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Density-driven instabilities between miscible fluids in a vertical Hele-Shaw cell are
investigated by means of experimental measurements, as well as two- and three-
dimensional numerical simulations. The experiments focus on the early stages of the
instability growth, and they provide detailed information regarding the growth rates
and most amplified wavenumbers as a function of the governing Rayleigh number Ra.
They identify two clearly distinct parameter regimes: a low-Ra, ‘Hele-Shaw’ regime
in which the dominant wavelength scales as Ra−1, and a high-Ra ‘gap’ regime in
which the length scale of the instability is 5± 1 times the gap width. The experiments
are compared to a recent linear stability analysis based on the Brinkman equation.
The analytical dispersion relationship for a step-like density profile reproduces the
experimentally observed trend across the entire Ra range. Nonlinear simulations
based on the two- and three-dimensional Stokes equations indicate that the high-Ra
regime is characterized by an instability across the gap, wheras in the low-Ra regime
a spanwise Hele-Shaw mode dominates.

1. Introduction
Understanding the dynamical evolution of interfaces remains a key challenge in

fluid dynamics research. While interfaces play a crucial role in a variety of instabilities
vital to industrial processes, their dynamics also greatly influence more fundamental
fields in different branches of science. Within the present article, our focus is on
gravitationally unstable interfaces, i.e. interfaces that separate a lighter fluid from a
heavier one located above it in a gravitational field. For fluid layers of large extent in
the horizontal directions, both the linear and the nonlinear evolution of the ensuing,
so-called Rayleigh–Taylor instability have been the subject of numerous investigations
(e.g. Sharp 1984; Kurowski, Misbah & Tchourkine 1995). Less well understood is the
evolution of this instability in a vertically arranged Hele-Shaw cell. Here the flow
is dominated by viscous forces, while inertial forces are usually negligible. This is
reflected by the small value of the Reynolds number Re = Ue/ν, where U denotes a
characteristic flow velocity, e represents the gap thickness of the cell, and ν indicates
the kinematic viscosity. Some insight into the stability characteristics of interfaces in
such narrow cells has been gained from analyses of the gap-averaged, two-dimensional
Hele-Shaw equations. Within this theoretical framework, Saffman & Taylor (1958) as
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well as Chuoke, Van Meurs & Van der Poel (1959) analysed the interface separating
two immiscible fluids. However, several experimental investigations since then have
shown that the approach of averaging across the gap is approximately valid only
for large values of the dimensionless surface tension (Park, Gorell & Homsy 1984;
Maxworthy 1987). For smaller values, three-dimensional flow effects as well as the
dynamics of the wetting layer left behind on the walls of the Hele-Shaw cell become
increasingly important (Park & Homsy 1984; Schwartz 1986, cf. also Bretherton 1961),
and the observed dominant wavelength deviates strongly from the value predicted by
the gap-averaged theory. Frequently it is found that the wavelength scales with the
width of the gap separating the walls of the Hele-Shaw apparatus. In spite of the
above observations, fully nonlinear simulations based on the gap-averaged equations
have been used with some success in investigations of the nonlinear interaction
mechanisms among the evolving fingers (Tryggvason & Aref 1983; DeGregoria &
Schwartz 1986, 1987; Meiburg & Homsy 1988).

A similar situation arises for miscible flows in Hele-Shaw cells, whose dynamics are
generally less well understood than their immiscible counterparts. To some extent, the
role of molecular diffusion in miscible flows corresponds to that of surface tension in
immiscible ones, in that both determine a short-wave cutoff length, cf. also the review
provided by Homsy (1987). For gravitationally unstable problems in the absence of a
net flow, the governing dimensionless parameter is the Rayleigh number Ra = Ue/D,
where D denotes the molecular diffusion coefficient andU represents a suitably defined
buoyancy velocity. Few experiments have been performed on gravitationally unstable
miscible fluids since the early work of Wooding (1969), who observed the growth
of fingers at the diffusing interface between two fluids of identical viscosities. His
experiments were conducted in a Hele-Shaw cell at high Ra values, and they showed
the mean wavelength and the finger amplitude to grow proportionally to t1/2 and t,
respectively. For these large Ra, just as for large capillary number Ca, a wetting layer
forms on the walls of the Hele-Shaw cell (Paterson 1985; Petitjeans & Maxworthy
1996; Chen & Meiburg 1996; Lajeuneese et al. 1997; Petitjeans et al. 1999). This
indicates that the velocity profile across the gap is no longer parabolic, so that the
Hele-Shaw equations cannot be expected to provide an accurate description of the
flow. While the exact stability parameter value above which the Hele-Shaw equations
are no longer applicable is at present unknown, for forced flows there exist estimates
in the literature regarding the validity of the Hele-Shaw approach ranging from O(10)
(Yang & Yortsos 1997) to O(100) (Chen & Meiburg 1996, cf. also Lajeunesse et al.
1999, 2001). It should be kept in mind that the exact value also depends on the
viscosity ratio of the two fluids. The matter is further complicated by the fact that
a truly steady state cannot develop in miscible flows (Chen & Meiburg 1996), and
that eventually the flow in the gap will approach Taylor dispersion (Taylor 1953).
Nevertheless, stability analyses (e.g. Tan & Homsy 1986; Rogerson & Meiburg 1993a)
as well as numerical simulations (e.g. Tan & Homsy 1988; Manickam & Homsy 1993;
Rogerson & Meiburg 1993b; Chen & Meiburg 1998a; Ruith & Meiburg 2000) based
on the Hele-Shaw equations have been able to provide some insight into the dynamics
of these flows.

