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Abstract. For each positive integer n we use the concept of ‘admissible arrays on
n symbols’ to define a set of positive integers Q(n) which is determined solely by
number theoretical and combinatorial constraints and whose computation reduces to a
finite problem. In earlier joint work with M. Scheutzow, it was shown that the set
Q(n) is intimately connected to the set of periods of periodic points of classes of non-
expansive nonlinear maps defined on the positive cone in Rn. In this paper we continue the
characterization of Q(n) and present precise asymptotic estimates for the largest element
of Q(n). For example, if γ (n) denotes the largest element of Q(n), then we show that
limn→∞(n log n)−1/2 log γ (n) = 1. We also discuss why understanding further details
about the fine structure of Q(n) involves some delicate number theoretical issues.

1. Introduction
Let D ⊂ Rn be a closed subset and g : D → D be a map from D into D. The map
gj : D → D will denote the j -fold composition of g with itself. If ξ ∈ D and gp(ξ) = ξ

for some p ≥ 1, we call ξ a periodic point of g of period p. We call p the minimal period
if gj (ξ) 
= ξ for 1 ≤ j < p. The map g : D → D is called non-expansive with respect to
‖ · ‖ if

‖g(x)− g(y)‖ ≤ ‖x − y‖ for all x, y ∈ D. (1.1)

In this paper we consider maps that are non-expansive with respect to the l1-norm, i.e.

‖x‖1 :=
n∑

j=1

|xj |, x = (x1, x2, . . . , xn) ∈ Rn,

but the questions we address are certainly relevant for other norms on Rn, notably, the
l∞-norm and, more generally, polyhedral norms on Rn. See [6] for further information
and partial results.
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If D ⊂ Rn is closed and f : D → D is non-expansive with respect to the l1-norm and
there exists an η ∈ D such that supj ‖f j (η)‖1 < ∞, then it follows from the results of
Akcoglu and Krengel [1] that for every x ∈ D, there exists a positive integer p = p(x)

and a point ξ = ξ(x) ∈ D such that ξ is a periodic point of f of minimal period p and

lim
j→∞ f jp(x) = ξ. (1.2)

Let Kn = {x ∈ Rn | x = (x1, x2, . . . , xn), xi ≥ 0} denote the positive cone in Rn.
Linear maps that leave Kn invariant and are non-expansive with respect to the l1-norm
are given by n × n-matrices A = (aij ) with aij ≥ 0 and

∑n
i=1 aij ≤ 1 for 1 ≤ j ≤ n.

The Perron–Frobenius theory of non-negative matrices implies that not only does (1.2)
hold, but also the positive minimal periods p which can arise are given by the least common
multiple of sets of positive integers whose sum is less than or equal to n; see [14] and
[12, §9] for details and further generalizations.

Conversely, every permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n} induces a linear map
fσ : Kn → Kn by fσ (x) = (xσ(1), xσ(2), . . . , xσ(n)) which has a periodic point with
minimal period equal to the order of the permutation. So, in the linear case, it is possible
to describe exactly the set of possible minimal periods p.

Motivated by the linear case and the result of Akcoglu and Krengel, generalizations
to classes of nonlinear maps have been studied. Recent joint work of the authors with
M. Scheutzow, shows that for special classes of non-expansive maps there exists an
exact description of the set of possible minimal periods using number theoretical and
combinatorial constraints; see [10–12].

In §2 we give an introduction to admissible arrays and explain the connection with
periodic points of non-expansive maps. In §3, we present some background information
on the orders of the permutations on n letters and prove that in dimensions n ≥ 8, there
are periods of periodic points of nonlinear non-expansive maps that cannot be realized by
linear maps in the same space. In §4 we prove our main result that will give an asymptotic
estimate for the largest possible period of periodic points of non-expansive maps. Finally,
in §5 we discuss some further properties of the periods of the periodic points of non-
expansive maps.

2. Admissible arrays and periodic points of nonlinear maps
The cone Kn = {x ∈ Rn | xi ≥ 0, 1 ≤ i ≤ n} induces a partial ordering by x ≤ y if
and only if y − x ∈ Kn. A map f : D ⊂ Rn → Rn is order-preserving if f (x) ≤ f (y)

for all x, y ∈ D with x ≤ y. If fj (x) denotes the j th coordinate of f (x), then f is called
integral-preserving if

n∑
j=1

fj (x) =
n∑

j=1

xj for all x ∈ D.

We begin by defining a class of maps which we denote below by F3(n) and by giving some
refinements of F3(n).

Definition 2.1. Define u = (1, 1, . . . , 1) ∈ Rn and consider the following conditions on
maps f : Kn → Kn:
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(1) f (0) = 0;
(2) f is order-preserving;
(3) f is integral-preserving;
(4) f is non-expansive with respect to the l1-norm;
(5) f (λu) = λu for all λ > 0.
We define sets of maps Fj (n), 1 ≤ j ≤ 3, by

F1(n) = {f : Kn → Kn | f satisfies (1), (2), (3) and (5)},
F2(n) = {f : Kn → Kn | f satisfies (1), (2) and (3)},
F3(n) = {f : Kn → Kn | f satisfies (1) and (4)}.

A proposition of Crandall and Tartar [3] implies that if f : Kn → Kn is integral-
preserving, then it is order-preserving if and only if it is l1-norm non-expansive. Thus, we
see that

F1(n) ⊂ F2(n) ⊂ F3(n).

If f : Kn → Kn is integral-preserving and order-preserving, one can easily check that f
satisfies (5) if and only if f is sup-norm-decreasing, i.e. ‖f (x)‖∞ ≤ ‖x‖∞ for all x ∈ D.
Using this characterization of F1(n) and a result of Krengel and Lin [4], we see that if
f ∈ F1(n) and y ∈ Kn is a periodic point of f , then there is a permutation σ , depending
on f and y, such that

f (y) = (yσ(1), yσ(2), . . . , yσ(n)).

Examples of maps belonging to F1(n) can be constructed as follows. Let σ and τ be
permutations of the set {1, 2, 3, . . . , n}. Define the map f : Kn → Kn by

f (x)j = min{xσ(j), 1} + max{xτ(j), 1} − 1, j = 1, 2, . . . , n. (2.1)

Even for such simple looking examples, it is not easy to determine the possible minimal
periods of the periodic points of f .

In order to obtain more information about the possible periods, we define sets of positive
integers Pj (n), 1 ≤ j ≤ 3, by

Pj (n) = {p ≥ 1 | ∃f ∈ Fj (n) and a periodic point of f of minimal period p}.
Our results describe the sets P2(n) and P3(n) precisely and provide considerable

information about the set P1(n).
Because F1(n) ⊂ F2(n) ⊂ F3(n) we have, by definition,

P1(n) ⊂ P2(n) ⊂ P3(n). (2.2)

If Sn denotes the symmetric group on n symbols and σ denotes an element of Sn then,
by permutation of the coordinates, σ induces a linear map σ̂ that belongs to F1(n) and it
is easy to see that ξ = (1, 2, 3, . . . , n) ∈ Kn is a periodic point of minimal period p equal
to the order of σ as an element of symmetric group Sn. Thus P1(n) contains the set of
all orders of elements of Sn. However, in general, P1(n) is larger than the set of orders of
elements of Sn; see Theorem 3.1 for a precise result.

By constructing special maps, one can show (see [9] for P1(n) and [12, §8] for P2(n))
that the sets P1(n) and P2(n) have the following properties.
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THEOREM 2.1. Let j = 1 or 2. If p1 ∈ Pj (n1) and p2 ∈ Pj (n2), then

lcm(p1, p2) ∈ Pj (n1 + n2).

Furthermore, if pi ∈ Pj (m) for 1 ≤ i ≤ r , then

r lcm(p1, p2, . . . , pr ) ∈ Pj (rm).

The first claim follows from concatenation of maps. If pi ∈ Pj (ni), i = 1, 2,
there exist maps fi ∈ Fj (ni) with periodic points ξi of minimal period pi . The map
F : Kn1+n2 → Kn1+n2 defined by F(x, y) = (f1(x), f2(y)) has a periodic point
ξ = (ξ1, ξ2) of minimal period lcm(p1, p2). To prove the second claim, we use the
following non-trivial observation. If there are maps fi ∈ Fj (m) with periodic points ξi of
minimal period pi , then there also exists a single map F ∈ Fj (m) with periodic points ξ̂i

of minimal period pi , i = 1, 2, . . . , r , simultaneously. Assuming the existence of such a
map F : Km → Km we can construct a map T : Krm → Krm as follows

T (x1, x2, . . . , xr ) = (F (xr), x1, . . . , xr−1),

which has a periodic point ξ = (ξ̂1, . . . , ξ̂r ) of minimal period r lcm(p1, p2, . . . , pr ).
For example, the map f : K4 → K4 given by

f (y1, y2, y3, y4) = (min{y3, 1} +max{y4, 1} − 1, y1, y2, max{y3, 1} + min{y4, 1} − 1)

belongs to F1(4) and has periodic points (2, 1, 1, 1) and (1, 0, 0, 1) of minimal period 4
and 3, respectively. Note that f is a special case of the map given by (2.1) with n = 4,
σ(1) = 3, τ (1) = 4, σ(2) = τ (2) = 1, σ(3) = τ (3) = 2, σ(4) = 4 and τ (4) = 3.
Consequently, 2 × lcm{3, 4} = 24 ∈ P1(8). Since 24 is not the order of an element of the
symmetric group on eight symbols, a nonlinear map is needed to have a periodic point of
minimal period 24 in K8.

Also note that, since Pj (1) = {1}, one has that Pj (n) ⊂ Pj (n+ 1) for all n ≥ 1 and if
p ∈ Pj (n) and d|p, then d ∈ Pj (n) (j = 1, 2, 3).

