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Abstract

We propose two linearly implicit energy-preserving schemes for the complex modified

Korteweg–de Vries equation, based on the invariant energy quadratization method. First,

a new variable is introduced and a new Hamiltonian system is constructed for this

equation. Then the Fourier pseudospectral method is used for the space discretization

and the Crank–Nicolson leap-frog schemes for the time discretization. The proposed

schemes are linearly implicit, which is only needed to solve a linear system at each

time step. The fully discrete schemes can be shown to conserve both mass and energy

in the discrete setting. Some numerical examples are also presented to validate the

effectiveness of the proposed schemes.

2020 Mathematics subject classification: primary 65M22; secondary 65M20, 65M70,

65L05.

Keywords and phrases: mass, energy, invariant energy quadratization method, Fourier

pseudospectral method, complex modified Korteweg–de Vries equation.

1. Introduction

We consider the complex modified Korteweg–de Vries (CMKDV) equation with the

following initial and periodic boundary conditions:

ut + uxxx + α(|u|2u)x = 0,

u(x, 0) = u0(x), x ∈ [a, b],

∂iu

∂xi

∣∣∣∣∣
x=a

=
∂iu

∂xi

∣∣∣∣∣
x=b

, i = 0, 1, 2,

(1.1)

where u(x, t) is a complex-valued function and α is a real constant.
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The CMKDV equation is an important mathematical model, which is used to

describe the nonlinear evolution of plasma waves [15] and the propagation of

transverse waves in a molecular chain model [11] and in a generalized elastic solid

[5]. The CMKDV equation has the following analytical solution:

u(x, t) =

√
2c

α
sech[

√
c(x − ct − x0)] exp(iθ),

where c, x0 and θ are given constants.

Under the periodic boundary conditions, the CMKDV equation satisfies the conser-

vation laws (see, for example, [15])

M =
∫ b

a

u dx, K =
∫ b

a

|u|2 dx, H =
∫ b

a

(
α

2
|u|4 −

∣∣∣∣∣
∂u

∂x

∣∣∣∣∣
2)

dx,

which are often named as mass, momentum and energy, respectively.

The CMKDV equation has been widely studied in the last decade both numerically

and analytically. Muslu and Erabay [18] used three different split-step Fourier schemes

to solve the CMKDV equation. Ismail [13] proposed a Petrov–Galerkin (P-G) method

and a collocation method [14] using quintic B-spline, and analysed the linear stability

of the methods. Uddina et al. [19] proposed a mesh-free method based on radial basis

functions. Korkmaz and Dağ [16] used a differential quadrature method based on

cosine expansion to solve the CMKDV equation. All the above methods, however,

cannot precisely preserve the conservation properties of the CMKDV equation, which

needs iteration at each time step.

As far as we know, there are quite a few numerical studies that focus on the

energy-preserving methods. Cai and Miao [1] proposed an explicit multisymplectic

Fourier pseudospectral scheme for the CMKDV equation. In a recent study, Yan and

Zheng [20] derived an energy-preserving scheme and a momentum-preserving scheme

by combining a finite volume element method (FVEM) and a discrete variational

derivative method. But, their energy-preserving method is a nonlinear scheme, which

needs to solve a nonlinear system at each time step. In this paper, we propose two

linearly implicit energy-preserving schemes, which only need to solve a linear system

at each time step using the invariant energy quadratization (IEQ) method [10, 21].

The IEQ method is an efficient way to construct linearly implicit energy-preserving

schemes for the Hamiltonian partial differential equations (PDEs) [2, 10, 21]. About

the idea of IEQ schemes, we refer to the review paper [23] and the references therein.

Recently, the IEQ method has been extended in various ways; for instance, Gong [7–9]

developed a class of arbitrarily high-order energy, stable Runge–Kutta (RK) methods

for the gradient flow models. For more details, extensions and improvements of the

IEQ method, refer to the literature (see [9, 22] and the references therein). In this

paper, by introducing an auxiliary variable q = |u|2, we transform the energy functional

into a quadratic form and obtain an equivalent system with respect to u and q. Then

we use a pseudospectral method for the space discretization and Crank–Nicolson [10]
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leap-frog [12] schemes for the time discretization. As far as we know, our schemes are

efficient and can precisely conserve the discrete mass and energy.