The paper is organized as follows. In § 2, the physical problem is described in
more detail, and the relevant dimensionless parameters are identified. Subsequently,
in § 3 experimental measurements are reported of gravitationally unstable interfaces
between miscible fluids in a Hele-Shaw cell. Data are provided regarding both the
initial wavelength of the fingers and their growth rates over a large range of Ra.
These data demonstrate the existence of a high-Ra regime that is clearly distinct from
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Figure 1. (a) Schematic view of the Hele-Shaw cell. (b) Experimental apparatus. The channel is
divided into two sections each of which is 3 cm high and 53 cm long.

its low-Ra counterpart. These two Ra ranges are characterized by different scaling
laws for the dominant instability wavelength. In § 4, these experimental observations
are compared with the results of a novel linear stability analysis (Fernandez et al.
2001) based on the Brinkman equation, which predict the correct scaling trend across
the entire range of Ra values. Section 5 presents numerical simulations of the two-
and three-dimensional Stokes equations. First, it is shown that the two-dimensional
flow within the gap is stable for low Ra values, while for large Ra it gives rise to a
so-called ‘gap instability.’ Subsequent three-dimensional simulations show that at low
Ra the evolution in the spanwise direction is characterized by a Hele-Shaw instability
mode, while at large Ra a three-dimensional variation of the gap instability mode
dominates. Section 6 presents a few concluding remarks.

2. Physical problem, governing equations, and dimensionless parameters
Consider a narrow gap of width e between two vertical plates that is filled with two

miscible fluids of equal viscosities but different densities, cf. figure 1(a). Initially the
heavier fluid is situated on top of the lighter one, thereby giving rise to an unstable
density stratification. Our interest focuses on the early, linear evolution of the ensuing
instability. In order to establish the characteristic scales of the problem along with the
relevant dimensionless parameters, we consider the usual Hele-Shaw equations. Since
the experimentally observed velocities are very small, inertial terms in the momentum
equation can safely be neglected. If we assume that the fluids are miscible in all
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proportions, and that the molecular diffusion coefficient is constant, we obtain

∇ · u = 0, (2.1a)

∇p =
µ

K
u− ρg∇y, (2.1b)

∂c

∂t
+ u · ∇c = D∇2c, (2.1c)

where the permeability K = e2/12 and µ is viscosity. The above set of equations
expresses the conservation of mass, momentum, and species, with c denoting the
concentration of the heavier fluid. Gravity is taken to act in the negative y-direction,
with x indicating the spanwise direction, and z pointing in the direction of the narrow
gap (cf. figure 1). The density ρ is taken to be a linear function of the concentration

ρ = ρ2 + c(ρ1 − ρ2), (2.2)

where the subscripts 1 and 2 denote the heavier and lighter fluids, respectively. In
order to render the governing equations dimensionless, we take the gap width e as
the characteristic length scale L∗. Together with the characteristic velocity scale

U∗ =
∆ρ g e2

12µ
, (2.3)

we thus obtain the time scale

T ∗ =
12µ

∆ρ g e
. (2.4)

Characteristic values for the pressure and the density are obtained as

P ∗ = ∆ρ g e, ρ∗ = ∆ρ. (2.5)

Upon absorbing the constant term in the c, ρ-relationship into the pressure, the
dimensionless set of governing equations takes the form

∇ · u = 0, (2.6a)

∇p = u− c∇y, (2.6b)

∂c

∂t
+ u · ∇c =

1

Ra
∇2c, (2.6c)

where the dimensionless Rayleigh number

Ra =
∆ρ g e3

12Dµ
(2.7)

nominally expresses the ratio of convective and diffusive transport in the concentration
equation. Note that in the presence of net flow through the Hele-Shaw cell, this
dimensionless parameter should be referred to as a Péclet number. For the present
stability problem in the absence of net flow, however, it is more appropriate to call it
a Rayleigh number. Results will also be discussed as function of the Atwood number

At =
ρ1 − ρ2

ρ1 + ρ2

. (2.8)

It should be emphasized that this parameter does not appear independently during
the process of rendering the governing equations dimensionless.
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Concentration
of glycerol (%) ρ (g cm−3) µ (cP) Sc = ν/D b (mm) At(×10−2)

0 1 1 1000 0.05 0.15 0.25 0.35 0.45 0.55 0.65
0.75 0.95 1.5 2.5 3.5 4.5 5.5

— — — — 0.1 —
— — — — 0.15 —
— — — — 0.3 —
— — — — 0.5 —
— — — — 0.8 —
— — — — 1
50 1.12 5 4.5× 104 0.5 0.35 0.45 0.55 0.65 0.75 0.95 1.5 2.5
— — — — 1 —
70 1.17 20 1.7× 106 0.5 —
— — — — 1 —

Table 1. Experimental parameters.