To describe the set P3(n) precisely, we use the notion of admissible arrays introduced
in [10].

Definition 2.2. Suppose that (L,≺) is a finite, totally ordered set and that % is a finite set
with n elements. Let Z denote the integers and for each i ∈ L, suppose that θi : Z → % is
a map. We shall say that {θi : Z → % | i ∈ L} is an admissible array on n symbols if the
maps θi satisfy the following conditions.
(i) For each i ∈ L, the map θi : Z → % is periodic of minimal period pi , where

1 ≤ pi ≤ n. Furthermore, for 1 ≤ j < k ≤ pi we have θi(j) 
= θi(k).
(ii) If ≺ denotes the ordering on L and m1 ≺ m2 ≺ · · · ≺ mr+1 is any given sequence

of (r + 1) elements of L and if

θmi (si ) = θmi+1(ti )

for 1 ≤ i ≤ r , then
r∑

i=1

(ti − si ) 
≡ 0 mod ρ,

where ρ = gcd({pmi | 1 ≤ i ≤ r + 1}).
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The concept of an admissible array on n symbols depends on the ordering ≺ on L, but
it has been observed in [10] that if |L| = m, we can assume that L = {i ∈ Z | 1 ≤ i ≤ m}
with the usual ordering and % = {j ∈ Z | 1 ≤ j ≤ n}. An admissible array
{θi : Z → % | i ∈ L} can be identified with a semi-infinite matrix (aij ), i ∈ L, j ∈ Z,
where aij = θi(j). For this reason, we shall sometimes talk about the ‘ith row of an array’.
We shall say that ‘an admissible array has m rows’ if |L| = m.

The period of an admissible array {θi : Z → % | i ∈ L} is defined to be the least
common multiple of the periods of the maps θi , i ∈ L.

Definition 2.3. Suppose that S = {qi | 1 ≤ i ≤ m} is a set of positive integers with
1 ≤ qi ≤ n for 1 ≤ i ≤ m and qi 
= qj for 1 ≤ i < j ≤ m. We call S an array-admissible
set for n if there exists an admissible array on n symbols {θi : Z → % | i ∈ L} such
that θi has minimal period pi and a one-to-one map σ of {1, 2, . . . ,m} onto L such that
qi = pσ(i).

Definition 2.4. Q(n) = {lcm(S) | S ⊂ {1, 2, . . . , n} is array-admissible for n}.
To become more familiar with admissible arrays and the set Q(n), we compute the sets

Q(n) for 1 ≤ n ≤ 6 and refer to [12] for a systematic approach to the computation of Q(n).
First observe that if p is a prime and pα ∈ Q(n) for some integers α ≥ 0 and n ≥ 1,

then pα ≤ n. Furthermore, if an integer q has prime factorization q = p
α1
1 . . . p

αm
m and∑m

j=1 p
αj

j ≤ n, then q ∈ Q(n) (the maps θi in the definition of an admissible array can be
positioned in such a way that the ranges of the maps θi do not intersect and this implies that
the second condition in the definition of an admissible array is void). This last observation
implies that the orders of the elements of the symmetric group on n letters are contained in
the set Q(n). These observations yield Q(1) = {1},Q(2) = {1, 2} and Q(3) ⊂ {1, 2, 3, 6}.
Can 6 ∈ Q(3)? For this we need an admissible array with two maps θ1 and θ2 with
periods 2 and 3. Since n = 3 the intersection of the ranges of θ1 and θ2 is non-empty.
Hence there exist t1, s1 such that θ1(s1) = θ2(t1) and the second condition in the definition
of an admissible array yields t1 − s1 
≡ 0 mod 1, a contradiction. Thus Q(3) = {1, 2, 3}.
Similarly Q(4) = {1, 2, 3, 4}, Q(5) = {1, 2, 3, 4, 5, 6} and Q(6) ⊂ {1, 2, 3, 4, 5, 6, 12}.
Can 12 ∈ Q(6)? We cannot take an admissible array {θ1, θ2} with periods 3 and 4, but
there exists an admissible array {θ1, θ2} with periods 4 and 6; define θ1(j) = j mod 6 and
θ2(j) = j + 1 mod 4. So Q(6) = {1, 2, 3, 4, 5, 6, 12}.

As an illustration of the use of admissible arrays, we prove the following lemma that
will be used in the following; see, [12, Theorem 3.1] for a much more general result.

LEMMA 2.1. Let θ = {θi : Z → % | i ∈ L} be an admissible array. If the periods of the
maps θi , i ∈ L are relatively prime, then the period of the admissible array θ is the order
of a permutation.

Proof. Let Bqi = {θi(j) | j ∈ Z} denote the range of θi , i ∈ L. If there exist integers i1

and i2 in L such that i1 
= i2 and Bqi1
∩ Bqi2


= ∅, then there exist integers s and t such
that θi1(s) = θi2(t), but then condition (ii) of Definition 2.2, implies that t − s 
≡ 0 mod ρ,
where ρ = gcd(qi1, qi2). From the assumption that the periods of the maps θi are relatively
prime, it follows that ρ = 1 and hence t − s 
≡ 0 mod 1, a contradiction.
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This shows that Bqi ∩ Bqj = ∅ for i, j ∈ L with i 
= j . From Definition 2.2(ii), it
follows that the cardinality of the set Bqi equals qi , i ∈ L. Thus

∑
i∈L qi ≤ n and the

disjoint cycle representation for permutations shows that q = lcm{qi | i ∈ L} is the order
of a permutation. ✷

Earlier work by the first author and Scheutzow [10] showed that there is an intimate
connection between the sets Pi(n), i = 1, 2, 3 and Q(n) which can be derived from the
structure of the semilattice generated by a periodic orbit of a map in Fi (n), i = 1, 2, 3.
To explain this connection we need some more definitions. If x, y ∈ Rn, we define x ∧ y

and x ∨ y in the standard way:

x ∧ y := z, zi = min{xi, yi} for 1 ≤ i ≤ n,

x ∨ y := w, wi = max{xi, yi} for 1 ≤ i ≤ n.

If V ⊂ Rn, V is called a lower semilattice if x ∧ y ∈ V whenever x ∈ V and y ∈ V .
If A ⊂ Rn, there is a minimal (in the sense of set inclusion) lower semilattice V ⊃ A,
the lower semilattice generated by A. If |A| < ∞, it follows that |V | < ∞. If V is a
lower semilattice, a map h : V → V is called a lower semilattice homomorphism of V if

h(x ∧ y) = h(x) ∧ h(y) for all x, y ∈ V.

If W ⊂ Rn is a lower semilattice, h : W → W is a lower semilattice homomorphism of W

and ξ ∈ W is a periodic point of minimal period p of h, we let V denote the finite lower
semilattice generated by

A = {hj (ξ) | 0 ≤ j < p}.
From the definitions it follows that h(V ) ⊂ V and hp(x) = x for all x ∈ V . In particular,
h|V is a lower semilattice homomorphism, h|V is one-to-one, onto and

(h|V )−1 = hp−1|V
is also a semilattice homomorphism of V .

The relevance of these ideas in our situation is indicated by the following theorem due
to Scheutzow [14].

THEOREM 2.2. Suppose that f ∈ F3(n) and that ξ ∈ Kn is a periodic point of f of
minimal period p. Let A = {f j (ξ) | 0 ≤ j < p}. If V denotes the finite lower semilattice
generated by A, then f (V ) ⊂ V , f |V is a lower semilattice homomorphism of V ,
f p(x) = x for all x ∈ V and (f |V )−1 = f p−1|V is a lower semilattice homomorphism
of V .

Definition 2.5. If f : D ⊂ Rn → Rn, we shall write f ∈ G1(n) if and only if D is a lower
semilattice f (D) ⊂ D and f is a lower semilattice homomorphism of D. We shall write
p ∈ Q1(n) if and only if there exists a map f ∈ G1(n) and a periodic point ξ ∈ Kn of f

of minimal period p.

Note that from Theorem 2.2, it follows that P3(n) ⊂ Q1(n). Our main theorem
presented in [11] describes the situation precisely.
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THEOREM 2.3. For every positive integer n

P2(n) = P3(n) = Q1(n) = Q(n).

Note that if a map f : Kn → Kn has a periodic point of minimal period p and q is a
divisor of p, then there exists a periodic point of f of minimal period q (if x̄ is a periodic
point of minimal period p and p = mq , then x̄ is a periodic point of f m of minimal
period q). This observation yields the following corollary of Theorem 2.3.

COROLLARY 2.1. If p ∈ Q(n) and q|p then q ∈ Q(n).

Given the very definition of an admissible array, this is indeed a non-trivial consequence
of the main theorem. It allows us to introduce the notion of maximal elements of Q(n).
An integer p ∈ Q(n) is called maximal if there does not exist a q ∈ Q(n), q 
= p and
p divides q . For example, the set of maximal elements of Q(6) comprises the elements
5 and 12. The fact that one can restrict attention to maximal elements is crucial in any
attempt to compute Q(n) explicitly (see [12]).

We end this section with the definition of an auxiliary set of integers that will play an
essential role.

Definition 2.6. We define inductively, for each n ≥ 1, a collection of positive integers
P(n) by P(1) = {1} and, for n > 1, p ∈ P(n) if and only if either:
(A) p = lcm(p1, p2), where p1 ∈ P(n1), p2 ∈ P(n2) and n1 and n2 are positive integers

with n = n1 + n2; or
(B) n = rm for integers r > 1 and m ≥ 1 and p = r lcm(p1, p2, . . . , pr ), where

pi ∈ P(m) for 1 ≤ i ≤ r .

From Theorem 2.1, we obtain that

P(n) ⊂ P1(n) ⊂ P2(n).

Since Theorem 2.3 states that P2(n) = Q(n), we see that the set P(n) provides a ‘lower
bound’ for Q(n).