The paper is organized as follows. In Section 2, we describe the spatial discretiza-

tion of the CMKDV equation, including the IEQ method, spatial discretization and the

conservation properties analysis of the semi-discrete scheme. In Section 3, we derive

the fully discrete schemes using the Crank–Nicolson method and the leap-frog method

in time, and analyse their conservation properties. In Section 4, some numerical

examples are presented to verify the conservative properties and accuracy of our

schemes, followed by some concluding remarks in Section 5.

2. Energy-preserving spatial discretization

In this section, we describe our numerical methods, including the IEQ method,

spatial discretization and the conservation properties analysis of the semi-discrete

scheme.

The CMKDV equation (1.1) can be written as the following Hamiltonian system:

ut = −
∂

∂x

(
δH
δu

)
, H =

∫ b

a

(
α

2
|u|4 − |ux|2

)
dx, (2.1)

where (·̄) denotes the conjugate of (·) and δH/δu is the variational derivative of H ,

defined by

δH
δu
=
∂H
∂u
− ∂
∂x

(
∂H
∂ux

)
.

One intrinsic property of (2.1) is the energy conservation law

dH
dt
=

(
δH
δu

,
∂u

∂t

)
= −
(
δH
δu

,
∂

∂x

(
δH
δu

))
= 0,

where (·, ·) is the inner product on L2 defined by (f (x), g(x)) =
∫ b

a
f (x)g(x) dx.

2.1. IEQ method for the CMKDV equation In this subsection, we recall the IEQ

approach introduced by Gong et al. [10].

Let q = |u|2 = uu; then the energy functional can be written as

H̃ =
∫ b

a

(
α

2
q2 − uxux

)
dx.

Then system (2.1) can be rewritten as the following equivalent system:



ut = −(αqu + uxx)x,

qt =
∂u

∂t
u + u

∂u

∂t
,

u(x, 0) = u0(x), q(x, 0) = |u(x, 0)|2.

(2.2)
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REMARK 2.1. One critical component of the IEQ approach is that the initial condition

for q should be consistent, that is, q(x, 0) = |u(x, 0)|2, to make (2.2) equivalent to the

original CMKDV equation.

System (2.2) satisfies the following conservation laws.

PROPOSITION 2.2. Let u be the solution of system (2.2) and assume that [αqu +

uxx]|bx=a = 0 holds. Then u satisfies

dM
dt
= 0, M =

∫ b

a

u dx.

PROOF. Under the given conditions,

dM
dt
=

∫ b

a

ut dx = −
∫ b

a

(αqu + uxx)x dx = −[αqu + uxx]|ba = 0. �

PROPOSITION 2.3. Let u be the solution of system (2.2) and assume that utux|bx=a = 0,

utux|bx=a = 0 hold. Then u satisfies

dH̃
dt
= 0, H̃ =

∫ b

a

(
α

2
q2 − uxux

)
dx.

PROOF. Under the given conditions,

dH̃
dt
= α(qt, q) − (uxt, ux) − (ux, uxt)

= α(qt, q) + (ut, uxx) + (uxx, ut) − utux|bx=a − utux|bx=a

= α(uut + uut, q) + (ut, uxx) + (uxx, ut)

= (αqu + uxx, ut) + (αqu + uxx, ut)

= −(αqu + uxx, (αqu + uxx)x) − (αqu + uxx, (αqu + uxx)x) = 0,

where the skew-symmetry of ∂/∂x is used. �

2.2. Spatial discretization We apply the pseudospectral method to discretize

system (2.2). Let a = x0 < x1 < · · · < xJ−1 denote a uniform partition ofΩ = [a, b] with

h = (b − a)/J. Then the spatial grid points are defined as Ωh= {xj | j=0, 1, . . . , J − 1},
where xj = a + jh, 0 ≤ j ≤ J − 1. LetVh = {U | U = (Uj), xj ∈ Ωh} be the space of grid

functions defined on Ωh. For any two grid functions u, v ∈ Vh, we define the discrete

inner product as follows:

(u, v)h = h

J−1∑

i=0

uivi.

The crucial step of the pseudospectral method is to approximate the partial

differential operators. The first-order derivative ∂/∂x and the second-order derivative

∂2/∂2
x are approximated by the Fourier spectral differential matrices D1 and D2,
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respectively [4]. Here, D1 is a J × J skew-symmetric matrix with elements

(D1)m,n =



(−1)m+n

2
cot

(
ω(xm − xn)

2

)
, m , n,

0, m = n

and D2 is a J × J symmetric matrix with elements

(D2)m,n =



1

2
ω2(−1)m+n+1 1

sin2(ω(xm − xn)/2)
, m , n,

−ω2 J2
+ 2

12
, m = n,

where ω = 2π/(b − a). In general, the following result holds.