3. Experiments
3.1. Set-up

The experiments were conducted in a vertically arranged, rectangular Hele-Shaw cell
formed by two 1 cm thick, tempered glass plates of 60 cm length and 12 cm width
(figure 1b). The flow channel is cut from a millar sheet that maintains constant distance
between the two plates. A metallic frame supports the two plates and the millar sheet,
with uniform pressure along the cell in order to maintain a constant thickness with
high accuracy, while avoiding leaks. The gap thickness e can be varied from 50 µm to
1 mm. The channel itself is 53 cm long and 6 cm wide. It has two inlets at one end,
and two outlets at the opposite end. The channel ends are shaped specifically in order
to minimize mixing between the two miscible fluids, and to establish a horizontal
‘interface’ of minimal thickness between them. The experimental procedure is as
follows. Initially the entire cell is occupied by the lighter fluid. Subsequently, the two
fluids are injected into the cell at identical flow rates by means of two identical glass
syringes and a single syringe pump (the mean velocity in the cell is of the order of
5 cm s−1). The lighter fluid enters through the lower inlet, while the heavier one is
injected above it. After a few seconds, when a sharp interface has been established
along the entire length of the cell, the pump is stopped, and simultaneously the
inlets and outlets are closed. This defines the time ti = 0 in our measurements. It
should be pointed out that, although this configuration is gravitationally unstable, the
characteristic time scale of the instability is significantly larger than the time needed
to fill the cell, so that the interface is essentially level at time ti = 0.

Experiments were conducted for the fluid combinations listed in table 1. The lighter
of the two fluids consisted of pure water or a glycerine–water mixture. The heavier
fluid was identical to the lighter one, except for some added red dye in the form of
amaranth powder. The dye thus establishes the unstable density stratification, and
it serves to visualize the ensuing instability. By varying the dye concentration, the
Atwood number could be varied from 1.5×10−3 to 5.5×10−2. The upper limit for At
is established by the saturation concentration of the dye, which is approximately 3%
in weight. Across the entire range of dye concentrations, the viscosity of the heavier
fluid remained constant. The range of Rayleigh numbers that could be covered under
these conditions extends across nearly five orders of magnitude from about 1 to
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g

2 mm

g
3 mm

Figure 2. Two simultaneous views of the instability. The first image (upper part of the figure) shows
one or two fingers growing from left to right. This image has a sufficiently fine resolution to allow
us to measure the growth rate. The second image (lower part) captures many more fingers, so that
the most amplified wavelength λ can be extracted.

almost 105. Consequently, the Reynolds number (Re = Ra/Sc) ranges from 10−4 to
10. However, even for Re values of 10, the convective terms are not expected to have
much of an effect, as long as the flow in the gap remains nearly parallel.

3.2. Measurement techniques

Two CCD video cameras were employed to record the temporal development of
the instability on the same video-tape (half an image for each camera), as shown in
figure 2. The first video camera recorded a cell section of about 5 cm length containing
many fingers, for the purpose of measuring a characteristic wavelength in the linear
regime. The second camera took more detailed images of a smaller section a few mm
in length that contained only one or two fingers, from which the growth rate of the
instability could be deduced. A public domain image processing software package
was employed in order to extract the coordinates of the interface from the images
recorded by the first video camera. Here the interface location is defined by the
c = 0.5 concentration isocontour (figure 3). Note that the interface thickness seems
to decrease with time instead of increase. This is explained by the flow inside the
finger, which brings some purer fluid to the tip of the finger, thereby rendering the
concentration profile steeper (Petitjeans & Maxworthy 1996).

To each image, a discrete Fourier transformation was applied, in order to decompose
the interfacial shape into its Fourier modes

A(x, t) =

N/2∑
m=0

Am(t) exp(ikmx) (3.1)

with km = 2πm/L. A(x, t) represents the position of the interface as a function of time
t and horizontal coordinate x. Am(t) denotes the amplitude of mode km, L indicates the
size of the image, and N represents the number of points. Figure 4 depicts a typical
example of the Fourier modes at different time levels during the linear regime. The
Fourier spectrum exhibits a dominant mode characterized by the highest amplitude
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Figure 3. Evolution of the concentration profile with time at the tip of a finger.
The interface position is tracked by applying a threshold at c = 0.5.

20
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kmax= 4.7 mm–1

t = 0.2 s
1.2 s
2.2 s
3.2 s
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A
2 

(×
10

–5
)

Figure 4. Characteristic Fourier spectrum of the interface evolution in the linear regime. The
gap thickness e is 0.15 mm, and the Atwood number is 9.5 × 10−3. The dominant wavenumber
kmax = 4.48 mm−1 is constant at early times. The wavelength λ ∼ 9 e.

Amax. The growth rate Σ(kmax) of the dominant mode kmax is obtained from the relation

Amax(t) = ao exp (Σ(kmax)t), (3.2)

where ao is a constant determined by the initial position of the interface. The growth
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1

0.1

0.01
0 5 10 15 20 25

Spatio-temporal measurements

DFT measurements

t (s)

A (mm)

Figure 5. The growth rate Σ measured from a spatio-temporal diagram and a discrete Fourier
transformation analysis. The measured values of Σ are similar: Σ = 0.17 s−1.

(a)

(b)

(c)

10 mm

Figure 6. Photographs of the linear development of the interface for Ra = 1.02. (a) t = 160 s;
(b) t = 240 s; (c) t = 310 s. The ratio λ/e is about 57.

rate Σ was also measured by analysing the early exponential growth of an individual
finger tip amplitude Atip(t) from the images recorded by the second camera. As can
be seen from figure 5, the growth rates measured by these two methods are similar
in magnitude. One can clearly distinguish two separate regimes: during early times,
the data points follow a straight line in this semi-log plot, indicating an exponential
growth of the instability. At later times, the instability enters the nonlinear stages,
which are beyond the scope of the present investigation. During this phase, the growth
slows down, partly also due to the presence of the lower and upper boundaries of the
cell, and the finger tip velocity approaches a constant value.