The set of maximal elements of P(n) can easily be computed and in order to
compute Q(n), it suffices to study the complement of P(n) in Q(n). This approach was
used in [12] to compute Q(n) explicitly for 1 ≤ n ≤ 50. Actually, it turned out that
P(n) = Q(n) for 1 ≤ n ≤ 50. However, in general P(n) is not equal to Q(n). It is proved
in [12, §7] that P(78) is not equal to Q(78) and n = 78 is the smallest known n with P(n)

not equal to Q(n).
In this paper we give a precise asymptotic estimate for the largest element of Q(n)

and P(n), but first we have to collect some further results for linear maps.

3. The relation between linear and nonlinear maps
We have seen that a permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n} induces a linear l1-norm
non-expansive map fσ which, in fact, belongs to F1(n). So the orders of the permutations
on n letters belong to the set Q(n) and the largest order of a permutation on n letters
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provides a lower bound for the largest element of Q(n). Let g(n) denote the largest order
of a permutation on n letters. The fundamental result, due to Landau [5], states that

lim
n→∞

log g(n)√
n log n

= 1. (3.1)

Since some basic properties of g(n) and some arguments of the proof of (3.1) play a role
in the analysis of the largest element of Q(n), we summarize what is known about g(n).
A proof of (3.1) requires the Prime Number Theorem, which states that if π(x) denotes the
number of primes not exceeding x, then

lim
x→∞

π(x) log x

x
= 1. (3.2)

We refer to Miller [8] for a clear presentation of how to derive (3.1) from (3.2) and for
historical notes about g(n). One should note that an explicit upper bound for log g(n) was
only recently obtained and that the function n �→ g(n) has quite complicated behaviour
(see Massias [7]).

Let L(n) denote the set of orders of the permutations on n letters. From the disjoint
cycle representation for permutations, it follows that

L(n) =
{
p ∈ N | p = lcm{m1,m2, . . . ,ms},

mi ≥ 0, i = 1, 2, . . . , s,
m∑

i=1

mi ≤ n, for some s > 0

}
. (3.3)

This representation for the orders of the permutations implies that L(n) ⊂ P(n), so that
g(n) = max{p | p ∈ L(n)} is actually a lower bound for the largest element of P(n).
In fact, the set L(n) is the smallest set of positive integers such that n ∈ L(n) and L(n) is
closed under Definition 2.6(A). This fact, together with the observation made at the end of
§2 that it suffices to compute the maximal elements of L(n), yields a simple procedure to
compute g(n) up to n = 100.

The basic idea of the proof of (3.1) is the fact that the prime factorization of a given
integer tells us whether the integer belongs to L(n). Since this idea also plays a role in the
analysis of the largest element of Q(n), we recall the definition and the basic properties of
the so-called S-function (see also Miller [8]).

Definition 3.1. Let the function S : N → N be defined by S(1) = 1 and S(p) = ∑s
j=1 p

αj

j

for p > 1, where p = ∏s
j=1 p

αj

j is the prime factorization of p.

Lemmas 3.1 and 3.2 below give standard properties of the S-function and are presented
for the reader’s convenience.

LEMMA 3.1. If m ≥ 1 is an integer, then S(m) ≤ m.

Proof. The lemma is trivially true if m = pα
1 , where p1 is a prime and α a non-negative

integer. Now we use mathematical induction with respect to the number of distinct primes
in the prime factorization of m. We can assume that m = p

α1
1 m′, where m′ > p1 and

p1 ≥ 2 is a prime. By induction, S(m′) ≤ m′ and therefore

S(m) = p
α1
1 + S(m′) ≤ p

α1
1 +m′
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and it remains to prove p
α1
1 +m′ ≤ p

α1
1 m′ or, equivalently,

p
α1
1 ≥ m′

m′ − 1
. (3.4)

Since p
α1
1 ≥ 2, m′ > 3 and m′/(m′ − 1) ≤ 3/2 for m′ ≥ 3, the inequality follows. ✷

LEMMA 3.2. If m1,m2, . . . ,mt are positive integers, then

S(lcm(m1,m2, . . . ,mt )) ≤
t∑

i=1

S(mi). (3.5)

Furthermore, if the integers m1,m2, . . . ,mt are relatively prime, so gcd(mi,mj ) = 1,
1 ≤ i < j ≤ t , then equality holds in (3.5).

Proof. For 1 ≤ j ≤ t , let the prime factorization of mj be given by

mj =
s∏

i=1

p
αi(j)

i , αi(j) ≥ 0, pi is prime, 1 ≤ i ≤ s.

If m = lcm(m1,m2, . . . ,mt ), then the prime factorization of m becomes, by definition,

m =
s∏

i=1

p
βi

i , βi = max
1≤j≤t

αi (j), 1 ≤ i ≤ s.

So, by removing possible common factors in mj , 1 ≤ j ≤ t , that do not affect m, we can
write m = m̃1m̃2, . . . , m̃t , where m̃i |mi , gcd(m̃i, m̃j ) = 1, 1 ≤ i < j ≤ t ′, m̃i = 1 and
t ′ ≤ t . In other words,

m̃j =
s∏

i=1

p
βi(j)

i , 1 ≤ j ≤ t ′,

where

βi(j) =
{
αi(j) if αi(j) = βi and no j ′ < j exists with αi(j

′) = βi,

0 otherwise.

Therefore, by construction,

S(m) =
t ′∑

j=1

S(m̃j ) and S(m̃j ) ≤ S(mj ).

This proves the lemma. ✷

Using the S-function and Lemmas 3.1 and 3.2, we can write

L(n) = {m ∈ N | S(m) ≤ n}.
From the definitions, it follows that L(n) = P(n) = Q(n) for 1 ≤ n ≤ 5 and the set

Q(6) = P(6) = L(6)∪ {12}. For n = 7 one again has L(n) = P(n) = Q(n), but actually
7 is the largest integer n for which this equality holds.

THEOREM 3.1. For n ≥ 8, the set P(n) is strictly bigger than the set L(n).
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Proof. The proof of the theorem is based on the characterization of L(n) using the
S-function. We shall construct elements qn ∈ P(n) with the property that S(qn) > n.
The construction is based on the fact that for any integer n ≥ 1, there exists a prime
between n and 2n.

Define pk , k ≥ 2, to be the largest prime between 2k−1 and 2k . We claim that

q2k = 2k × 3× 7× · · · × pk−1 ∈ P(2k), k ≥ 3. (3.6)

The proof of the claim uses mathematical induction. For k = 3, we have that 3 ∈ P(4)
and 4 ∈ P(4). Therefore, it follows, by Definition 2.6(B) with r = 2, that

q8 = 2 lcm(4, 3) = 23 × p2 ∈ P(8).

Suppose that the claim holds for all k with 3 ≤ k < l and that

q2l−1 = 2l−1 × 3× 7× · · · × pl−2 ∈ P(2l−1).

Since, by construction, pl−1 ∈ P(2l−1), it follows from Definition 2.6(B) with r = 2 that

q2l = 2 lcm(q2l−1, pl−1) ∈ P(2l ).

This proves the claim. To define qn for 2k < n < 2k+1, we define the elements qn for
8 < n < 16 explicitly and again proceed by induction. Define

q8 = q9 = q10 = 8× 3, q11 = 4× 3× 5

and
q12 = q13 = q14 = q15 = 8× 3× 5.

Then, by construction, qn ∈ P(n) and S(qn) > n for 8 < n < 16. In general, we define
for 2k < n < 2k +∑k−1

l=2 pl ,
qn = q2k .

Since S(q2k ) = 2k +∑k−1
l=2 pl , it follows that for 2k < n < 2k +∑k−1

l=2 pl ,

qn ∈ P(2k) ⊂ P(n) and S(qn) > n.

Therefore, qn ∈ P(n) but qn 
∈ L(n) for 2k < n < 2k +∑k−1
l=2 pl .

By our construction, for k ≥ 4, we have

k−1∑
l=2

pl > 2+
k−1∑
l=2

2l−1 = 2k−1,

and we can define qn for 2k + ∑k−1
l=2 pl ≤ n < 2k+1, k ≥ 4, as follows. First write

n = n′ + pk , and note that we have

n′ = n− pk < 2k + 2k−1 + 2k−1 − 2k−1 = 2k + 2k−1 < 2k +
k−1∑
l=2

pl

and

n′ = n− pk ≥ 2k +
k−1∑
l=2

pl − 2k > 2k−1.
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Therefore, for k ≥ 4 and for integers n with 2k +∑k−1
l=2 pl ≤ n < 2k+1, it follows that

2k−1 < n′ < 2k +
k−1∑
l=2

pl.

Now take qn′ ∈ P(n′) and pk ∈ P(pk), so, by Definition 2.6(A), lcm(qn′ , pk) ∈
P(n′ + pk) = P(n). Thus, for integers n with 2k + ∑k−1

l=2 pl ≤ n < 2k+1, we can
define

qn = lcm(qn′ , pk) ∈ P(n), n′ = n− pk.

It follows by mathematical induction and by our construction that S(qn′) > n′.
Furthermore, by the definition of q9, . . . , q15 and by the construction of qn in general,
we see that the largest prime in the prime factorization of qn′ is less than or equal to pk−1.
We conclude that the integers qn′ and pk are relatively prime, so

S(qn) = S(qn′)+ S(pk) > n′ + pk = n.

Thus qn 
∈ L(n) also for n with 2k +∑k−1
l=2 pl ≤ n < 2k+1. This completes the proof. ✷

Theorem 3.1 implies that for n ≥ 8, the set Q(n) is strictly bigger than L(n). In the
next section we discuss the asymptotic behaviour of the largest element of Q(n).

4. An asymptotic estimate for the largest element
We are now ready to prove an asymptotic estimate for the largest element of Q(n).