THEOREM 2.4. For the spectral differentiation matrices Dk and (D1)k,

(Dk)m,n = (Dk
1)m,n + (−1)m+nω

k

2J

[(
i
J

2

)k
+

(
− i

J

2

)k]
.

In particular, Dk = (D1)k if k is an odd number.

The proof can be found in the paper by Chen and Qin [4].

Then we discretize the CMKDV equation (2.2) using the Fourier pseudospectral

method in space; a semi-discrete system is obtained:


Ut = −D1(αQU + D2U),

Qt = UtU + UUt.
(2.3)

2.3. Conservative properties of the semi-discrete scheme In this subsection, we

analyse the conservative properties of the semi-discrete system (2.3).

THEOREM 2.5. Let U be the solution of system (2.3) and assume that it satisfies

discrete periodic boundary conditions. Then U satisfies

dM

dt
= 0, M =

α

2
(U, 1)h, U ∈ Vh.

PROOF. Under the given conditions,

dM

dt
= (Ut, 1)h = −(D1(αQU + D2U), 1)h = −1TD1(αQU + D2U) = 0. �

THEOREM 2.6. Let U be the solution of system (2.3) and assume that UtD1U|bx=a = 0

and UtD1U|bx=a = 0 hold. Then U satisfies

dH

dt
= 0, H =

α

2
(Q, Q)h + (U, D2U)h, U, Q ∈ Vh.
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PROOF. Under the given conditions,

dH

dt
= α(Qt, Q)h + (Ut, D2U)h + (Ut, D2U)h

= α(UtU + UUt, Q)h + (Ut, D2U)h + (Ut, D2U)h

= (αUQ, Ut)h + (αUQ, Ut)h + (D2U, Ut)h + (D2U, Ut)h

= (αUQ + D2U, Ut)h + (αUQ + D2U, Ut)h.

Substituting (2.3) and its conjugate into the following equation

dH

dt
= (αUQ + D2U, Ut)h + (αUQ + D2U, Ut)h

= −(αUQ + D2U, D1(αQU + D2U))h − (αUQ + D2U, D1(αUQ + D2U))h

= −(G, D1G)h − (G, D1G)h = 0,

where G = αQU + D2U. �

3. Energy-preserving temporal discretization

In this section, we turn to the temporal discretization of the semi-discrete sys-

tem (2.3).

For a positive integer N, We define the time step τ = T/N. The grid points in space

and time are given by Ωτ
h
= Ωh ×Ωτ, where Ωτ = {tn | tn = nτ, n = 0, 1, . . . , N}. Given

a grid function U = {Un
j
| (xj, tn) ∈ Ωτ

h
}, we denote

δ+t Un
=

Un+1 − Un

τ
, Ũn+(1/2)

=
3Un − Un−1

2
, Un+(1/2)

=
Un
+ Un+1

2
,

δ
〈1〉
t Un

=
Un+1 − Un−1

2τ
, At̂U

n
=

Un+1
+ Un−1

2
, Qn+(1/2)

=
Qn+1

+ Qn

2
.

For simplicity, we denote un
j
= u(xj, tn) and Un

j
as the exact value of u(x, t) and its

numerical approximation at (xj, tn), respectively.

3.1. Linearly implicit Crank–Nicolson scheme We discretize the semi-discrete

system (2.3) using a combination of the Crank–Nicolson method and the

Adams–Bashforth method [10] in time, to obtain a fully discrete scheme:

δ+t Un

= −D1(αQn+(1/2)Ũn+(1/2)
+ D2Un+(1/2)),

δ+t Qn
= δ+t UnŨ

n+(1/2)

+ Ũn+(1/2)δ+t U
n
.

