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For any c � 2, a c-strong colouring of the hypergraph G is an assignment of colours to the

vertices of G such that, for every edge e of G, the vertices of e are coloured by at least

min{c, |e|} distinct colours. The hypergraph G is t-intersecting if every two edges of G have

at least t vertices in common.

A natural variant of a question of Erdős and Lovász is: For fixed c � 2 and t � 1, what

is the minimum number of colours that is sufficient to c-strong colour any t-intersecting

hypergraphs? The purpose of this note is to describe some open problems related to this

question.

2010 Mathematics subject classification: Primary 05C15

Secondary 05D40

1. Introduction

The problem of colouring graphs and hypergraphs has a long and rich history (see, e.g.,

[5, 7, 8, 9]). In the case of graphs, the notion of vertex colouring has a single natural

definition: an assignment of labels to the vertices of a graph is a proper colouring if the
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endpoints of any edge in the graph are assigned distinct labels. For hypergraphs, however,

there exist different natural definitions of vertex colouring. The most common definition,

also called weak colouring, is an assignment of colours to the vertices such that no edge

is monochromatic. Another common definition, called strong colouring, is an assignment

of colours to the vertices such that all the vertices contained in an edge have distinct

colours.

There is a more general notion of hypergraph vertex colouring that encompasses both

the weak and strong colouring definitions. We call this notion semi-strong colouring.

Definition (semi-strong colouring). For a fixed c � 2, a c-strong colouring of the hyper-

graph G is an assignment of colours to its vertices such that each edge e of G covers

vertices with at least min{c, |e|} distinct colours. The c-strong chromatic number of G,

denoted χ(G, c), is the minimum number of colours required to c-strong colour G.

The definition of weak colouring corresponds to that of 2-strong colouring, and the

definition of strong colouring is equivalent to ∞-strong colouring.1

The main focus of this note is the semi-strong colouring of intersecting hypergraphs.

A hypergraph is t-intersecting if the intersection of any two of its edges contains at

least t vertices. The set of edges of a t-intersecting hypergraph is often referred to as a

t-intersecting family. Our goal is to determine the minimum number of colours that are

sufficient to c-strong colour any t-intersecting hypergraph.

Definition (chromatic number of intersecting hypergraphs). Given two integers c � 2

and t � 0, the c-strong chromatic number of t-intersecting hypergraphs, denoted χ(t, c), is

the minimum number of colours which suffices to c-strong colour any t-intersecting

hypergraph.

With this notation, our goal can be restated as follows: determine χ(t, c) for every t � 0

and every c � 2. In their seminal paper, Erdős and Lovász [5] observed that the case

where c = 2 is completely resolved by simple arguments. Specifically, χ(0, 2) is unbounded,

χ(1, 2) = 3, and χ(t, 2) = 2 for every t � 2. (See also Exercise 13.33 in [8].) In the rest of

this note, we focus on the case where c > 2.

A first step towards establishing the value of χ(t, c) for all t � 0 and c > 2 is to determine

when this value is finite and when it is unbounded. As we show in the next sections,

χ(t, c) is finite whenever t � c and it is unbounded whenever t � c − 2. This leaves the

case where t = c − 1.

Problem 1.1. Determine whether or not χ(c − 1, c) is finite for every c > 2.

1 More generally, the notion of c-strong colouring of a hypergraph G is equivalent to the strong colouring of

G whenever c is at least as large as the cardinality of the largest edge in G.
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Following the online publication of this note, Chung [3] showed that χ(2, 3) � 21 and,

independently, an anonymous referee showed that χ(2, 3) � 7. These results show that

χ(2, 3) is finite; Problem 1.1 currently remains open for all c > 3.

In Section 2, we show that for every t � c � 2 we have the lower bound χ(t, c) � 2(c − 1).

It seems reasonable to believe that this lower bound is tight. The best upper bound for

the same chromatic numbers, however, is far from tight. We thus have the following open

problem.

Problem 1.2. Determine whether χ(c, c) = 2(c − 1) for every c > 2.

For any t′ > t, the inequality χ(t′, c) � χ(t, c) follows immediately from the observation

that t′-intersecting hypergraphs are also t-intersecting. A positive answer to Problem 1.2

would therefore immediately imply that χ(t, c) = 2(c − 1) for every t � c. It might be easier

to first determine whether χ(t, c) = 2(c − 1) for values of t that are much greater than c.

But even the problem of determining whether the limit of χ(t, c) as t → ∞ equals 2(c − 1)

is open.