3.3. Results

3.3.1. Qualitative observations

Figures 6, 7 and 8 show the growth of the instability for the three different Ra
values of 1, 26 and 250, respectively. For each value of Ra a pronounced interfacial
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(a)

(b)

(c)

(d )

5 mm

Figure 7. Photographs of the linear development of the interface for Ra ' 26. (a) t = 0.4 s;
(b) t = 4 s; (c) t = 8 s; (d) t = 12 s. The ratio λ/e is approximately 9.

(a)

(b)

(c)

(d )

(e)

1 cm

Figure 8. Photographs of the linear development of the interface for Ra ' 250. (a) t = 0.6 s;
(b) t = 1.2 s; (c) t = 1.8 s; (d) t = 2.4 s; (e) t = 3 s. The ratio λ/e is approximately 5.

waviness evolves, which subsequently grows into fingers. Due to experimental noise,
there are slight differences between individual fingers, so that some of them grow
more rapidly than others. However, all of them eventually reach large amplitudes.
The average length as measured from the initial location of the interface is identical
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100
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1
10–4 10–3 10–2 10–1

k
e

At

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0
e (mm)

b

l=1 cP – e = 0.05 mm
0.1 mm
0.15 mm
0.3 mm
0.5 mm
0.8 mm
1 mm

1 mm
l=20 cP – e = 0.5 mm

1 mm

l=5 cP – e = 0.5 mm

Figure 9. Experimental measurements of λ/e versus At.

for the heavier, falling fingers and the lighter, rising ones. This up–down symmetry
is preserved as long as the two fluids have the same viscosity, in agreement with the
findings by other authors (Tryggvason & Aref 1983; Maxworthy 1987). Even though
these experiments were performed for identical fluid combinations, i.e. identical At
values, the characteristic time scales for the formation of the fingers vary substantially
with Ra (cf. § 3.3.3). Throughout the linear regime, the dominant wavenumber is seen
to remain constant with time for each of the different Ra values.

3.3.2. Wavelength selection

Quantitative measurements of the normalized characteristic wavelength λ/e during
the early stages of finger formation are depicted in figures 9 and 10, as a function of
At and Ra. The At dependence has the form of a power law, λ/e ∝ At−β see inset
to figure 9, where the exponent β decreases continuously from one to zero as the
gap thickness e increases. When plotted as a function of Ra, all data points follow a
similar trend that extends over nearly five orders of magnitude in Ra. This confirms
the dominant role of Ra as the governing dimensionless parameter. Two distinct Ra
regimes can be identified. For Ra 6 10, the ratio λ/e scales as Ra−1. In this regime,
values of λ up to fifty times the gap width are measured for the smallest gap width of
e = 0.05 mm. Under these circumstances diffusion is sufficiently strong to smooth out
gradients across the gap, so that the scaling laws of the classical Hele-Shaw theory
for miscible flows (Tan & Homsy 1986) apply. We refer to this parameter range as
the low-Ra Hele-Shaw range.

For values of Ra > 100 the normalized wavelength is approximately constant,
λ/e = 5 ± 1. In this regime the wavelength shows no dependence on the density
contrast between the two fluids. As we will see from the numerical results to be
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100

10

1
100 101 103 105

k
e

Ra

l=1 cP – e = 0.05 mm
0.1 mm
0.15 mm
0.3 mm

0.5 mm
0.8 mm
1 mm

1 mm
l=20 cP – e = 0.5 mm

1 mm

l=5 cP – e = 0.5 mm

102 104

Theoretical curve

Figure 10. Experimental measurements of λ/e versus Ra. All data are seen to follow
the same trend.

discussed below, at these large Ra values significant gradients across the gap can
develop. The flow in this parameter range will be denoted as the high-Ra gap mode.
The characteristic relationship between the wavelength λ and the gap e seen here
is comparable to that found in other experiments with miscible fluids in Hele-Shaw
cells, such as viscously driven instabilities (Paterson 1985; Lajeunesse et al. 1997,
1999; Maxworthy 1989), or even instabilities of immiscible fluid flows (e.g. § 7 or
Maxworthy 1989).

3.3.3. Growth rate of the instability

Figure 11 represents the dimensionless growth rate Σ as a function of Ra. For
Ra < 10, it increases linearly with Ra, while for larger values of Ra it assumes a
constant value near 0.3 ± 0.1. This confirms our earlier observation of two different
parameter ranges governed by different physical transport processes, namely a small-
Ra Hele-Shaw regime, and a large-Ra gap regime.

4. Comparison with linear stability results based on the Brinkman equation
In the following, we present a comparison with the linear stability analysis of

Fernandez et al. (2001), which covers the entire range of Rayleigh numbers. It is
based on the Brinkman equation (Brinkman 1947)

−∇p+ µ∆‖〈u〉z − 12µ

e2
〈u〉z + ρg = 0, (4.1)

which is commonly used to analyse flows in porous media of high porosity. Here
∆‖ = (∂x2 + ∂y2 ) is the Laplace operator in the (x, y)-plane, and 〈u〉z is the mean value
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10–2

100 101 103 105

R

Ra

l=1 cP – e = 0.05 mm
0.1 mm
0.15 mm
0.3 mm
0.5 mm
0.8 mm
1 mm

1 mm
l=20 cP – e = 0.5 mm

1 mm

l=5 cP – e = 0.5 mm

102 104

Theoretical curve

10–1

100

Figure 11. The non-dimensional growth rate Σ as a function of Ra. Two clearly distinct parameter
regimes can be identified.