(3.1)

THEOREM 3.1. Let Un be the solution of system (3.1) and assume that it satisfies

discrete periodic boundary conditions. Then Un satisfies

δ+t Mn
= 0, Mn

=
α

2
(Un, 1)h, Un ∈ Vh.
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PROOF. Under the given conditions,

δ+t Mn
= (δ+t Un, 1)h

= −(D1(αQn+(1/2)Ũn+(1/2)
+ D2Un+(1/2)), 1)h

= −1TD1(αQn+(1/2)Ũn+(1/2)
+ D2Un+(1/2)) = 0. �

THEOREM 3.2. Let Un be as in Theorem 3.1 and assume that δ+t UnD1U
n|bx=a = 0 and

δ+t U
n
D1Un|bx=a = 0 hold. Then Un satisfies

δ+t H̃n
= 0, H̃n

=
α

2
(Qn, Qn)h + (U

n
, D2Un)h, Un, Qn ∈ Vh.

PROOF. Under the given conditions,

δ+t H̃n
=

1

τ

[
α

2
[(Qn+1, Qn+1)h − (Qn, Qn)h] + [(U

n+1
, D2Un+1)h − (U

n
, D2Un)h]

]

=
α

2τ
[(Qn+1, Qn+1)h + (Qn+1, Qn)h − (Qn, Qn+1)h − (Qn, Qn)h]

+
1

2τ
[(Un+1, D2U

n+1
)h + (Un+1, D2U

n
)h − (Un, D2U

n+1
)h − (Un, D2U

n
)h

+ (U
n+1

, D2Un+1)h + (U
n+1

, D2Un)h − (U
n
, D2Un+1)h − (U

n
, D2Un)h]

=
α

2τ
(Qn+1 − Qn, Qn+1

+ Qn)h +
1

2τ
[(Un+1 − Un, D2(U

n+1
+ U

n
))h

+ (U
n+1 − U

n
, D2(Un+1

+ Un))h]

= α(δ+t Qn, Qn+(1/2))h + (δ+t Un, D2U
n+(1/2)

)h + (δ+t U
n
, D2Un+(1/2))h

= α(δ+t UnŨ
n+(1/2)

+ Ũn+(1/2)δ+t U
n
, Qn+(1/2))h + (δ+t Un, D2U

n+(1/2)
)h

+ (δ+t U
n
, D2Un+(1/2))h

= (αŨ
n+(1/2)

Qn+(1/2)
+ D2U

n+(1/2)
, δ+t Un)h

+ (αŨn+(1/2)Qn+(1/2)
+ D2Un+(1/2), δ+t U

n
)h.

Substituting (3.1) and its conjugate into the following equation

δ+t H̃n
= (αŨ

n+(1/2)

Qn+(1/2)
+ D2U

n+(1/2)
, δ+t Un)h

+ (αŨn+(1/2)Qn+(1/2)
+ D2Un+(1/2), δ+t U

n
)h

= −(αŨ
n+(1/2)

Qn+(1/2)
+ D2U

n+(1/2)
, D1(αŨn+(1/2)Qn+(1/2)

+ D2Un+(1/2)))h

− (αŨn+(1/2)Qn+(1/2)
+ D2Un+(1/2), D1(αŨ

n+(1/2)

Qn+(1/2)
+ D2U

n+(1/2)
))h

= −(G
n
, D1Gn)h − (Gn, D1G

n
)h = 0,

where Gn
= αŨn+(1/2)Qn+(1/2)

+ D2Un+(1/2). �
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3.2. Linearly implicit leap-frog scheme We discretize the semi-discrete

system (2.3) using the leap-frog method [12] in time; thus, a fully discrete scheme is

obtained:
{
δ
〈1〉
t Un

= −D1(αAt̂Q
nUn
+ D2At̂U

n),

δ
〈1〉
t Qn

= δ
〈1〉
t UnU

n
+ Unδ

〈1〉
t U

n
.

(3.2)

THEOREM 3.3. Let Un be the solution of (3.2) and assume that it satisfies the discrete

periodic boundary conditions. Then Un satisfies

δ
〈1〉
t Mn

= 0, Mn
=
α

2
(Un, 1)h, Un ∈ Vh.

PROOF. The proof is similar to that of Theorem 3.1. �

THEOREM 3.4. Let Un be as in Theorem 3.3 and assume that δ
〈1〉
t UnD1U

n|bx=a = 0 and

δ
〈1〉
t U

n
D1Un|ba = 0 hold. Then Un satisfies

δ
〈1〉
t H̃n

= 0, H̃n
=
α

2
(Qn, Qn)h + (U

n
, D2Un)h, Un, Qn ∈ Vh.