Problem 1.3. For every c > 2, determine whether limt→∞ χ(t, c) = 2(c − 1).

Following the presentation of this problem, Alon [1] showed that when t � 2c2, we have

χ(t, c) � 2c − 1. This bound is obtained by showing that, for any t-intersecting hypergraph,

a random (2c − 1)-colouring of the hypergraph is c-strong with positive probability.

For the last problem we return to the chromatic number χ(c − 1, c). If it is finite, can

we determine its exact value? In Section 2, we show that χ(c − 1, c) � 2c − 1. The final

problem asks whether this bound is tight.

Problem 1.4. For every c > 2, determine whether χ(c − 1, c) = 2c − 1.

In the rest of this note, we present some results on the chromatic numbers of intersecting

hypergraphs. Section 2 establishes lower bounds on the values of χ(t, c) for every t � 0.

Section 3 introduces the probabilistic argument for obtaining upper bounds on χ(t, c)

when t � c − 1.

2. General lower bounds

As mentioned in the Introduction, the trivial observation that (t + 1)-intersecting hyper-

graphs are also t-intersecting implies that the c-strong chromatic number of t-intersecting

hypergraphs is non-increasing in t. In other words, for any c � 2 and any t � 0, we

have χ(t + 1, c) � χ(t, c). The following proposition shows that the semi-strong chromatic

number of intersecting hypergraphs satisfies a different monotonicity property when we

increase both t and c.

Proposition 2.1. For any c � 2 and any t � 0, we have χ(t + 1, c + 1) � χ(t, c) + 1.
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Proof. Let G be a t-intersecting hypergraph with c-strong chromatic number χ(G, c) =

χ(t, c). Define G′ to be the (t + 1)-intersecting hypergraph obtained by adding a new vertex

v and including it in each of the edges of G. Since χ(t + 1, c + 1) � χ(G′, c + 1), it suffices

to show that χ(G′, c + 1) � χ(G, c) + 1 = χ(t, c) + 1.

Consider any (c + 1)-strong colouring of G′ that uses � colours. For each edge e ∪ {v}
of G′, this colouring must assign at least min{c + 1, |e| + 1} distinct colours to the vertices

covered by this edge. This implies that the vertices in the edge e (without the new vertex

v) must be coloured by min{c, |e|} distinct colours that are all different from the colour

assigned to v. Since this is true for any edge e of G, we obtain a c-strong colouring of

G with � − 1 colours by arbitrarily recolouring any vertex of G that received the same

colour as v. Therefore, χ(G′, c + 1) � χ(G, c) + 1, as we wanted to show.

Proposition 2.1 immediately implies that χ(t, c) is unbounded whenever t � c − 2.

Corollary 2.2. For any c � 2 and any t � c − 2, we have χ(t, c) = ∞.

Proof. Applying Proposition 2.1 a total of t times, we obtain

χ(t, c) � χ(t − 1, c − 1) � χ(t − 2, c − 2) � · · · � χ(0, c − t).

But when c − t � 2, no finite number of colours is sufficient to (c − t)-strong colour all

0-intersecting hypergraphs since this class includes all hypergraphs.

The following two propositions give the lower bounds on χ(t, c) when t � c − 1.

Proposition 2.3. For any c � 2, we have χ(c − 1, c) � 2c − 1.

Proof. Fix c � 2 and consider the hypergraph

G =

(
[3c − 3],

(
[3c − 3]

2c − 2

))
.

This hypergraph is (c − 1)-intersecting and all its edges have size 2c − 2. Consider any

colouring of the vertices in G that uses at most 2c − 2 colours. The most common c − 1

colours in such a colouring must cover at least

(c − 1)

⌈
3c − 3

2c − 2

⌉
= (c − 1) · 2 = 2c − 2

vertices. So one of the edges of G covers vertices with at most c − 1 distinct colours and

the colouring of G is not c-strong. Thus, χ(c − 1, c) � χ(G, c) � 2c − 1.

Proposition 2.4. For any t � c � 2, we have χ(t, c) � 2(c − 1).

Proof. Fix t � c � 2 and consider the hypergraph

G =

(
[(2c − 1)t],

(
[(2c − 1)t]

ct

))
.
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The hypergraph G is t-intersecting and all its edges have size ct. Consider any colouring

of the vertices in G that uses at most 2c − 3 colours. The most common c − 1 colours in

such a colouring must cover at least⌈
c − 1

2c − 3
(2c − 1)t

⌉
=

⌈
c(2c − 3) + 1

2c − 3
t

⌉
=

⌈
ct +

t

2c − 3

⌉
> ct

vertices. So one of the edges of G covers vertices with at most c − 1 distinct colours and

the colouring cannot be c-strong. Thus, χ(t, c) � χ(G, c) � 2(c − 1).