THEOREM 4.1. If γ (n) denotes the largest element of Q(n), then

lim
n→∞

log γ (n)√
n log n

= 1. (4.1)

Proof. Let the prime factorization of γ (n) be given by

γ (n) =
t∏

i=1

p
αi

i with p1 < p2 < p3 < · · · < pt .

Since γ (n) belongs to Q(n), we have that γ (n) = lcm(q1, q2, . . . , qs), where qi are the
periods of maps θi of an admissible array θ = (θ1, θ2, . . . , θs). Therefore, basic properties
of the least common multiple imply that for every factor p

αi

i of γ (n), there exists a qji ,
1 ≤ ji ≤ s, such that pαi |qji . From the definition of an admissible array, one has that the
periods of the maps are less than or equal to n, qi ≤ n for 1 ≤ i ≤ s. So we have

p
αi

i ≤ n, 1 ≤ i ≤ t . (4.2)

Define the integer l, 1 ≤ l ≤ t , such that pl ≤ √
n and pl+1 >

√
n. Set

γ1(n) =
l∏

i=1

p
αi

i and γ2(n) =
t∏

i=l+1

p
αi

i . (4.3)

From Corollary 2.1, it follows that γ1(n) ∈ Q(n) and γ2(n) ∈ Q(n).
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First we analyse γ2(n). Note that

γ2(n) =
t∏

l+1

p
αi

i with pi >
√

n, l + 1 ≤ i ≤ t .

Together with (4.2) this implies that αi = 1 for l+1 ≤ i ≤ t . Hence the prime factorization
of γ2(n) is given by

γ2(n) =
t∏

l+1

pi with pi >
√

n, l + 1 ≤ i ≤ t . (4.4)

Since γ2(n) belongs to Q(n), we have that γ2(n) = lcm(q ′1, q ′2, . . . , q ′m), where q ′i are
the periods of maps ψi of an admissible array ψ = (ψ1, ψ2, . . . , ψm). Therefore, for
every prime factor pi , l + 1 ≤ i ≤ t of γ2(n), there exists a q ′k(i) ∈ {q ′1, q ′2, . . . , q ′m}.
Since q ′k(i) ≤ n and pi >

√
n for l + 1 ≤ i ≤ t , it follows that there cannot be another

pj , j 
= i, such that pj |q ′k(i). Thus pi = q ′k(i) for l + 1 ≤ i ≤ t and the periods of the
admissible array ψ corresponding to γ2(n) are just a permutation of the prime factors in
the prime factorization (4.4) of γ2(n). This implies, in particular, that gcd(q ′i , q ′j ) = 1 for
1 ≤ i < j ≤ m. So an application of Lemma 2.1 yields that γ2(n) ∈ L(n). Thus,

γ2(n) ≤ g(n). (4.5)

In order to estimate γ1(n), we use (4.2) and the prime factorization (4.3) of γ1(n).
If π(

√
n) denotes the number of primes less than

√
n, then

γ1(n) =
l∏

i=1

p
αi

i ≤ nπ(
√

n). (4.6)

Thus, using (4.5) and (4.6) we arrive at the following basic estimate for γ (n), the largest
element of Q(n),

g(n) ≤ γ (n) ≤ g(n)nπ(
√

n). (4.7)

The Prime Number Theorem, see (3.2), states that

lim
x→∞

π(x) log x

x
= 1.

Furthermore, there exist effective bounds that improve this estimate: see [13, Theorem 1],

π(
√

n) ≤ 2

√
n

log n

(
1+ 3

log n

)
for n > 1. (4.8)

Taking the logarithm in (4.7) and using (4.8), we have

log g(n) ≤ log γ (n) ≤ log g(n)+ π(
√

n) logn

≤ log g(n)+ 2
√

n

(
1+ 3

log n

)
, n > 1. (4.9)

From (3.1) and the squeezing lemma, it follows that

lim
n→∞

log γ (n)√
n log n

= 1.

This completes the proof of the theorem. ✷

https://doi.org/10.1017/S0143385702001669 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385702001669


Asymptotic estimates 1211

The estimate (4.9) actually gives an effective upper bound for log γ (n) in terms of g(n).
Regarding g(n), Massias [7] derived an explicit upper bound for g(n) and determined the
value of n at which (log g(n) −√

n log n) attains a maximum. Thus, we actually have an
effective upper bound for log γ (n).

The known upper bound for the largest element of Q(n) is equal to lcm(1, 2, . . . , n)
(see [14, 15]). This bound has been slightly improved in [9] and it was shown that the
largest element of Q(n) is less than 2n (see [9, pp. 366–367]). These estimates shows
that our bound for the logarithm of the largest element is rather sharp. However, one has
to realize that a sharp bound that directly applies to the largest element in Q(n) is still
lacking.

Since L(n) ⊂ P(n) and Theorem 2.3 implies that P(n) ⊂ Q(n), the same estimate
(4.1) also holds for the largest element of P(n).

COROLLARY 4.1. If γ0(n) denotes the largest element of P(n), then

lim
n→∞

log γ0(n)√
n log n

= 1. (4.10)

5. Further analysis of the S-function
We have observed in §3 that a positive integer q is an element of L(n) if and only if
S(q)/n ≤ 1. Thus one approach to understanding the difference between P(n) and Q(n)

or between P(n) and L(n) is to study {S(q)/n | q ∈ Q(n)} or {S(q)/n | q ∈ P(n)}.
In particular, it is of interest to study sequences (cn)n≥1 and (dn)n≥1 defined by

cn = max

{
S(q)

n

∣∣∣∣ q ∈ Q(n)

}
and dn = max

{
S(q)

n

∣∣∣∣ q ∈ P(n)

}
. (5.1)

It is proved in [12] that P(n) = Q(n) for 1 ≤ n ≤ 50, so cn = dn for 1 ≤ n ≤ 50; and
since P(n) ⊂ Q(n) for all n, we always have dn ≤ cn. With the aid of a computer (see [12]
for the case 1 ≤ n ≤ 50) we can show that, at least for moderate values of n, the sequence
(dn)n≥1 is irregular and takes relatively small values. Actually, the maximum value of dn

for 1 ≤ n ≤ 80 arises for n = 68, see Table 1 below.
In this section we shall present some preliminary results concerning the numbers

(S(q)/n) for q ∈ Q(n) or q ∈ P(n). As we discuss below, it is very likely that a deeper
understanding will involve some delicate number theoretical issues.

PROPOSITION 5.1. If q is the period of an admissible array on n symbols with two rows,
then S(q) ≤ (3/2)n. If q is the period of an admissible array on n symbols with three
rows, then S(q) ≤ 2n. If q ∈ Q(n) and q = p

α1
1 p

α2
2 , where p1 and p2 are primes, then

S(q) ≤ (3/2)n. If q ∈ Q(n) and q = p
α1
1 p

α2
2 p

α3
3 , where p1, p2 and p3 are primes, then

S(q) ≤ 2n.

Proof. Let L = {1, 2} with the usual ordering, % denote a set with n elements and
{θi : Z → % | i ∈ L} denote an admissible array (see Definition 2.2) whose period
is q . If qi ≤ n denotes the period of θi , then q = lcm(q1, q2). Let Bqi denote the range
of θi , so |Bqi | = qi . If gcd(q1, q2) = 1, then Definition 2.2(ii) implies that Bq1 ∩ Bq2 = ∅,
so q1 + q2 ≤ n. It follows in this case that

S(lcm(q1, q2)) ≤ S(q1)+ S(q2) ≤ q1 + q2 ≤ n.
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TABLE 1. dn = max{S(q)/n : q ∈ P (n)} for 1 ≤ n ≤ 80.

n dn n dn n dn n dn

1 1 21 31
21 41 66

41 61 88
61

2 1 22 16
11 42 11

7 62 89
62

3 1 23 32
23 43 66

43 63 10
7

4 1 24 35
24 44 35

22 64 61
32

5 1 25 7
5 45 71

45 65 122
65

6 7
6 26 37

26 46 71
46 66 127

66

7 1 27 43
27 47 72

47 67 127
67

8 11
8 28 43

28 48 25
16 68 131

68

9 11
9 29 43

29 49 75
49 69 131

69

10 13
10 30 47

30 50 3
2 70 131

70

11 13
11 31 47

31 51 77
51 71 131

71

12 4
3 32 29

16 52 79
52 72 131

72

13 16
13 33 58

33 53 79
53 73 131

73

14 9
7 34 59

34 54 14
9 74 131

74

15 6
5 35 59

35 55 84
55 75 131

75

16 13
8 36 5

3 56 3
2 76 7

4

17 26
17 37 60

37 57 28
19 77 134

77

18 13
9 38 61

38 58 42
29 78 24

13

19 26
19 39 64

39 59 85
59 79 144

79

20 31
20 40 33

20 60 29
20 80 73

40

If Bq1 ∩ Bq2 
= ∅, Definition 2.2(ii) implies that gcd(q1, q2) = ρ ≥ 2. Thus there
exists a prime factor p of ρ such that either (a) lcm(q1, q2) = lcm(q1/p, q2) or (b)
lcm(q1, q2) = lcm(q1, q2/p), depending on which term has the higher power of p as a
factor. In case (a)

S(lcm(q1, q2)) = S(lcm(q1/p, q2)) ≤ S(q1/p)+ S(q2)

≤ q1

p
+ q2 ≤ n

(
1+ 1

p

)
≤ 3

2
n.

The proof that S(q) ≤ (3/2)n in case (b) is the same.