PROOF. Under the given conditions,

δ
〈1〉
t H̃n

=
1

2τ

{
α

2
[(Qn+1, Qn+1)h−(Qn−1, Qn−1)h]+[(U

n+1
, D2Un+1)h−(U

n−1
, D2Un−1)h]

}

=
α

4τ
[(Qn+1, Qn+1)h + (Qn+1, Qn−1)h − (Qn−1, Qn+1)h − (Qn−1, Qn−1)h]

+
1

4τ
[(Un+1, D2U

n+1
)h+(Un+1, D2U

n−1
)h − (Un−1, D2U

n+1
)h−(Un−1, D2U

n−1
)h

+ (U
n+1

, D2Un+1)h + (U
n+1

, D2Un−1)h − (U
n−1

, D2Un+1)h − (U
n−1

, D2Un−1)h]

=
α

4τ
(Qn+1 − Qn−1, Qn+1

+ Qn−1)h +
1

4τ
[(Un+1 − Un−1, D2(U

n+1
+ U

n−1
))h

+ (U
n+1 − U

n−1
, D2(Un+1

+ Un−1))h]

= α(δ
〈1〉
t Qn, At̂Q

n)h + (δ
〈1〉
t Un, D2At̂U

n
)h + (δ

〈1〉
t U

n
, D2At̂U

n)h

= α(δ
〈1〉
t UnU

n
+ Unδ

〈1〉
t U

n
, At̂Q

n)h + (δ
〈1〉
t Un, D2At̂U

n
)h + (δ

〈1〉
t U

n
, D2At̂U

n)h

= (αU
n
At̂Q

n
+ D2At̂U

n
, δ
〈1〉
t Un)h + (αUnAt̂Q

n
+ D2At̂U

n, δ
〈1〉
t U

n
)h.

Substituting (3.2) and its conjugate into the following equation

δ
〈1〉
t H̃n

= (αU
n
At̂Q

n
+ D2At̂U

n
, δ
〈1〉
t Un)h + (αUnAt̂Q

n
+ D2At̂U

n, δ
〈1〉
t U

n
)h

= −(αU
n
At̂Q

n
+ D2At̂U

n
, D1(αUnAt̂Q

n
+ D2At̂U

n))h

− (αUnAt̂Q
n
+ D2At̂U

n, D1(αU
n
At̂Q

n
+ D2At̂U

n
))h

= −(G
n
, D1Gn)h − (Gn, D1G

n
)h = 0,

where Gm
= αUmAt̂Q

m
+ D2At̂U

m. �
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Algorithm 1 LIRK4

K1 = un,

K2 = un + h{(1/4)LK2 + (1/4)N(K1)},
K3 = un + h{(1/2)LK2 + (1/4)LK3 − (1/4)N(K1) +N(K2)},
K4 = un + h{(17/50)LK2 − (1/25)LK3 + (1/4)LK4

− (13/100)N(K1) + (43/75)N(K2) + (8/75)N(K3)},
K5 = un + h{(371/1360)LK2 − (137/2720)LK3 + (15/544)LK4

+ (1/4)LK5 − (6/85)N(K1) + (42/85)N(K2)

+ (179/1360)N(K3) − (15/272)N(K4)},
K6 = un + h{(25/24)LK2 − (49/48)LK3 + (125/16)LK4 − (85/12)LK5

+ (1/4)LK6 + (79/24)N(K2) − (5/8)N(K3) + (25/2)N(K4)

− (85/6)N(K5)},
un+1 = un + h{(25/24)LK2 − (49/48)LK3 + (125/16)LK4 − (85/12)LK5

+ (1/4)LK6 + (25/24)N(K2) − (49/48)N(K3) + (125/16)N(K4)

− (85/12)N(K5) + (1/4)N(K6)}.

REMARK 3.5. The proposed schemes are two three-level energy-preserving schemes.

The initial value U1 is obtained by the nonlinear scheme

δ+mUm
= −D1

[
α

2
(|Um+1|2 + |Um|2)Um+(1/2)

+ D2Um+(1/2)
]
, (3.4)

which is constructed by the discrete variational derivative method [6]. One can prove

that scheme (3.4) precisely conserves the discrete mass and energy (for more details,

refer to [20] and the references therein).

REMARK 3.6. In the following, the Crank–Nicolson scheme is named “linear1”,

the leap-frog scheme is named “linear2” and the above nonlinear scheme is named

“nonlinear”.