of u in the gap. For a step-like initial density profile, we obtain the dispersion relation

Σ =
12

Ra
+
q

2

[
1− q√

12 + q2

]
− 6q

RaΣ

[
1− q√

q2 + RaΣ

]
, (4.2)

whose solutions are given in figure 12 for different Rayleigh numbers. The line
in the graph represents the asymptotic dispersion relation for very large Ra. The
maximum growth rate Σm and the corresponding wavenumber qm can be deduced
as a function of the Rayleigh number. They are represented in figures 10 and 11
with the experimental values. The stability results are seen to capture the correct
trend across the entire Ra range. In particular, the results demonstrate that in the
high-Ra regime the wavelength is selected only by the gap width, even though there
is a quantitative discrepancy between the theoretical asymptotic value λ/e = 2.3 and
the value of 5± 1 measured in the experiment. The difference between the theoretical
and experimental asymptotic values may at least partially be due to the assumption
of a Poiseuille base flow, which, as we will see from the numerical simulations to
be discussed below, does not apply for the largest Ra data points. In figure 10, it
can be observed that the measurements closest to the theoretical value are the ones
obtained with the most viscous fluids, i.e. those cases for which the assumption of
Poiseuille flow is most applicable. Note that this analysis can also be adapted to
viscously driven instabilities, for which it has also been observed that at large Ra the
wavelength scales only with the gap width.

In the low-Ra regime the dispersion relation (4.2) reduces to the classical dispersion
relation derived for Darcy’s law

Σ(q) = 1
2

(
q − Ra−1q2 − Ra−1q

√
q2 + 2Raq

)
. (4.3)
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Figure 12. Dispersion relation for different Ra.
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Figure 13. Comparison of experimental and theoretical data, (a) Σ versus Ra, (b) λ/e versus Ra.

This equation gives a maximum growth rate Σm and a corresponding wavenumber
qm:

qm =
(
√

5− 2)

2
Ra ≈ 0.12Ra, (4.4)

Σm =
(
√

5− 2)(3−√5)

8
Ra ≈ 0.0225Ra. (4.5)

The experimental and the theoretical values are in good agreement (figure 13) for
the prediction of the wavelength (λ/e ∝ Ra−1) as well as the growth rate (Σ ∝ Ra).
The diffusion coefficient D can be deduced when the two curves collapse. In this case,
both panels of figure 13 yield D = 2× 10−5cm2 s−1, which is a very reasonable value.

An experimental dispersion relation can be obtained from direct measurements of
wavelength and growth rate, in order to compare with the results of linear stability
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Figure 14. Comparison of the normalized dispersion relations for two values of Ra (1, 6) in the
diffusive regime. The results from the linear stability analysis based on the Hele-Shaw equations are
in good agreement with the experiments in this range of Ra values (Ra < 10).

theory. Soon after the instability begins in the experiment, several independent modes
appear in the Fourier spectrum of the interface (figure 4). At this early stage of the
interfacial instability growth, these modes do not interact with each other, and we can
measure their respective growth rates. Figure 14 shows an experimental dispersion
relation. For comparison purposes, the theoretical dispersion relation (4.3) is also
represented in this graph. Excellent agreement is observed. It has not been possible
to perform a similar comparison in the high-Ra regime, since the different modes do
not remain independent for a sufficiently long time.

5. Numerical simulations
5.1. Set of governing equations and dimensionless parameters

We will describe both two- and three-dimensional numerical simulations of the
problem, based on the Stokes equations, which in dimensional form are

∇ · u = 0, (5.1a)

∇p = µ∇2u− ρg∇y, (5.1b)

∂c

∂t
+ u · ∇c = D∇2c, (5.1c)

With the characteristic quantities introduced above, we obtain their dimensionless
counterparts as

∇ · u = 0, (5.2a)

∇p = 1
12
∇2u− c∇y, (5.2b)

∂c

∂t
+ u · ∇c =

1

Ra
∇2c. (5.2c)
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5.2. Computational approach

In the experiment, the flow field comprises many instability wavelengths, and it
extends several hundred gap widths in the vertical and horizontal directions. In
contrast, the simulations focus on the evolution of one or very few structures, so
that the computational control volume can be of significantly smaller extent, with
horizontal and vertical dimensions Lx and Ly typically of O(5–10) and O(10–40) gap
widths, respectively. In order to minimize the effects of the smaller computational
domain, we assume symmetry boundary conditions for the velocity components both
in the x- and in the y-direction. Along the two plates separated by the narrow
gap, all velocity components are assumed to vanish identically. In the light of these
boundary conditions, it is clear that the simulations can be expected to reproduce
the experiments only as long as the fingers are sufficiently far away from the upper
and lower boundaries. In order to specify boundary conditions for the concentration,
we can thus assume to have the pure fluids at the upper and lower boundaries. In
summary, we have

x = ±0.5Lx : u = 0, vx = 0, wx = 0, cx = 0, (5.3a)

y = 0.5Ly : uy = 0, v = 0, wy = 0, c = 1, (5.3b)

y = −0.5Ly : uy = 0, v = 0, wy = 0, c = 0, (5.3c)

z = ±0.5 : u = 0, v = 0, w = 0, cz = 0. (5.3d)

By taking the curl of the Stokes equation and introducing the vorticity

∇× u = ω ≡ (ξ, η, ζ)T , (5.4)

the above relationships can be recast in the vorticity–velocity formulation (Fletcher
1988), so that we obtain

∇2ω = 12(−cz, 0, cx), (5.5a)