3. Probabilistic upper bound

For a fixed 0 < p < 1, the p-biased measure of a family F over [n] is μp(F) := PrS [S ∈
F], where the probability over S is obtained by including each element i ∈ [n] in S

independently with probability p. Such a set S is called a p-biased subset of [n]. Dinur and

Safra [4] showed that when p is small enough, 2-intersecting families have small p-biased

measure. Friedgut [6] showed how the same result also extends to t-intersecting families

for every t > 2.

Theorem 3.1 (Dinur and Safra [4]; Friedgut [6]). Fix t � 1. Let F be a t-intersecting

family. For any p < 1
t+1

, the p-biased measure of F is bounded by μp(F) � pt.

We obtain upper bounds on the chromatic number of intersecting hypergraphs by

applying an immediate corollary of Theorem 3.1.

Corollary 3.2. Fix t � 1. Let F be a t-intersecting family. For any p < 1
t+1

, the probability

that a p-biased subset of [n] contains a set S ∈ F is at most pt.

Proof. Fix F to be some t-intersecting family and define F ′ to be the t-intersecting

family obtained from F by adding any set which contains a member of F . That is,

F ′ = {T ′ ⊆ [n] | ∃T ∈ F s.t. T ⊆ T ′}. Fix p < 1
t+1

and let S ⊆ [n] be a random p-biased

subset of [n]. The set S contains some set of F if and only if S ∈ F ′. By Theorem 3.1, the

probability that this event occurs is at most pt.

We use the corollary to argue that when � is large enough, a random �-colouring of a

t-intersecting hypergraph is c-strong with positive probability.

Theorem 3.3. For every t � c � 2, let � be an integer that satisfies � > (c − 1)(t + 1) and(
�

c − 1

)(
c − 1

�

)t

< 1.

Then χ(t, c) � �. In particular, since � = tt satisfies both conditions, χ(t, c) is finite.

Proof. Let G = ([n], E) be a t-intersecting hypergraph and let � be an integer that satisfies

both conditions of the theorem. Consider a random colouring of G where each vertex is

https://doi.org/10.1017/S0963548313000515 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548313000515


6 E. Blais, A. Weinstein and Y. Yoshida

assigned a colour that is chosen independently and uniformly at random from [�]. Fix

C to be a set of c − 1 colours. The set S of vertices that receive one of the colours in

C is a random subset of [n] where each element is included in S independently with

probability p = c−1
�

< 1
t+1

. By Corollary 3.2, the probability that S contains any edge in

E is at most ( c−1
�

)t. Applying the union bound over all possible choices of c − 1 colours,

the probability that some edge in G contains vertices that have at most c − 1 colours is at

most
(

�
c−1

)
( c−1

�
)t < 1. Therefore, there exists a c-strong colouring of G that requires only

� colours.

Remark. The proof of Theorem 3.3 does more than is required for establishing the value

of χ(t, c). It shows that when � is large enough, a random colouring of a t-intersecting

hypergraph with � colours is c-strong with high probability.

Theorem 3.3 yields different upper bounds for different values of t with respect to a

given c. When t = c, the best bound obtained by the theorem is exponential in c.

Corollary 3.4. For every c � 2, χ(c, c) <
√
c · ec.

When t = 2c, the bound is already much stronger and shows that the chromatic number

χ(t, c) is polynomial in c.

Corollary 3.5. For every c � 2 and t � 2c, χ(t, c) < 2c2.

As t grows beyond 2c + 1, the bound obtained by Theorem 3.3 does not continue

to improve. In fact, it gets much worse. Note also that because of the condition � >

(c − 1)(t + 1), the theorem does not yield a sub-quadratic upper bound on χ(t, c) for any

t � c.

Remark. The topic of semi-strong colouring of intersecting hypergraphs came up in the

authors’ study of property testing of boolean functions [2]. A common approach in such

testing algorithms is that of implicit learning, where we randomly partition some domain

and identify a small subset of special parts in the partition. Often the main obstacle is

proving that when the function is far from satisfying the questioned property, no choice

of a small number of special parts would fool the tester. Theorem 3.3, and particularly

Corollary 3.5, guarantees that when we randomly partition the domain into a polynomial

number of parts (which are analogous to colours), with high probability the union of any

small number of parts will satisfy some criteria (such as not completely containing any

member of some bad intersecting family). See [2] for more details.
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