Next suppose that q is the period of an admissible array {θi : Z → % | i ∈ L} on n

symbols with three rows. We can assume that L = {1, 2, 3} has the standard ordering, and
for convenience we take % = {j ∈ N | 1 ≤ j ≤ n}. As before, let qi ≤ n denote the

https://doi.org/10.1017/S0143385702001669 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385702001669


Asymptotic estimates 1213

period of θi and let Bqi denote the range of θi . If q1 + q2 + q3 ≤ 2n, we see that

S(q) = S(lcm(q1, q2, q3)) ≤
3∑

i=1

S(qi) ≤
3∑

i=1

qi ≤ 2n.

If q1 + q2 + q3 > 2n, one can easily verify that Bq1 ∩ Bq2 ∩ Bq3 
= ∅. To see this, let
χi(t), t ∈ {1, 2, . . . , n}, denote the characteristic function of Bqi , so χi(t) = 1 if and only
if t ∈ Bqi . If

⋂3
i=1 Bqi = ∅, then

∑3
i=1 χi(t) ≤ 2 for all t and

2n ≥
n∑

t=1

( 3∑
i=1

χi(t)

)
=

3∑
i=1

( n∑
t=1

χi(t)

)
≥

3∑
i=1

qi > 2n,

a contradiction. It follows that there exist s1, t1 = s2 and t2 such that

θ1(s1) = θ2(t1) = θ2(s2) = θ3(t2).

If ρ = gcd(q1, q2, q3), Definition 2.2(ii) implies that

(s1 − t1)+ (s2 − t2) 
≡ 0 mod ρ,

so we must have ρ > 1. If p is a prime factor of ρ, there exist an integer α ≥ 1 and an
integer j ∈ L such that pα|qj but pα+1 
 | qi for i ∈ L and i 
= j . If we denote by i and k

the elements of L which are not equal to j , we find that

S(q) = S(lcm(qj , qi, qk)) = S(lcm(qj , qi/p, qk/p))

≤ S(qj )+ S(qi/p)+ S(qk/p)

≤ qj + qi/p + qk/p ≤ n

(
1+ 2

p

)
≤ 2n.

To obtain the final statement of Proposition 5.1, note that if q ∈ Q(n) and q =∏k
i=1 p

αi

i , where αi ∈ N and pi is a prime for 1 ≤ i ≤ k, then q is the period of an
admissible array on n symbols and m rows, m ≤ k. A proof of this for the case k = 3 is
given in the proof of Corollary 5.5 on p. 28 of [12] and the general argument is the same. ✷

Remark 5.1. If q ∈ Q(n) and q is the period of an admissible array on n symbols and
k ≤ 3 rows, then it is proved in [12] that q ∈ P(n). See Proposition 5.1 and Theorem 5.2
on p. 24 in [12].

Remark 5.2. If q is the period of an admissible array on n symbols and three rows, one can
prove that S(q) ≤ (7/4)n, so the estimate in Proposition 5.1 is not optimal. The proof that
S(q) ≤ (7/4)n depends on first considering several cases depending on the intersection
pattern of Bqi ∩Bqj for i, j ∈ L and then carefully using Definition 2.2(ii). For the sake of
brevity, we omit the proof. We shall prove below (see Remark 5.3) that the constants 3/2
and 7/4 are optimal.

Given an interval of real numbers J , a real number ε and a set of real numbers T , we
shall say that ‘T is ε-dense in J ’ if, for each x ∈ J , there exists t ∈ T with |t − x| < ε.

LEMMA 5.1. Suppose that 0 < ε < 1, that p is a prime number and that m is a positive
integer such that for all ν ≥ m, the interval ((1 − ε/2)pν, pν) contains at least p − 1
distinct prime numbers. Then if µ is a positive integer and δ = δ(µ) := ε/2 + p−µ, the
set {S(q)/pm+µ | q ∈ P(pm+µ)} is δ-dense in the interval (0, 2).
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Proof. By assumption, for each integer ν ≥ m, there exist at least p − 1 distinct primes
pν,j , 1 ≤ j ≤ p − 1, such that (

1− ε

2

)
pν < pν,j < pν.

For ν = m, we have that pm ∈ P(pm) and pm,j ∈ P(pm) for 1 ≤ j ≤ p − 1, so the
properties of the sets P(k), k ≥ 1, imply that

p lcm(pm, pm,j | 1 ≤ j ≤ p − 1) = pm+1
p−1∏
j=1

pm,j ∈ P(pm+1).

Arguing by mathematical induction, assume for some µ ≥ 1 that we have proved that

pm+µ
m+µ−1∏
ν=m

p−1∏
j=1

pν,j ∈ P(pm+µ). (5.2)

It follows that

p lcm

(
pm+µ

m+µ−1∏
ν=m

p−1∏
j=1

pν,j , pm+µ,i

∣∣∣∣ 1 ≤ i ≤ p − 1

)

= pm+µ+1
m+µ∏
ν=m

p−1∏
j=1

pν,j ∈ P(pm+µ+1).

By mathematical induction we conclude that (5.2) holds for all µ ≥ 1.
Recall (see [12]) that if q ∈ P(k), then any divisor of q is also an element of P(k).

For each ν ≥ m, let Aν be a subset of {j ∈ N | 1 ≤ j ≤ p − 1} and let aν = |Aν |, the
cardinality of Aν . If Aν is empty, define

∏
j∈Aν

pν,j = 1 and
∑

j∈Aν
pν,j = 0. Select a

fixed integer µ ≥ 1, select a non-negative integer α ≤ m+ µ and observe that

q := pα
m+µ−1∏
ν=m

∏
j∈Aν

pν,j ∈ P(pm+µ), (5.3)

because it is a divisor of the left-hand side of (5.2). If α > 0, we see that

p−(m+µ)S(q) = pα−m−µ +
m+µ−1∑
ν=m

∑
j∈Aν

pν,j

pm+µ

> pα−m−µ +
m+µ−1∑
ν=m

(
1− ε

2

)
aνp

ν−m−µ

and if α = 0 and q > 1,

p−(m+µ)S(q) >

m+µ−1∑
ν=m

(
1− ε

2

)
aνp

ν−m−µ.

Note that an upper bound on p−(m+µ)S(q) follows by replacing (1 − ε/2) by 1 in these
two inequalities. Recall that any real number x, 0 ≤ x ≤ 1, can be written in the form

x =
∞∑
t=1

btp
−t ,
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where 0 ≤ bt ≤ p−1 is an integer for t ≥ 1. Given such a number x, define aν = bm+µ−ν

for m ≤ ν ≤ m + µ − 1, α = m + µ and let q be as in (5.3), with |Aν | = aν . Then we
find that

0 ≤ (1+ x)− p−(m+µ)S(q) ≤ (1+ x)− 1−
(

1− ε

2

) µ∑
t=1

btp
−t

=
∞∑
t=1

btp
−t −

(
1− ε

2

) µ∑
t=1

btp
−t

≤ ε

2

µ∑
t=1

btp
−t +

∞∑
t=µ+1

btp
−t

<
ε

2
+ p−µ.

It follows that P(pm+µ) is δ-dense in [1, 2] with δ := ε/2 + p−µ.
Set δ := ε/2 + p−µ. If x is as above and 0 ≤ x ≤ δ, select q = 1 and note

that |x − p−(m+µ)S(q)| < δ, because S(1) = 1. If x > δ, define aν = bm+µ−ν for
m ≤ ν ≤ m+µ−1 and define α = 0. Note that aν > 0 for some ν with m ≤ ν ≤ m+µ−1,
since otherwise x ≤ p−µ < δ. Arguing as above, we see that

0 ≤ x − p−(m+µ)S(q) ≤
∞∑
t=1

btp
−t −

(
1− ε

2

) µ∑
t=1

btp
−t <

ε

2
+ p−µ = δ.

It follows that P(pm+µ) is δ-dense in [0, 1], which completes the proof. ✷

Remark 5.3. Take p = 2 and 0 < ε < 1 in Lemma 5.1. The Prime Number Theorem
implies that there exists an integer m ≥ 1 such that for all integers ν ≥ m, the interval
((1 − ε/2)2ν, 2ν) contains a prime pν,1. Thus the hypotheses of Lemma 5.1 are satisfied.
If we take µ = 1 in (5.2), we see that 2m+1pm,1 ∈ P(2m+1) and

S(2m+1pm,1) = 2m+1 + pm,1 ≥ 2m+1 +
(

1− ε

2

)
2m = 2m+1

(
3

2
− ε

4

)
.

Since ε > 0 was arbitrary, this shows the constant 3/2 in Proposition 5.1 is optimal. If we
take µ = 2 in (5.2), we also see that the constant 7/4 in Remark 5.2 is optimal.

THEOREM 5.1. Given ε > 0, there exists a positive integer m = m(ε) such that the set
{S(q)/n | q ∈ P(n)} is ε-dense in the interval (0, 2) for all n ≥ m.

Proof. Select ε, 0 < ε < 1, and let pk denote the kth prime. By using the Prime Number
Theorem, we see that there exists an integer N ≥ 1 such that the interval ((1−ε/2)pj

n, p
j
n)

contains at least pn − 1 primes for all n ≥ N and all j ≥ 2. For n ≥ N , if, in the
notation of Lemma 5.1, we write p = pn, m = 2 and µ = 1, Lemma 5.1 implies that
{S(q)/p3

n | q ∈ P(p3
n)} is δ-dense in (0, 2) for δ = ε/2+p−1

n . Furthermore, the argument
in Lemma 5.1 actually showed that for each x ∈ [0, 2], there exists q ∈ P(p3

n) such that

0 ≤ S(q)

p3
n

≤ 2 and

∣∣∣∣x − S(q)

p3
n

∣∣∣∣ ≤ δ.
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By using the Prime Number Theorem again, we see that there exists an integer N1 ≥ N

such that for any n ≥ N1, p−1
n < ε/6 and (1− ε/6)p3

n+1 ≤ p3
n. If m ≥ pN1 , select n ≥ N1

such that p3
n ≤ m < p3

n+1. If x ∈ [0, 2], we have seen that there exists q ∈ P(p3
n) ⊂ P(m)

with 0 ≤ S(q)/p3
n ≤ 2 and ∣∣∣∣x − S(q)

p3
n

∣∣∣∣ ≤ δ = ε

2
+ p−1

n .

