In~0! can be obtained by LS from the auxiliary regression model

Db4
' DCDyt

~ [t! � Lpt [t� error, (A.43)

where pt [t � @1,Dyt�1
~ [t!' , + + + ,Dyt�p�1

~ [t!' , tdt [t
' # ' , L is a conformable coefficient matrix, and the

error has the representation Db4' DC«t [t � Db4' DCa@~ Db � b!'yt�1
~ [t! � Ef~0!~t � 1! � Du~0!dt�1, [t# +

By the definition of C and Lemma A+13, Db4' DCa � Op~T �102!+ Using this fact, Lemma
A+13, and the assumptions, it is straightforward to show that the asymptotic properties
of the LS estimator of the parameter L in the auxiliary regression model ~A+43! can be
obtained by assuming that the error equals Db4' DC«t [t + The same arguments and the defini-
tion of «t [t ~see ~A+36!! further show that the error can be assumed to be Db4' DC«t or even
b4
' C«t + Because it is also straightforward to show that the estimation of the intercept

term in ~A+43! is asymptotically independent of the estimation of the other regression
coefficients we can conclude that

T 102 Db4
' ~ Im1 �m1o ! � b4

' CT �102 (
t�p�1

T

«t � op~1!+

This and a standard central limit theorem yield

T 102 Db4
' ~ Im1 �m1o !

d
&& N~0,b4

' CVC 'b4 !+

To obtain ~A+40! we need to show that Db4 on the l+h+s+ can be replaced by b4+ To see
this, write

~ Db4� b4 !
'~ Im1 �m1o ! � ~ Db4� b4 !

' Db~ Db ' Db!�1 Db '~ Im1 �m1o !

� ~ Db4� b4 !
' Db4~ Db4

' Db4 !�1 Db4
' ~ Im1 �m1o !+ (A.44)
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By the consistency of the estimator Db and the result just obtained the latter term on the
r+h+s+ is of order op~T �102!, and the same is true for the former because Db '~ Im1 � m1o!�
Ef~0! � Op~T �302! by Lemma A+13+ From this last result one can obtain ~A+39! because
Db can be replaced by b using an argument similar to that used in ~A+44!+

Now consider the estimator Dd+ From its derivation we get the identity (j�0
p�1 gj

* �
Cdo � C~d � do!+ By the definitions, this is equivalent to

(
j�0

p�1

gj
*~0! � Cbb

'~d� do !�Cb4b4
' ~d� do !+

Because the same relation applies to estimators, arguments similar to those used to define
the estimator Dd yield

Db4
' ~ Dd� do ! � Db4

' DC�(
j�0

p�1

Jgj
*~0!� ECb Du~0!�+

Lemma A+13 implies that the r+h+s+ of this equality is of order Op~1!+ Moreover,
Db '~ Dd� do!� Du~0! � Op~T �102!+ Thus, ~A+41! and ~A+42! follow because in these results
Db and Db4 can be replaced by b and b4, respectively, by using an argument similar to

that in ~A+44!+ This completes the proof of Lemma A+14+ �

Proof of the limiting distribution of LRPAR + The structure of our proof of the lim-
iting distribution of LRPAR~r0! is similar to that of Theorem 11+1 of Johansen ~1995!+
Therefore we just outline the arguments in the following discussion+

First note that the limiting distribution of the test statistic LRPAR~r0! can be derived
by assuming that the true value of the parameter m0 is zero+ Thus, we can write equa-
tion ~4+1! as

Iyt
~0! � xt � ~ Im1 �m1o !t � ~ Dd� do ! dtto � ~ Dd� do !~dt [t� dtto !� do~dt [t� dtto !+ (A.45)

Using this representation, the assumption a � 1
2
_ , and the asymptotic properties of the

estimators Im1 and Dd obtained in Lemma A+14, we can now mimic the proof given in
Johansen ~1995, pp+ 158–160! and see that all the quantities that therein converge in
probability to constants will here converge in probability to the same constants+ How-
ever, quantities that in Johansen ~1995, pp+ 158–160! converge weakly to functionals of
a Brownian motion will here converge weakly to different functionals of a Brownian
motion+ Here these weak limits are determined by the weak limit of T �102b4

' Iy@Ts#
~0! + We

have

T �102b4
' Iy@Ts#
~0! � T �102b4

' x@Ts#� T �102b4
' ~ Im1 �m1o !t � op~1!