In addition, we also compare the proposed methods with the fourth-order linearly

implicit Runge–Kutta method (LIRK4) [3, 17] (see Algorithm 1). To this end, we split

the semi-discrete system of (1.1) into the form

Ut = −D3U − αD1(|U|2U) = LU +N(U),

where L and N are linear and nonlinear operators, respectively.

4. Numerical experiments

In this section, we present some numerical examples to validate the accuracy,

conservative properties and the efficiency of the proposed schemes.
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In the following, we will use the following error norms to measure the error of the

proposed schemes:

L1 =

J−1∑

i=0

|Un
i − un

i | h, L2 =

( J−1∑

i=0

|Un
i − un

i |2 h

)1/2
, L∞ = max

0≤i≤J−1
|Un

i − un
i |.

The convergence rate is calculated by log2(eh/eh/2), where eh and eh/2 denote the error

norms of grid spacings h and h/2, respectively.

4.1. Single solitary wave The CMKDV equation has the solitary wave solution

u(x, t) =

√
2c

α
sech[

√
c(x − ct − x0)] exp(iθ), (4.1)

where α, c, θ and x0 are given constants. The exact solution represents a solitary wave

with amplitude
√

2c/α, initially located at x = x0, and moved to the right with velocity

c. The initial condition can be obtained by setting t = 0 in (4.1):

u(x, 0) =
√

c sech[
√

c(x − x0)] exp(iθ).

Firstly, we consider the accuracy of the proposed scheme in space and time. To this

end, we set α = 2, c = 1, θ = π/2 x ∈ [−30, 30] and T = 1. Tables 1 and 2 show that the

spatial errors are very small, and the errors are dominated by the time discretization

errors. The results further confirm that, for the sufficiently smooth problem, the Fourier

pseudospectral method can reach an arbitrary order of accuracy. Tables 3 and 4 clearly

indicate that the proposed methods are of second-order accuracy in time. Figure 1 also

compares the computation times of the proposed schemes and the nonlinear scheme.

The result shows that our schemes are more efficient than the nonlinear scheme.

TABLE 1. Spatial errors and convergence orders of the linear1 with τ = 1 × 10−8 and N = 1000.

h L1 Order L2 Order L∞ Order

2 4.2106 × 10−5 — 9.5014 × 10−6 — 3.9120 × 10−6 —

1 1.0013 × 10−5 2.0722 2.5871 × 10−6 1.8768 1.1898 × 10−6 1.7172

1/2 2.4821 × 10−7 5.3342 7.2634 × 10−8 5.1545 3.8466 × 10−8 4.9510

1/4 4.8108 × 10−11 12.3330 1.5494 × 10−11 12.1947 9.3862 × 10−12 12.0008

TABLE 2. Spatial errors and convergence orders of the linear2 with τ = 1 × 10−8 and N = 1000.

h L1 Order L2 Order L∞ Order

2 4.2106 × 10−5 — 9.5014 × 10−6 — 3.9120 × 10−6 —

1 1.0013 × 10−5 2.0722 2.5871 × 10−6 1.8768 1.1898 × 10−6 1.7172

1/2 2.4821 × 10−7 5.3342 7.2633 × 10−8 5.1546 3.8466 × 10−8 4.9510

1/4 4.6893 × 10−11 12.3699 1.4880 × 10−11 12.2530 8.2789 × 10−12 12.1819
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TABLE 3. Temporal errors and convergence orders of the linear1 with h = 1/5 and T = 1.

τ L1 Order L2 Order L∞ Order

1/5 5.6900 × 10−2 — 2.3600 × 10−2 — 1.7500 × 10−2 —

1/10 1.6600 × 10−2 1.7772 6.3000 × 10−3 1.9054 4.8000 × 10−3 1.8662

1/20 4.6000 × 10−3 1.8515 1.6000 × 10−3 1.9773 1.3000 × 10−3 1.8845

1/40 1.2000 × 10−3 1.9386 4.2083 × 10−4 1.9268 3.2121 × 10−4 2.0169

1/80 3.1358 × 10−4 1.9361 1.0643 × 10−4 1.9833 8.1304 × 10−5 1.9821

TABLE 4. Temporal errors and convergence orders of the linear2 with h = 1/5 and T = 1.