For this q , it follows that∣∣∣∣x − S(q)

m

∣∣∣∣ ≤
∣∣∣∣x − S(q)

p3

∣∣∣∣+
∣∣∣∣S(q)

p3
− S(q)

m

∣∣∣∣
≤ δ + S(q)

p3
n

[
1− p3

n

m

]

≤ δ + 2

[
1− p3

n

p3
n+1

]
< ε,

which completes the proof. ✷

Theorem 5.1 implies that lim infn→∞ dn ≥ 2, where dn is as in (5.1); but we believe
this estimate is not representative for large n. In fact we make the following conjecture.

CONJECTURE 5.1. For dn as in (5.1) one has lim supn→∞ dn = ∞.

Conjecture 5.1 would imply (since dn ≤ cn) that lim supn→∞ cn = ∞, but the converse
is not known to be true, so we also propose a weaker conjecture.

CONJECTURE 5.2. For cn as in (5.1) one has lim supn→∞ cn = ∞.

It seems that proving Conjecture 5.1 may be closely related to a difficult question in
the theory of transcendental numbers. Indeed, we suspect that if one knew the truth of the
following purely number theoretical conjecture, one might be able to prove Conjecture 5.1.

CONJECTURE 5.3. There exists a strictly increasing sequence of prime numbers (pk)k≥1

such that {(logpj )
−1 | 1 ≤ j ≤ N} is linearly independent over the rational numbers Q

for every N ≥ 1.

Indeed, as we show below, a slightly weaker version of Conjecture 5.3 implies that
lim supn→∞ dn ≥ 3 and, at present, the only way we know how to prove this result is
essentially to assume Conjecture 5.3.

We are indebted to our colleague at Rutgers, Professor Jozsef Beck, who has pointed
out to us that the truth of Conjecture 5.3 would follow from the so-called Schanuel
Conjecture—see [2, p. 120]. Recall that complex numbersα1, α2, . . . , αN are algebraically
independent over Q if they do not satisfy a polynomial equation p(α1, α2, . . . , αN) = 0,
where p is a non-zero polynomial in N variables with coefficients in Q. Schanuel’s
Conjecture asserts that if the complex numbers α1, α2, . . . , αN are linearly independent
over Q, then at least N of the 2N numbers αj , e

αj , 1 ≤ j ≤ N , are algebraically
independent over Q. Notice that if p1, p2, . . . , pN are distinct prime numbers, then
the Prime Factorization Theorem implies that log p1, log p2, . . . , log pN are linearly
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independent over Q. Taking αj = log pj , Schanuel’s Conjecture would imply that the
numbers log pj , 1 ≤ j ≤ N , are algebraically independent over Q, so the numbers
(log pj )

−1, 1 ≤ j ≤ N , would be linearly independent over Q.
It seems that a deeper analysis of the sets P(n) and Q(n) involves a theorem of

Kronecker which can be formulated as follows (see [16, p. 80]). Given a real ν1 × ν2

matrix A and a real ν1-vector b, the following statements are equivalent:
(i) for every ε > 0 there exists x ∈ Zν2 such that ‖Ax − b‖ < ε;
(ii) if y ∈ Rν1 and y$A ∈ Zν2 , then y$b ∈ Z.

As an application of Kronecker’s Theorem and an initial indication of the importance
of Conjecture 5.3 we obtain the following.

LEMMA 5.2. Assume that p1, p2, . . . , pN are primes such that {(log pi)
−1 | 1 ≤ i ≤ N}

is linearly independent over Q. For every ε > 0 and every positive integer n∗, there exist
positive integers n ≥ n∗ and αj , 1 ≤ j ≤ N , such that

(1− ε)n < p
αj

j ≤ n. (5.4)

Proof. By relabelling we can assume that pj < pj+1 for 1 ≤ j < N . Let q > pN be a
prime so large that q−N(q − 1)N > 1 − ε/2. The idea of the proof is to use Kronecker’s
Theorem to find positive integral solutions αj , 1 ≤ j ≤ N , of the approximate equations

p
αj

j p
−αj+1
j+1 ≈ q − 1

q
, 1 ≤ j < N. (5.5)

Notice that the prime factorization theorem implies that none of the equations (5.5) can
have an exact solution. Taking logarithms gives

αj log pj − αj+1 log pj+1 ≈ log
q − 1

q
, 1 ≤ j < N. (5.6)

If x is an N-column vector and b is an (N − 1)-column vector with xj = αj , 1 ≤ j ≤ N ,
and bj = log((q − 1)/q), 1 ≤ j < N , and if A = (aij ) is the (N − 1)× N matrix with
aii = log pi , ai,i+1 = −log pi+1 for 1 ≤ i ≤ N − 1 and aij = 0 otherwise, then we
wish to find solutions x ∈ ZN of Ax ≈ b. None of the equations (5.6) can have exact
integral solutions, but Kronecker’s Theorem implies that for every δ > 0, there exists
x ∈ ZN with 0 < ‖Ax − b‖ < δ, if, whenever y ∈ RN−1 and y$A ∈ ZN , it follows
that y$b ∈ Z. If the components of y are yj , 1 ≤ j ≤ N − 1, the equation y$A ∈ ZN

implies that y1 log p1 ∈ Z, −yj−1 log pj−1 + yj log pj ∈ Z for 2 ≤ j ≤ N − 1 and
−yN−1 log pN ∈ Z. We derive from this that there are integers mj , 1 ≤ j ≤ N , such that

yk =
k∑

j=1

mj

log pj

, 1 ≤ k ≤ N − 1, and yN−1 = − mN

log pN

. (5.7)

Using the equation for yN−1 in (5.7) we find that

N∑
j=1

mj

log pj

= 0, (5.8)
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which implies that mj = 0 and yj = 0 for 1 ≤ j ≤ N and y$b = 0. By Kronecker’s
Theorem, for every δ > 0, there exists α = (α1, α2, . . . , αN ) ∈ ZN such that, for
1 ≤ j ≤ N − 1

log
q − 1

q
− δ < αj log pj − αj+1 log pj+1 < log

q − 1

q
+ δ. (5.9)

Since none of the equations (5.9) has an exact integral solution, for any a > 0 we can
arrange, by taking δ > 0 sufficiently small, that there is a solution (α1, α2, . . . , αN ) ∈ ZN

of (5.9) such that |αj | ≥ a for 1 ≤ j ≤ N . If

δ < log(q/(q − 1)) and δ + log(q/(q − 1)) < log 2

(both of which are true for δ > 0 sufficiently small), one can easily check that all
the integers αj , 1 ≤ j ≤ N , which solve (5.9) are strictly positive or all are strictly
negative. If the αj solving (5.9) are strictly positive and δ < log(q/(q − 1)), we obtain for
1 ≤ j < N

p
αj+1
j+1 exp[log((q − 1)/q)− δ] < p

αj

j < p
αj+1
j+1 exp[log((q − 1)/q)+ δ]. (5.10)

If the αj solving (5.9) are strictly negative and δ < log(q/(q−1)), we write βj = −αj > 0
and observe that, for 1 ≤ j < N ,

p
βj

j exp[log((q − 1)/q)− δ] < p
βj+1
j+1 < p

βj

j exp[log((q − 1)/q)+ δ]. (5.11)

In the case that the αj are positive, we deduce from (5.11) that, since δ < log(q/(q − 1)),
p

αj

j < p
αj+1
j+1 for 1 ≤ j < N and

p
αN

N ((q − 1)/q)N exp(−Nδ) < p
αj

j < p
αN

N , 1 ≤ j < N. (5.12)

If we choose δ > 0 so small that exp(−Nδ)> (1 − ε/2), define n = p
αN

N and recall that
((q − 1)/q)N > 1− ε/2, we see that (5.12) implies that

(1− ε)n < p
αj

j ≤ n, 1 ≤ j ≤ N.

Note that by taking δ > 0 sufficiently small, we can ensure that αN is as large as desired
and guarantee that pαN

N = n ≥ n∗.
In the case that the αj are negative, we replace αj by βj = −αj and use (5.10). In this

case we have n = p
β1
1 and a similar argument completes the proof. ✷

Our next theorem generalizes aspects of Theorem 5.1.

THEOREM 5.2. Assume that p1, p2, . . . , pN are prime numbers such that the numbers
(log pj )

−1, 1 ≤ j ≤ N , are linearly independent over Q. Then, for each ε, 0 < ε < 1/2,
and each positive integer n∗, there exists n ≥ n∗ and elements qj ∈ P(n), 1 ≤ j ≤ N ,
such that:
(a) gcd(qj , qk) = 1 for 1 ≤ j < k ≤ N;
(b) S(qj ) ≥ (2− ε)n for 1 ≤ j ≤ N; and
(c) qj has a factor of the form p

αj

j , αj ∈ N, where (1− ε/4)n < p
αj

j ≤ n.
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In general, without any assumptions on the primes pj , 1 ≤ j ≤ N , if p1 = N and if there
exists an integer n ≥ 1 and elements qj ∈ P(n) which satisfy (a), (b) and (c) for some ε,
0 < ε < 1/2, then p1 lcm(q1, . . . , qN) ∈ P(p1n) and

S(p1 lcm(q1, q2, . . . , qN)) ≥
[

3− 5ε

4
− 1

p1

]
(p1n).