d
&& b4
' C~W~s!� sW~1!! �

def

b4
' CW�~s!, (A.46)

where W~s! is an ~n � r0!-dimensional Brownian motion with covariance matrix V and
hence the limit is a linear transformation of the Brownian bridge W�~s!� W~s!� sW~1!+
The error term in the equality is understood to hold in the Skorohod topology+

To justify ~A+46!, first consider the equality+ Because b4
' ~ Dd � do! � Op~1! by ~A+42!

of Lemma A+14, it is clear that the contribution of the third and fourth terms on the
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r+h+s+ of ~A+45! to T �102b4
' Iy@Ts#
~0! is asymptotically negligible+ The same argument also

applies to the fifth term on the r+h+s+ of ~A+45! because a � 1
2
_ + As for the weak conver-

gence in ~A+46!, it can be justified by a standard functional central limit theorem and
~A+40! of Lemma A+14 by observing that the limit of the second expression is deter-
mined by the process «t ~see Johansen, 1995, eqn+ ~B+24!, and the proof of ~A+40!!+

The preceding discussion implies that the limiting distribution of the test statistic
LRPAR~r0! can be derived by ignoring the last three terms on the r+h+s+ of ~A+45!+ This
means that in the same way as in Saikkonen and Lütkepohl ~2000a! we have reduced
the problem to that of no break studied by Saikkonen and Lütkepohl ~2000b!+ From
Lemma A+14 and the proof of Theorem 3 of Saikkonen and Lütkepohl ~2000b! it can be
seen that, when m0o � 0 is assumed, the trace test statistic in that theorem is asymptot-
ically equivalent to a similar test statistic based on an analog of ~4+2! defined by replac-
ing Iyt�1

~�! by Iyt�1
~0! + It is straightforward to show that the use of Iyt�1

~�! instead of Iyt�1
~0! changes

the limiting distribution of the test statistic as stated in the theorem+ In other words,
because the vector Iyt�1

~�! is obtained from Iyt�1
~0! by augmenting with unity, the same aug-

mentation results in one of the two Brownian bridges in the limiting distribution obtained
in Theorem 3 of Saikkonen and Lütkepohl ~2000b!+ Technical details, which are similar
to the corresponding two cases in Johansen ~1995, Sect+ 11+2!, are straightforward and
will be omitted+

Asymptotic properties of the GLS estimators of the deterministic parameters. Be-
cause the break date estimator is asymptotically between to � p and to it is straight-
forward to follow the proof of Theorem 2+1 of Saikkonen and Lütkepohl ~2000a! ~case
a1 � 1! and obtain asymptotic properties of the GLS estimators of the parameters m0,
m1, and d+ Denoting these GLS estimators by Im0, Im1, and Dd, it can be demonstrated that
~A+39!–~A+42! of Lemma A+14 hold for Im1 and Dd except that in ~A+42! Op~T a! replaces
Op~1!+ For Im0 it follows that b '~ Im0 � m0o!� Op~T �102! and b4

' ~ Im0 � m0o!� Op~T a!+

Limiting distribution of LRGLS + The test statistic LRGLS~r0! is defined as LRPAR~r0!
except that now Iyt

~0! � yt � Im0 � Im1 t � Dddt [t+ Instead of ~A+45! we therefore have

Iyt
~0! � xt � ~ Im0 �m0o !� ~ Im1 �m1o !t � ~ Dd� do ! dtto

� ~ Dd� do !~dt [t� dtto !� do~dt [t� dtto !, (A.47)

where the estimators on the r+h+s+ satisfy the rates of convergence obtained previously+ It
is straightforward to check that, under the conditions of Theorem 4+1, the rates of con-
vergence obtained for Dd are sufficient for the fifth term on the r+h+s+ of ~A+47! to have no
effect on the asymptotic properties of the second sample moments on which the test
statistic is based, and the same is true for the last term, which is as in ~A+45!+ Thus, the
problem reduces to that of a known break date studied by Saikkonen and Lütkepohl
~2000a!, and the limiting distribution of the test statistic is obtained from Theorem 3+1
of that paper+ Here it suffices to note the following points+ First, the dependence of the
break size on the sample size has no effect because the needed arguments only involve
the difference Dd � do+ Second, it is not difficult to check that the rate of convergence
b4
' ~ Dd � do! � op~T 102! suffices instead of b4

' ~ Dd � do! � Op~1!, which could be used in
Saikkonen and Lütkepohl ~2000a! and the same is true for b4

' ~ Im0 � m0o! � op~T 102!+
Thus, we have demonstrated that, under the conditions of Theorem 4+1, the test statistic
has the same limiting distribution as in Saikkonen and Lütkepohl ~2000a!+
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