τ L1 Order L2 Order L∞ Order

1/5 4.3900 × 10−2 — 1.6800 × 10−2 — 1.2900 × 10−2 —

1/10 1.1600 × 10−2 1.9201 3.8000 × 10−3 2.1444 2.5000 × 10−3 2.3674

1/20 3.2000 × 10−3 1.8580 9.6412 × 10−4 1.9787 6.1934 × 10−4 2.0131

1/40 8.8225 × 10−4 1.8588 2.4289 × 10−4 1.9886 1.5452 × 10−4 2.0029

1/80 2.3818 × 10−4 1.8891 6.1019 × 10−5 1.9930 3.8682 × 10−5 1.9981
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0.5

1

1.5

2

2.5

3

time step

C
P

U
 t
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e

linear1
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FIGURE 1. Comparison of computation times of the linear1, linear2 and nonlinear schemes.

Secondly, we compare the proposed methods with the existing methods, such as

the LIRK4 method, the Petrov–Galerkin method [13], FVEM [20] and the nonlinear

scheme (3.4). The computations are conducted on [−30, 30] until T = 20. Given the

parameters h = 1/2, τ = 0.01 and θ = π/4, we compute the L∞ errors between the exact

solution and the numerical solutions obtained by the above methods, respectively,

as shown in Table 5. For t ∈ [0, 20], the numerical results obtained by using the

pseudospectral method are much better than those of the Petrov–Galerkin method [13]

and the FVEM [20]. The numerical solution of the linear1 and the related exact

solution over t ∈ [0, 20] are presented in Figure 2. It is shown that the numerical
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TABLE 5. L∞ errors of the proposed methods and the methods in references.

T linear1 linear2 nonlinear LIRK4 P-G [13] FVEM [20]

0 0 0 0 0 0 0

5 1.7952 × 10−4 4.2364 × 10−5 4.8423 × 10−5 1.7041 × 10−6 1.1383 × 10−3 9.5199 × 10−3

10 3.6041 × 10−4 7.1382 × 10−5 9.6416 × 10−5 2.6759 × 10−6 1.9419 × 10−3 1.6921 × 10−2

15 5.4242 × 10−4 1.1120 × 10−4 1.4427 × 10−4 3.8063 × 10−6 2.8816 × 10−3 2.2182 × 10−2

20 7.3118 × 10−4 1.5376 × 10−4 1.9249 × 10−4 9.0831 × 10−6 3.8092 × 10−3 2.7312 × 10−2
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FIGURE 2. Numerical solution of the linear1 and the related exact solution when h = 1/2, τ = 0.01 and

θ = π/4.
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FIGURE 3. Time evolution of the relative errors of discrete mass and energy. Left: |M(t) −M(0)|/M(0);

right: log(|H̃(t) − H̃(0)|/H̃(0)).

approximation is in good agreement with the exact solution. The relative errors

of the discrete mass and energy are also plotted in Figure 3. Notice that the the

LIRK4 method can conserve discrete energy within 10−6. In contrast, the proposed

energy-preserving schemes conserve the discrete mass and energy to 10−13, which is

strict conservation in a numerical sense and conform to the theoretical results.
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FIGURE 4. Numerical solution of the linear1 when h = 1/2, τ = 0.01, θ1 = 0 and θ1 = π/2.
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FIGURE 5. Real and imaginary parts of the solution. Left: real part, right: imaginary part.

4.2. Interaction of two solitary waves In this example, we consider the interaction

of two solitary waves; the initial condition is given by (see, for example, [16])

u(x, 0) =

√
2c1

α
sech(

√
c1(x − x1)) exp(iθ1) +

√
2c2

α
sech(

√
c2(x − x2)) exp(iθ2),

where α, ci, θi and xi (i = 1, 2) are given constants. The solution corresponds to two

solitary waves, one initially located at x1, while the other is at x2 and both are travelling

to the right with velocity ci (i = 1, 2). The problem is solved in the interval [0, 100]; we

set α = 2, x1 = 25, x2 = 48, c1 = 2, c2 = 0.5, and the computation is done up to time

T = 30.

Firstly, we consider the interaction between a y-polarized solitary wave (θ1 = 0) and

a z-polarized solitary wave (θ2 = π/2). The interaction profile is presented in Figure 4.