Proof. Select ε, 0 < ε < 1/2, let θ := (1 − ε/2) and r := ∑N
j=1 pj . The Prime Number

Theorem implies that there exists m ≥ 2 such that for all integers ν ≥ m and for each j ,
1 ≤ j ≤ N , the interval [θpν

j , p
ν
j ] contains at least r distinct primes. For given integers

i 
= j , 1 ≤ i, j ≤ N and a given integer ν ≥ 1, notice that the interval [θpν
j , p

ν
j ] has

non-empty intersection with at most one interval of the form [θpk
i , p

k
i ], k ≥ 1. Suppose

that [θpk
i , p

k
i ] and [θpl

i, p
l
i ], 1 ≤ k < l, both intersect [θpν

j , p
ν
j ]. Then we must have

θpν
j ≤ pk

i < θpl
i ≤ pν

j ,

which implies that
pν

j

θpν
j

= 1

θ
>

θpl
i

pk
i

≥ θpi ≥ 2θ.

However, the inequality 1 > 2θ2 is impossible for θ = 1− ε/2 and 0 < ε < 1/2.
We now refine the argument in Lemma 5.1. For ν ≥ m, select p1 − 1 primes p1,ν,j ,

1 ≤ j ≤ p1 − 1 such that θpν
1 < p1,ν,j < pν

1 . The argument in the proof of Lemma 5.1
(see (5.2)) shows that for µ1 ≥ 1,

q1,µ1 := p
m+µ1
1

m+µ1∏
ν=m

p1−1∏
j=1

p1,ν,j ∈ P(p
m+µ1
1 ).

For a given ν ≥ m, at most one of the intervals [θpk
1, p

k
1] intersects the interval [θpν

2, p
ν
2 ].

Thus for each ν ≥ m, there exist primes p2,ν,j , 1 ≤ j ≤ p2 − 1, such that θpν
2 < p2,ν,j

< pν
2 and none of the primes p2,ν,j lies in the set

{p1,k,i | k ≥ m, 1 ≤ i ≤ p1 − 1} ∪ {p1}.
As in Lemma 5.1, it follows that for µ2 ≥ 1

q2,µ2 := p
m+µ2
2

m+µ2∏
ν=m

p2−1∏
j=1

p2,ν,j ∈ P(p
m+µ2
2 ).

Our construction ensures that gcd(q1,µ1, q2,µ2) = 1 for all µ1 ≥ 1 and µ2 ≥ 1.
Continuing in this way we see that for each t , 1 ≤ t ≤ N , and each ν ≥ m, there exist

pt − 1 primes pt,ν,j , 1 ≤ j ≤ pt − 1, such that θpν
t < pt,ν,j < pν

t and

pt,ν,j 
∈
t−1⋃
s=1

({ps,ν,j | ν ≥ m, 1 ≤ j ≤ ps − 1} ∪ {ps}).

It follows as in Lemma 5.1 that for µt ≥ 1,

qt,µt := p
m+µt
t

m+µt∏
ν=m

pt−1∏
j=1

pt,ν,j ∈ P(p
m+µt
t ).
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Our construction ensures that for 1 ≤ s < t ≤ N and for all positive integers µs and µt ,
gcd(qs,µs , qt,µt ) = 1.

By Lemma 5.2, there exist arbitrarily large positive integers α1, α2, . . . , αN and an
integer n ≥ n∗ such that (1 − ε/4)n < p

αt
t ≤ n for 1 ≤ t ≤ n. We define µt = αt − m

and qt := qt,µt , so qt ∈ P(p
αt
t ) ⊂ P(n). Our previous remarks show that conditions (a)

and (c) of Theorem 5.2 are satisfied. By Lemma 5.1, there exists a ≥ 1 such that if αt ≥ a

for 1 ≤ t ≤ N , then
S(qt,µt ) ≥

(
2− ε

2

)
p

αt
t , 1 ≤ t ≤ N,

and by Lemma 5.2 we can assume that αt ≥ a for 1 ≤ t ≤ N . It follows that

S(qt,µt ) ≥
(

2− ε

2

) (
1− ε

4

)
n > (2− ε)n,

so Theorem 5.2(b) is satisfied.
If qj , 1 ≤ j ≤ N := p1 satisfy conditions (a), (b) and (c) of Theorem 5.2, then

Definition 2.6(B) implies that p1 lcm(q1, q2, . . . , qN) ∈ P(p1n). Using conditions (a), (b)
and (c) of Theorem 5.2 we obtain

S(p1 lcm(q1, q2, . . . , qN)) = S(lcm(p1q1, q2, . . . , qN))

= S(p1q1)+
N∑

j=2

S(qj )

≥ p
α1+1
1 + [(2− ε)n− p

α1
1 ] + (p1 − 1)(2− ε)n

= p1n

[
(2− ε)+ p

α1
1

n
− p

α1−1
1

n

]

≥ p1n

[
(2− ε)+

(
1− ε

4

)
− 1

p1

]

= p1n

[
3− 5ε

4
− 1

p1

]
.

This completes the proof of Theorem 5.2. ✷

COROLLARY 5.1. Assume that p1 and p2 are prime numbers. Then for each ε, 0 < ε <

1/2, and each positive integer n∗, there exist n ≥ n∗ and elements qj ∈ P(n), 1 ≤ j ≤ 2,
such that (a) gcd(q1, q2) = 1, (b) S(qj ) ≥ (2− ε)n for 1 ≤ j ≤ 2 and (c) qj has a prime
factor pα

j , α ∈ N, where (1− (ε/4))n < p
αj

j ≤ n. If p1 = 2, then 2 lcm(q1, q2) ∈ P(2n)
and

S(2 lcm(q1, q2)) ≥
[

5

2
− 5ε

4

]
2n.

This implies that lim supn→∞ dn ≥ 5/2.

Proof. For any two prime numbers p1 and p2, the numbers (log p1)
−1 and (log p2)

−1

are linearly independent over Q. Therefore, the statement immediately follows from
Theorem 5.2. ✷

The hypotheses of the next corollary would be satisfied if we knew the truth of
Conjecture 5.3.

https://doi.org/10.1017/S0143385702001669 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385702001669


Asymptotic estimates 1221

COROLLARY 5.2. Assume that T is an infinite collection of primes such that for every
p ∈ T , there exist prime numbers (depending on p) r1 = p, r2, r3, . . . , rp such that
{(log rj )

−1 : 1 ≤ j ≤ p} is linearly independent over Q. Then lim supn→∞ dn ≥ 3.

Proof. For every prime p ∈ T , Theorem 5.2 implies that lim supn→∞ dn ≥ (3 − p−1).
Since T is infinite, the prime p can be made as large as desired and lim supn→∞ dn ≥ 3. ✷

Remark 5.4. Actually we are able to show that, given the assumptions of Corollary 5.2,
lim supn→∞ dn = ∞, provided we can show that a certain inhomogeneous linear system
of equations has a positive integer valued solution. While Kronecker’s Theorem asserts
that there is an integer valued solution to this inhomogeneous system, it seems to be a
non-trivial problem to conclude that the solution is actually positive.

Although we conjecture that lim supn→∞ cn = ∞, we shall now show that the growth
rate of cn is necessarily very slow.

PROPOSITION 5.2. Let q be the period of an admissible array on n symbols with four
rows, θ = {θi : Z → % | i ∈ L = {1, 2, 3, 4}}. It then follows that S(q) ≤ (5/2)n.

Proof. Let qi denote the period of θi , 1 ≤ i ≤ 4, so qi ≤ n, and let Bqi ⊂ % denote the
range of θi , so |Bqi | = qi . We can assume that the admissible array θ is ‘minimal’, in the
sense that any proper subarray of θ has a strictly smaller period; for if the array were not
minimal, we could replace it by an array with three or fewer rows and use Proposition 5.1
and Remark 5.2.

We consider two cases.
Case (a). Assume that there exist i, j ∈ L such that Bqi ∩ Bqj = ∅. It follows that

n ≥ |Bqi ∪ Bqj | = qi + qj . Let k and l denote the remaining two elements of L. Then we
have

S(lcm(q1, q2, q3, q4)) = S(lcm(lcm(qi, qj ), lcm(qk, ql)))

≤ S(lcm(qi, qj ))+ S(lcm(qk, ql)). (5.13)

Because lcm(qk, ql) is the period of a two-row admissible array on n symbols,
Proposition 5.1 implies that

S(lcm(qk, ql)) ≤ 3
2n. (5.14)

We also have that

S(lcm(qi, qj )) ≤ S(qi)+ S(qj ) ≤ qi + qj ≤ n. (5.15)

Combining (5.13), (5.14) and (5.15), we see that

S(lcm(q1, q2, q3, q4)) ≤ 5
2n.

Case (b). Assume that Bqi ∩ Bqj 
= ∅ for all i, j ∈ L. Definition 2.2(ii) of admissible
arrays implies ρ = gcd(q1, q2, q3, q4) ≥ 2. If p is the largest prime factor of ρ, define α

to be the largest integer such that pα |ρ. So pα ≥ 2 and pα ≥ 3 if ρ ≥ 3. Let γ be the
largest positive integer such that pγ |lcm(q1, q2, q3, q4) and select i ∈ L such that pγ |qi .
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If j, k, l denote the remaining elements of L, we obtain that

S(lcm(q1, q2, q3, q4)) = S(lcm(qi, p
−αqj , p

−αqk, p
−αql))

≤ qi + 1
2 (qj + ql + qk) ≤ n+ 3

2n = 5
2n.

This completes the proof of Proposition 5.2. ✷

Remark 5.5. It is natural to ask for the optimal constant λ such that S(q) ≤ λn whenever
n ≥ 1 and q is the period of a four-row admissible array on n symbols. Proposition 5.2
proves that λ ≤ 5/2 and if one uses (5.2) with p = 2 and µ = 3, one can see that
λ ≥ 1 + 1/2+ 1/4 + 1/8 = 15/8. It seems likely that a better estimate on λ than that in
Proposition 5.2 is true.