∇2u = −∇× ω, (5.5b)

∂c

∂t
+ u · ∇c =

1

Ra
∇2c (5.5c)

The above boundary conditions for the velocity components translate into the fol-
lowing set of conditions for the vorticity components:

x = ±0.5Lx : ξx = 0, η = 0, ζ = 0, (5.6a)

y = ±0.5Ly : ξ = 0, ηy = 0, ζ = 0, (5.6b)

z = ±0.5 : ξ = −vz, η = uz, ζ = 0. (5.6c)

Our initial concentration profile c0(y) is taken from the family of one-dimensional
solutions describing the self-similar diffusive decay of a step profile

c0(y) = 0.5 + 0.5 erf
(y
δ

)
. (5.7)

Here, the initial profile thickness is determined by the parameter δ. In order to trigger
the growth of a finger, we impose a small-amplitude perturbation on the initial
interface location.

The numerical simulations are performed on grids that are equidistant in all three
directions. Temporal discretization is accomplished by an explicit third-order-accurate
low-storage Runge–Kutta time integration scheme to update the concentration field
(Wray 1991). Spatial derivatives are discretized spectrally in the x- and y-directions,
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Figure 15. Two-dimensional simulations of the flow in the gap. For all cases shown, the interface
thickness parameter δ = 1 and the initial interfacial waviness has an amplitude of 0.1. The c = 0.5
concentration contour is shown at times 8.33 × 10−2, 4.17, 16.7, 41.7, and 83.3. (a) Ra = 2.5 × 103,
initial perturbation is of cosine shape. (b) Ra = 2.5 × 103, initial perturbation is of sine shape.
(c) Ra = 2.5× 102, initial perturbation is of cosine shape. d) Ra = 2.5× 102, initial perturbation is
of sine shape.

with the velocity and vorticity components, as well as the concentration field, expanded
into sine and cosine series (Gottlieb & Orzsag 1977; Canuto et al. 1988). In the z-
direction, we employ compact finite differences in the form given by Lele (1992),
which are of sixth order in the interior of the flow domain. The evaluation of the
nonlinear terms at each time level is performed in a pseudo-spectral manner (cf.
Canuto et al. 1988). The code was validated by comparing the growth rates observed
for small-amplitude perturbations with the exact results obtained from a numerical
linear stability analysis (Graf, Meiburg & Härtel 2002).

5.3. Two-dimensional flow in the gap

As a preliminary step, we present the results of purely two-dimensional flow simu-
lations in the narrow gap, i.e. without any variations in the spanwise direction. The
computational domain extends from −4 to 4 in the y-direction, and from −0.5 to
0.5 in the z-direction. This domain is discretized into 256 × 32 intervals. The initial
interface thickness is given by δ = 1, and the initial perturbation of the interface has
the form of a sine or cosine wave with amplitude 0.1, respectively.

The results are seen to depend strongly on the value of Ra. Figure 15(a) shows
the case of Ra = 2.5 × 103 and a cosine shaped initial disturbance. The unstable
stratification is seen to give rise to a finger of the heavier fluid that propagates
downward along the centre of the gap. Since there is no net flow in the vertical
direction, and since the flow remains symmetric with respect to the gap centreplane,
continuity requires that the lighter fluid flows upward in narrow layers between the
finger and the walls.

If the initial perturbation has the shape of a sine wave instead of a cosine wave,
the flow proceeds quite differently, cf. figure 15(b). Initially, the lighter fluid rises
near one wall, while the heavier fluids sinks near the opposite wall. Soon, however,
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these emerging fingers separate from the wall and proceed along the centre of the
gap, which seems to be a more stable configuration. Regardless of the form of the
perturbation, at this relatively large value of Ra diffusion is too weak to stabilize
the interface, so that a large-scale convection process evolves within the gap. This
mechanism clearly cannot be captured by the gap-averaged Hele-Shaw theory, and it
explains why the experimental observations for large Ra do not follow the classical
Hele-Shaw scaling laws.

For Ra = 102, both sine and cosine waves are stable, so that all initial disturbance
waves are damped and the flow returns to rest, with the interface thickness growing
solely as a result of diffusion. This corresponds to the low-Ra regime observed in
the experiments, and it reflects a stabilizing effect of the sidewalls that is similar
to observations in Rayleigh–Bénard convection problems. An interesting transitional
regime exists at intermediate values of Ra. For Ra = 2.5× 102 the simulations show
the cosine wave to be stable (figure 15c), whereas the sine wave is unstable, cf.
figure 15(d ). As a result, fingers do not form in the centre of the gap, and instead the
fluids rise and sink along opposite walls. This finding is in agreement with the shape
of the most amplified eigenfunction obtained from linear stability theory (Graf et al.
2002).

The above observations suggest that for Ra 6 O(102) the two-dimensional density
profile in the gap is stable. The exact threshold value of Ra depends on the interface
thickness. As a result, the experimentally observed instability at low Rayleigh number
values cannot be driven by vorticity in the spanwise x-direction. Instead, it needs to
feed on vorticity aligned in the z-direction, i.e. across the gap. The concentration field
will hence stay essentially uniform across the gap, so that the velocity profile will
remain nearly parabolic. As a result, the depth-averaged Hele-Shaw equations should
be applicable to these low-Ra flows, and we can refer to the low Rayleigh number
instability in the spanwise direction as the Hele-Shaw mode.