Notice that the taller wave moves faster than the shorter one; it catches up and collides

with the shorter wave and then moves ahead from the shorter wave. We also note that

there is a small tail following the shorter wave after the interaction, which agrees with

the result obtained by Uddina et al. [19]. Figure 5 presents the real and imaginary parts

of the numerical solution. The relative errors of discrete mass and energy are plotted

in Figure 6, which are in good agreement with the theoretical results.
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FIGURE 6. Time evolution of the relative errors of discrete mass and energy. Left: |M(t) −M(0)|/M(0);

right: log(|H̃(t) − H̃(0)|/H̃(0)).
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FIGURE 7. Numerical solution of the linear1 when h = 1/2, τ = 0.01 and θ1 = θ2 = 0.
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FIGURE 8. Real and imaginary parts of the solution. Left: real part; right: imaginary part.

Secondly, we study the interaction of two y-polarized solitary waves (θ1=θ2=0)

(see, for example, [18]). The interaction profile is shown in Figure 7. We find that

the solitary waves preserve their amplitudes very well and there is no small trail.

Therefore, we conclude that the interaction is elastic, which is in good agreement with

those reported by Muslu and Erabay [18] and Uddina et al. [19]. Figure 8 presents

the real and imaginary parts of the solution. It is noted that the imaginary part is
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FIGURE 9. Time evolution of the relative errors of discrete mass and energy. Left: |M(t) −M(0)|/M(0);

right: log(|H̃(t) − H̃(0)|/H̃(0)).
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FIGURE 10. Numerical solutions of the linear1 and the LIRK4 methods. Left: the linear1 method with

h = 1/2, τ = 0.01; right: the LIRK4 method with h = 1/4, τ = 0.001.

zero, which agrees with the exact solution. The relative errors of discrete mass and

energy are plotted in Figure 9, which shows that the proposed schemes can conserve

the discrete mass and energy to machine precision. On the contrary, the LIRK4 method

can only conserve energy within 10−5.

4.3. Wave break-up In this example, we consider the wave break-up phe-

nomenon [16]. The initial condition is given as follows:

u(x, 0) =

√
2c

α
sech(x) exp(iθ0),

where α, θ0 and c are given constants. The solution represents a solitary wave with

amplitude
√

2c/α, initially located at x = 0, and is moving to the right with velocity

c = 1. We set

α = 2, θ0 = π/4, −30 ≤ x ≤ 30, T = 2.5, h = 1/2, τ = 0.01.

The numerical solutions of the linear1 and LIRK4 methods are presented in

Figure 10. We observe that the solitary wave breaks up into two solitary waves, and

https://doi.org/10.1017/S1446181120000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181120000218


[16] Linearly implicit energy-preserving schemes for CMKDV equation 271

0  
0.5

1  
1.5

2  
2.5

30 
20 

10 
0  

−10
−20

−30

0

1

2

3

4

x

t

re
a
l(
U

)

0
0.5

1
1.5

2
2.5

30
20

10
0

−10
−20

−30

0

1

2

3

4

x
t

im
a
g
(U

)

FIGURE 11. Real and imaginary parts of the linear1. Left: real part; right: imaginary part.
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FIGURE 12. Time evolution of the relative errors of discrete mass and energy. Left: |M(t) −M(0)|/M(0);

right: log(|H̃(t) − H̃(0)|/H̃(0)).

becomes thinner and higher in comparison with the initial state. Note that the distance

between two solitary waves becomes larger and larger as time passes. The results agree

well with those reported by Korkmaz and Dağ [16]. The real and imaginary parts of the

numerical solution are presented in Figure 11, which shows similar phenomena. The

results obtained by the LIRK4 method are similar to those obtained by the proposed

schemes, but it needs smaller space and time steps. Therefore, we can conclude that our

schemes have better stability than the LIRK4 method. The relative errors of discrete

mass and energy are displayed in Figure 12, which are conserved very well.

5. Conclusions

In this paper, two linearly implicit energy-preserving schemes are proposed for

the CMKDV equation. The proposed schemes are robust and suitable for long-time

computation. The schemes are easy to implement, since these only need to solve a

linear system at each time step. Numerical results show that our schemes can reach

an arbitrary order of accuracy in space and second-order accuracy in time. More

importantly, the proposed schemes can conserve the discrete mass and energy to

https://doi.org/10.1017/S1446181120000218 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181120000218


272 J. L. Yan, L. H. Zheng, L. Zhu and F. Q. Lu [17]

machine precision. The comparisons with some existing methods further confirmed

that our schemes have better stability and conservation properties.
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