LEMMA 5.3. Suppose that q ∈ Q(n) has a prime factorization q = ∏m
i=1 p

αi

i , where pi ,

1 ≤ i ≤ m, are distinct primes and αi ≥ 1. Let k be a positive integer such that nk−1 ≥ 2
and assume that n(k+1)−1

< pi ≤ nk−1
for 1 ≤ i ≤ m. If π(x) denotes the number of

primes less than or equal to x and [x] denotes the greatest integer less than or equal to x,
we have S(q) ≤ n for k = 1 and

S(q) ≤ n+ R(k, n) for k ≥ 2, (5.16)

where
R(k, n) := (π(nk−1

)− π(n(k+1)−1
))[nk−1]k−1, for k ≥ 1. (5.17)

Furthermore,

lim
n→∞

R(k, n)

n
= 0. (5.18)

Proof. As was noted in §2, pαi

i ≤ n for 1 ≤ i ≤ m, so our assumptions imply that αi ≤ k

for 1 ≤ i ≤ m. Let T = {i | αi = k} and A = {i | αi < k} and write

q1 =
∏
i∈T

pk
i and q2 =

∏
i∈A

p
αi

i .

We have that S(q) = S(q1)+S(q2). There are at most π(nk−1
)−π(n(k+1)−1

) prime factors
in q2 and each factor p

αi

i satisfies

p
αi

1 ≤ [nk−1]k−1.

Thus we obtain
S(q2) ≤

∑
i∈A

p
αi

i ≤ R(k, n), (5.19)

where R(k, n) is given by (5.17). Because q1 is a factor of q , we know that q1 ∈ Q(n).
Thus q1 is the period of an admissible array on n symbols {θj : Z → % : j ∈ L}. We can
assume that the array is ‘minimal’, as in the proof of Proposition 5.2. Let q1,j denote the
period of θj . For each i ∈ T , there exists σ(i) = j ∈ L such that pk

i |q1,j . If pt |q1,σ (i) for
some t ∈ T , t 
= i, we find that

q1,σ (i) ≥ ptp
k
i > n,
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which is a contradiction. It follows that q1,σ (i) = pk
i and the same argument shows that

σ is one-to-one. The minimality of the array implies that σ is onto. It follows that for
j, t ∈ L with j 
= t , gcd(q1,j , q1,t ) = 1, so the properties of admissible arrays imply that
Bq1,j ∩ Bq1,t = ∅ for all j, t ∈ L, j 
= t and

n ≥
∣∣∣∣ ⋃
j∈L

Bq1,j

∣∣∣∣ = ∑
j∈L

q1,j =
∑
t∈T

p
αi

i = S(q1).

This proves (5.16). The limit (5.18) follows directly from the Prime Number Theorem. ✷

With the aid of Propositions 5.1 and 5.2, we can obtain an upper bound on cn in (5.2).
Recall that Theorem 1 on p. 69 of [13] gives ‘effective’ bounds in the Prime Number
Theorem:

x

log x
(1+ (2 log x)−1) < π(x) for x ≥ 59

and
π(x) <

x

log x
(1+ 3(2 log x)−1) for x > 1.

THEOREM 5.3. Assume that n ≥ 11 and let ν be a positive integer such that 11ν ≤ n.
If q ∈ Q(n) and q = ∏m

i=1 p
αi

i , where pi are distinct primes and αi are positive integers
for 1 ≤ i ≤ m, define T = {i | pν+1

i ≤ n} and q̃ = ∏
i∈T p

αi

i . If T is empty, define
S(q̃) = 0. Then we have

S(q) ≤ S(q̃)+ νn+
ν∑

k=2

R(k, n), (5.20)

where R(k, n) is given by (5.17) and the summation equals zero if ν = 1. If ν ≥ 2,

S(q) ≤ S(q̃)+ νn+ π(
√

n)
√

n− π(n(ν+1)−1
)n(ν−1)ν−1

+
ν∑

k=3

π(n1/k)n(k−1)k−1 log n

k(k − 1)
, (5.21)

where the summation equals zero if ν = 2. If ν ≥ 2, we also obtain that

S(q) ≤ S(q̃)+ νn+ 2n

log n
(1+ 3(logn)−1)− π(n(ν+1)−1

)n(ν−1)ν−1

+ n(1+ 3(2 logn)−1) log(ν − 1)+ 3n

2 logn
(ν − 2). (5.22)

Proof. Let Tk = {i | n < pk+1
i and pk

i ≤ n} for 1 ≤ k ≤ ν and define qk = ∏
i∈Tk

p
αi

i .

We define S(qk) = 0 if Tk = ∅. Since qk is a factor of q and q ∈ Q(n), we know that
qk ∈ Q(n). Lemma 5.3 implies that S(q1) ≤ n and for k ≥ 2

S(qk) ≤ n+ R(k, n),

where R(k, n) is given by (5.17). We also have that

S(q) = S

(
q̃

ν∏
k=1

qk

)
= S(q̃)+

ν∑
k=1

S(qk),
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and by combining these equations we obtain (5.20). If ν ≥ 2 and if we replace [nk−1]k−1

in (5.20) by n(k−1)k−1
and rearrange the terms, we obtain

S(q) ≤ S(q̃)+ π(
√

n)
√

n− π(n(ν+1)−1
)n(ν−1)ν−1

+
ν∑

k=3

π(n1/k)n(k−1)k−1
(1− n−k−1(k−1)−1

). (5.23)

Writing ξ = −(k(k − 1))−1 log n and using the Mean Value Theorem, we obtain

1− n−k−1(k−1)−1 = exp(0)− exp(ξ) ≤ −ξ

and substituting this estimate in (5.23) yields (5.21). If we use the upper bound for π(x)

given just before Theorem 5.3, we find that, for k ≥ 3,

n(k−1)k−1
π(nk−1

)
logn

k(k − 1)
<

n

k − 1
(1+ 3k(2 logn)−1)

and

π(
√

n)
√

n <
2n

log n
(1+ 3(logn)−1).

It follows that (for ν ≥ 3)

ν∑
k=3

π(nk−1
)n(k−1)k−1 log n

k(k − 1)
< n

ν∑
k=3

1

k − 1
+ 3n

2 logn

ν∑
k=3

(
1+ 1

k − 1

)

< n log(ν − 1)+ 3n

2 log n
((ν − 2)+ log(ν − 1)),

where we have used the standard estimate
∑ν−1

j=2 j−1 < log(ν − 1). Substituting these
estimates in (5.21) gives (5.22). ✷

COROLLARY 5.3. Assume that n ≥ 11 and let ν be a positive integer such that

11ν ≤ n < 11ν+1. (5.24)

If q ∈ Q(n) and q = ∏m
i=1 p

αi

i , where pi are distinct primes and αi are positive integers
for 1 ≤ i ≤ m, define T = {i | pν+1

i ≤ n} and q̃ = ∏
i∈T p

αi

i . The set T contains at most
four elements and if T 
= ∅, then q̃ = 2α3β5γ 7δ for some non-negative integers α, β, γ

and δ and S(q̃) ≤ (5/2)n. If ν = 1, then cn ≤ (7/2). If ν > 1, then

cn ≤ 5

2
+ ν + 3(ν − 2)

2 logn
+ (1+ 3(2 logn)−1) log(ν − 1)

+ 2

log n
(1+ 3(log n)−1)− π(n(ν+1)−1

)n−ν−1
. (5.25)

If c̃n denotes the right-hand side of (5.25), then

lim
n→∞ c̃n −

(
5

2
+ ν + 3

2 log 11
+ log(ν − 1)− 4

11

)
= 0.
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Proof. If ν satisfies (5.24), then if p is a prime and pν+1 < n, we must have p < 11,
so p = 2, 3, 5 or 7. Thus the set T contains at most four elements and if T 
= ∅, then
q̃ = 2α3β5γ 7δ. It follows from Propositions 5.1 and 5.2 (since q̃ ∈ Q(n) and q̃ is the
period of an admissible array on n symbols with at most four rows), that S(q̃) ≤ (5/2)n.
Substituting this estimate in (5.22) (when ν ≥ 2) or in (5.20) (when ν = 1) gives cn ≤ 7/2
for 11 ≤ n < 112 and (5.25). The remainder of the proof is straightforward. ✷

Remark 5.6. If ν ≥ 2 in Corollary 5.3, then

π(n(ν+1)−1
) =




2 for ν = 2

3 for ν = 3, 4

4 for ν ≥ 5

and, for all ν ≥ 1,
1

11
11−ν−1

< n−ν−1 ≤ 1

11
.

These estimates can be used to further improve (5.25) in specific cases.

Remark 5.7. In [12], the sets Q(n) have been explicitly computed for 1 ≤ n ≤ 50, so cn

can be explicitly computed for n ≤ 50. In particular, cn ≤ 11/8 for n ≤ 11 and cn ≤ 29/16
for n ≤ 50. Computer programs are available to compute the sets P(n) ⊂ Q(n) for
reasonably large values of n (see [12]), so dn can also be computed for reasonably large
n (see Table 1). However, Q(n) and cn resist computation. It is known that in general
P(n) 
= Q(n) (see [12, §7]), but more precise information is lacking. For instance is P(n)

always a ‘good approximation’ to Q(n)? Is dn always a good approximation to cn?

Remark 5.8. Equation (5.20) or the less precise estimate (5.22) can be used to give upper
bounds for cn for large n. For example, if 117 ≤ n < 118 and q ∈ Q(n), then (5.20)
implies that

S(q) ≤ 19

2
n− 4[n1/7]6 + π(

√
n)[√n]

+
7∑

j=3

π(nj−1
)([nj−1]j−1 − [n(j−1)−1]j−2). (5.26)

Using this formula, one obtains after some tedious calculations that for n = 108 and
q ∈ Q(n),

S(q) ≤ 19

2
n+ 2

3
n.
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