At large Ra, the two-dimensional density profile within the gap is unstable. This
instability results in the formation of spanwise vorticity that drives the formation
of fingers propagating along the gap. This instability, which we will refer to as
the gap mode, can have a wavy spanwise modulation, i.e. a fully three-dimensional
character, so that it can lead to the formation of vorticity across the gap as well.
Consequently, the three-dimensional form of the gap instability can potentially result
in the formation of the experimentally observed fingers in the spanwise direction. At
high Ra, we thus expect a competition between the Hele-Shaw mode and the gap
mode. Which one of these modes governs the characteristics of the evolving fingers
will depend on their respective growth rates. Detailed quantitative information on
dispersion relationships and eigenfunctions is provided in a companion paper (Graf
et al. 2002).

5.4. Three-dimensional flow

5.4.1. The high-Ra ‘gap’ mode

In the following, we investigate the high-Ra ‘gap’ mode by means of a fully three-
dimensional simulation for Ra = 2.5×103. The initial interfacial thickness is again set
to δ = 1. A small-amplitude cosine-shaped perturbation is introduced in the spanwise
direction, which triggers the three-dimensional evolution. In order to duplicate the
experimental conditions as closely as possible, we prescribe its wavelength as five
times the gap width. The control volume comprises one wavelength in the spanwise
direction, and it extends to ±5 in the vertical y-direction. The simulation employs
65× 129× 33 gridpoints in the x-, y-, and z-directions, respectively.
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Figure 16. Ra = 2.5 × 103: simulation of the three-dimensional variant of the high-Ra ‘gap’
mode. The interface thickness parameter δ = 1, and the initial perturbation amplitude is 0.1. The
c = 0.5 concentration contour is shown at t = 15. The interface exhibits a strong three-dimensional
deformation.

Figure 16 depicts a perspective view of the c = 0.5 contour at an advanced time. We
notice that at this large Rayleigh number value the concentration contour exhibits
a strong deformation in the cross-gap direction, in line with the two-dimensional
simulation for the same value of Ra. While this reflects the growth of the gap insta-
bility mode, its evolution is now clearly three-dimensional, with a single downward
protrusion emerging in the centre of the domain, surrounded by two upward bulges
in the spanwise x-direction. Note that, in contrast to the two-dimensional case, a
perturbation in the cross-gap direction does not have to be prescribed here, as the
spanwise wave is sufficient to trigger the flow. It is interesting that for all times the
shape of the interface remains symmetrical with respect to the gap centreplane, i.e.
the fingers propagate along the centreline of the gap. At the present large Rayleigh
number values, diffusive effects are quite small as far as the concentration field is
concerned. In conjunction with the no-slip velocity boundary condition at the walls
of the cell, this causes the c = 0.5 contour to remain ‘anchored’ at its initial wall
location.

5.4.2. The low-Ra ‘Hele-Shaw’ mode

At lower values of Ra a different picture emerges for the three-dimensional evo-
lution. This is illustrated by means of a simulation for Ra = 25 and a perturbation
wavelength of 4π times the gap width, which again closely duplicates the experi-
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Figure 17. Ra = 25: simulation of the low-Ra ‘Hele-Shaw’ mode. The interface thickness parameter
δ = 1, and the initial perturbation amplitude is 0.1. The c = 0.5 concentration contour is shown at
t = 15. The interface remains largely two-dimensional.

mentally observed conditions at the corresponding value of Ra. Figure 17 displays
the c = 0.5 contour at an advanced time. Its lack of deformation in the cross-gap
direction indicates that the concentration field stays nearly uniform across the gap,
which in turn implies that the velocity field remains close to parabolic, and essentially
of Hele-Shaw type. Under these conditions, the growth of the fingers can feed only
on vorticity aligned in the cross-gap direction.

6. Conclusions
We have attempted to gain an understanding of density-driven instabilities between

miscible fluids in a vertically arranged Hele-Shaw cell across the entire range of Ra.
To this end, we applied experimental and computational tools. By means of optical
measurements, we were able to extract detailed information regarding both the growth
rates and the dominant wavelength from a careful analysis of the early instability
phase. For the low-Ra regime, it was even possible to obtain the entire dispersion
relationship experimentally. These experimental data demonstrate that in the low-Ra
regime the dominant wavelength scales with Ra−1, while in the large-Ra regime the
length scale of the instability is 5±1 times the gap width. Fully nonlinear simulations
of the two- and three-dimensional Stokes equations confirm a qualitative difference
between the instability modes dominating the low- and high-Ra regimes, respectively.
They indicate that in the large-Ra regime a ‘gap’ instability mode evolves, whereas
in the small-Ra regime a spanwise ‘Hele-Shaw’ mode dominates. Interestingly, the
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Figure 18. Comparison of λ/e for the viscous instability of immiscible fluids and for the gravitational
instability between miscible fluids. In both cases, the curves represent fits to experimental data.

stability results of Fernandez et al. (2001), which are based on the Brinkman equation,
capture the experimentally observed trend across the entire Ra range. This is perhaps
somewhat surprising, since the Brinkman equation assumes a Poiseuille-type velocity
profile in the gap, which in reality does not exist for large Ra, as our nonlinear
simulations have shown.

It is of interest to compare our findings here to observations for immiscible flows.
While we were unable to find quantitative stability data for density-driven immiscible
flows, the well-known correspondence between density differences and unfavourable
viscosity contrasts in displacement flows (e.g. Tryggvason & Aref 1983; Homsy 1987)
can serve as a basis for a comparison (e.g. Maxworthy 1989). In the limit of very
large viscosity contrast, the viscously driven instability between immiscible fluids in a
Hele-Shaw cell can be described by a single dimensionless parameter in the form of
a capillary number

Ca =
µV

γ
, (6.1)

where γ represents the surface tension coefficient. Linear stability theory (Chuoke et
al. 1959; Saffman & Taylor 1958) predicts a most amplified wavelength that scales
with Ca−1/2. This result was confirmed experimentally by Maxworthy (1989) for small
values of Ca, whereas at larger Ca values three-dimensional effects are assumed to
be important, cf. also Park & Homsy (1984). Figure 18 displays the present, miscible
results jointly with the immiscible ones of Maxworthy (1989). Both curves represent
fits to experimental data. The behaviour at large Ra and at large Ca is quite similar,
in that for both cases the wavelength scales only with the gap width.
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Graf, F., Meiburg E. & Härtel, C. 2002 Density-driven instabilities of miscible fluids in a Hele-
Shaw cell: Linear stability analysis of the three-dimensional Stokes equations. J. Fluid Mech.
451, 261.

Homsy, G. M. 1987 Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271.

Kurowski, P., Misbah, C. & Tchourkine, S. 1995 Gravitational instablity of a fictitious front
during mixing of miscible fluids. Europhys. Lett. 29 (4), 309.

Lajeunesse, E., Martin, J., Rakotomalala, N. & Salin, D. 1997 3D instablity of miscible dis-
placements in a Hele-Shaw cell. Phys. Rev Lett. 79, 5254.

Lajeunesse, E., Martin, J., Rakotomalala, N., Salin, D. & Yortsos, Y. C. 1999 Miscible displace-
ment in a Hele-Shaw cell at high rates. J. Fluid Mech. 398, 299.

Lajeunesse, E., Martin, J., Rakotomalala, N. Salin, D. & Yortsos, Y. C. 2001 The threshold of
the instability in miscible displacements in a Hele-Shaw cell at high rates. Phys. Fluids 13, 799.

Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys.
103, 16.

Manickam, O. & Homsy, G. M. 1993 Stability of miscible displacements in porous media with
nonmonotonic viscocity profiles. Phys. Fluids A 5, 1356.

Maxworthy, T. 1987 The nonlinear growth of a gravitational unstable interface in a Hele-Shaw
cell. J. Fluid Mech. 177, 207.

Maxworthy, T. 1989 Experimental study of interface instability in a Hele-shaw cell. Phys. Rev. A
39 (11), 5863.

Meiburg, E. & Homsy, G. M. 1988 Nonlinear unstable viscous fingers in Hele-Shaw flows. II.
Numerical simulation. Phys. Fluids 31, 429.

Park, C. W. Gorell, S. & Homsy, G. M. 1984 Two-phase displacement in Hele-Shaw cells:
experiments on viscously driven instabilities. J. Fluid Mech. 141, 275.

Park, C.-W. & Homsy, G. M. 1984 Two-phase displacements in Hele-Shaw cells: Theory. J. Fluid
Mech. 139, 291.

Paterson, L. 1985 Fingering with miscible fluids in a Hele-shaw cell. Phys. Fluids 28, 26.

Petitjeans, P., Chen, C.-Y., Meiburg, E. & Maxworthy, T. 1999 Miscible quarter five-spot
displacements in a Hele-Shaw cell and the role of flow-induced dispersion. Phys. Fluids 7,
1705.

Petitjeans, P. & Maxworthy, T. 1996 Miscible displacements in capillary tubes. Part 1. Experiments.
J. Fluid Mech. 326, 37.

Rogerson, A. & Meiburg, E. 1993a A Shear stabilization of miscible displacement process in
porous media. Phys. Fluids A 5, 1344.

Rogerson, A. & Meiburg, E. 1993b Numerical simulation of miscible displacement processes in
porous media flows under gravity. Phys. Fluids A 5, 2644.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

65
04

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001006504


260 J. Fernandez, P. Kurowski, P. Petitjeans and E. Meiburg

Ruith, M. & Meiburg, E. 2000 Miscible rectilinear displacements with gravity override. Part 1.
Homogeneous porous medium. J. Fluid Mech. 420, 225.

Saffman, P. G. & Taylor, G. I. 1958 The penetration of a fluid into a porous medium or Hele-Shaw
cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312.

Schwartz, L. 1986 Stability of Hele-Shaw flows: The wetting-layer effect. Phys. Fluids 29, 3086.

Sharp, D. H. 1984 An overview of Rayleigh-Taylor instability. Physica D 12, 3.

Tan, C. T. & Homsy, G. M. 1986 Stability of miscible displaccements in porous media: Rectilinear
flow. Phys. Fluids 29, 3549.

Tan, C. T. & Homsy, G. M. 1988 Simulation of nonlinear fingering in miscible displacement. Phys.
Fluids 31, 1330.

Taylor, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R.
Soc. Lond. A 219, 186.

Tryggvason, G. & Aref, A. 1983 Numerical experiments on Hele-Shaw flow with a sharp interface.
J. Fluid Mech. 136, 1.

Wooding, R. A. 1969 Growth of fingers at an unstable diffusing interface in a porous medium or
Hele-Shaw cell. J. Fluid Mech. 39, 477.

Wray, A. 1991 Minimal storage time-advancement schemes for spectral methods. Preprint.

Yang, Z. & Yortsos, Y. C. 1997 Asymptotic solutions of miscible displacements in geometries of
large aspect ratios. Phys. Fluids 9, 286.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

65
04

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001006504

